1
|
Vrabič-Brodnjak U. Hybrid Materials of Bio-Based Aerogels for Sustainable Packaging Solutions. Gels 2023; 10:27. [PMID: 38247750 PMCID: PMC10815338 DOI: 10.3390/gels10010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
This review explores the field of hybrid materials in the context of bio-based aerogels for the development of sustainable packaging solutions. Increasing global concern over environmental degradation and the growing demand for environmentally friendly alternatives to conventional packaging materials have led to a growing interest in the synthesis and application of bio-based aerogels. These aerogels, which are derived from renewable resources such as biopolymers and biomass, have unique properties such as a lightweight structure, excellent thermal insulation, and biodegradability. The manuscript addresses the innovative integration of bio-based aerogels with various other materials such as nanoparticles, polymers, and additives to improve their mechanical, barrier, and functional properties for packaging applications. It critically analyzes recent advances in hybridization strategies and highlights their impact on the overall performance and sustainability of packaging materials. In addition, the article identifies the key challenges and future prospects associated with the development and commercialization of hybrid bio-based aerogel packaging materials. The synthesis of this knowledge is intended to contribute to ongoing efforts to create environmentally friendly alternatives that address the current problems associated with conventional packaging while promoting a deeper understanding of the potential of hybrid materials for sustainable packaging solutions.
Collapse
Affiliation(s)
- Urška Vrabič-Brodnjak
- Department of Textiles, Graphic Arts and Design, Faculty of Natural Sciences and Engineering, University of Ljubljana, Snežniška 5, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Gheorghiță D, Antoniac I, Moldovan H, Antoniac A, Grosu E, Motelica L, Ficai A, Oprea O, Vasile E, Dițu LM, Raiciu AD. Influence of Lavender Essential Oil on the Physical and Antibacterial Properties of Chitosan Sponge for Hemostatic Applications. Int J Mol Sci 2023; 24:16312. [PMID: 38003499 PMCID: PMC10671502 DOI: 10.3390/ijms242216312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Uncontrollable bleeding continues to stand as the primary cause of fatalities globally following surgical procedures, traumatic incidents, disasters, and combat scenarios. The swift and efficient management of bleeding through the application of hemostatic agents has the potential to significantly reduce associated mortality rates. One significant drawback of currently available hemostatic products is their susceptibility to bacterial infections at the bleeding site. As this is a prevalent issue that can potentially delay or compromise the healing process, there is an urgent demand for hemostatic agents with antibacterial properties to enhance survival rates. To mitigate the risk of infection at the site of a lesion, we propose an alternative solution in the form of a chitosan-based sponge and antimicrobial agents such as silver nanoparticles (AgNPs) and lavender essential oil (LEO). The aim of this work is to provide a new type of hemostatic sponge with an antibacterial barrier against a wide range of Gram-positive and Gram-negative microorganisms: Staphylococcus epidermidis 2018 and Enterococcus faecalis VRE 2566 (Gram-positive strains) and Klebsiella pneumoniae ATCC 10031 and Escherichia coli ATCC 35218 (Gram-negative strains).
Collapse
Affiliation(s)
- Daniela Gheorghiță
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.G.); (I.A.); (E.G.)
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.G.); (I.A.); (E.G.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania; (A.F.); (O.O.)
| | - Horațiu Moldovan
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania; (A.F.); (O.O.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Cardiovascular Surgery, Emergency Clinical Hospital Bucharest, 014461 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.G.); (I.A.); (E.G.)
| | - Elena Grosu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.G.); (I.A.); (E.G.)
| | - Ludmila Motelica
- National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- National Research Center for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Anton Ficai
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania; (A.F.); (O.O.)
- National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- National Research Center for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Ovidiu Oprea
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania; (A.F.); (O.O.)
- National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- National Research Center for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Eugeniu Vasile
- Department of Oxide Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 1–7 Gh. Polizu, 060042 Bucharest, Romania;
| | - Lia Mara Dițu
- Botanic and Microbiology Department, Faculty of Biology, University of Bucharest, 3, Aleea Portocalelor, 17 District 5, Grădina Botanică, 030018 București, Romania;
| | - Anca Daniela Raiciu
- Faculty of Pharmacy, Titu Maiorescu University, 22 Dambovnicului Street, 040441 Bucharest, Romania;
- S.C. Hofigal Import Export S.A., 2 Intrarea Serelor Street, 042124 Bucharest, Romania
| |
Collapse
|
3
|
Gheorghiță D, Moldovan H, Robu A, Bița AI, Grosu E, Antoniac A, Corneschi I, Antoniac I, Bodog AD, Băcilă CI. Chitosan-Based Biomaterials for Hemostatic Applications: A Review of Recent Advances. Int J Mol Sci 2023; 24:10540. [PMID: 37445718 DOI: 10.3390/ijms241310540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Hemorrhage is a detrimental event present in traumatic injury, surgery, and disorders of bleeding that can become life-threatening if not properly managed. Moreover, uncontrolled bleeding can complicate surgical interventions, altering the outcome of surgical procedures. Therefore, to reduce the risk of complications and decrease the risk of morbidity and mortality associated with hemorrhage, it is necessary to use an effective hemostatic agent that ensures the immediate control of bleeding. In recent years, there have been increasingly rapid advances in developing a novel generation of biomaterials with hemostatic properties. Nowadays, a wide array of topical hemostatic agents is available, including chitosan-based biomaterials that have shown outstanding properties such as antibacterial, antifungal, hemostatic, and analgesic activity in addition to their biocompatibility, biodegradability, and wound-healing effects. This review provides an analysis of chitosan-based hemostatic biomaterials and discusses the progress made in their performance, mechanism of action, efficacy, cost, and safety in recent years.
Collapse
Affiliation(s)
- Daniela Gheorghiță
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Horațiu Moldovan
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Cardiovascular Surgery, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Alina Robu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Ana-Iulia Bița
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Elena Grosu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Iuliana Corneschi
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Alin Dănuț Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania
| | - Ciprian Ionuț Băcilă
- Faculty of Medicine, Lucian Blaga University of Sibiu, 10 Victoriei Boulevard, 550024 Sibiu, Romania
| |
Collapse
|
4
|
Froelich A, Jakubowska E, Wojtyłko M, Jadach B, Gackowski M, Gadziński P, Napierała O, Ravliv Y, Osmałek T. Alginate-Based Materials Loaded with Nanoparticles in Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15041142. [PMID: 37111628 PMCID: PMC10143535 DOI: 10.3390/pharmaceutics15041142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Alginate is a naturally derived polysaccharide widely applied in drug delivery, as well as regenerative medicine, tissue engineering and wound care. Due to its excellent biocompatibility, low toxicity, and the ability to absorb a high amount of exudate, it is widely used in modern wound dressings. Numerous studies indicate that alginate applied in wound care can be enhanced with the incorporation of nanoparticles, revealing additional properties beneficial in the healing process. Among the most extensively explored materials, composite dressings with alginate loaded with antimicrobial inorganic nanoparticles can be mentioned. However, other types of nanoparticles with antibiotics, growth factors, and other active ingredients are also investigated. This review article focuses on the most recent findings regarding novel alginate-based materials loaded with nanoparticles and their applicability as wound dressings, with special attention paid to the materials of potential use in the treatment of chronic wounds.
Collapse
Affiliation(s)
- Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Emilia Jakubowska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Monika Wojtyłko
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Michał Gackowski
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Piotr Gadziński
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Olga Napierała
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Yulia Ravliv
- Department of Pharmacy Management, Economics and Technology, I. Horbachevsky Ternopil National Medical University, 36 Ruska Street, 46000 Ternopil, Ukraine
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| |
Collapse
|
5
|
Taokaew S, Kaewkong W, Kriangkrai W. Recent Development of Functional Chitosan-Based Hydrogels for Pharmaceutical and Biomedical Applications. Gels 2023; 9:277. [PMID: 37102889 PMCID: PMC10138304 DOI: 10.3390/gels9040277] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Chitosan is a promising naturally derived polysaccharide to be used in hydrogel forms for pharmaceutical and biomedical applications. The multifunctional chitosan-based hydrogels have attractive properties such as the ability to encapsulate, carry, and release the drug, biocompatibility, biodegradability, and non-immunogenicity. In this review, the advanced functions of the chitosan-based hydrogels are summarized, with emphasis on fabrications and resultant properties reported in literature from the recent decade. The recent progress in the applications of drug delivery, tissue engineering, disease treatments, and biosensors are reviewed. Current challenges and future development direction of the chitosan-based hydrogels for pharmaceutical and biomedical applications are prospected.
Collapse
Affiliation(s)
- Siriporn Taokaew
- Department of Materials Science and Bioengineering, School of Engineering, Nagaoka University of Technology, Nagaoka 940-2188, Japan
| | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Worawut Kriangkrai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
6
|
Liu Z, Xu Y, Su H, Jing X, Wang D, Li S, Chen Y, Guan H, Meng L. Chitosan-based hemostatic sponges as new generation hemostatic materials for uncontrolled bleeding emergency: Modification, composition, and applications. Carbohydr Polym 2023; 311:120780. [PMID: 37028883 DOI: 10.1016/j.carbpol.2023.120780] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
The choice of hemostatic technique is a curial concern for surgery and as first-aid treatment in combat. To treat uncontrolled bleeding in complex wound environments, chitosan-based hemostatic sponges have attracted significant attention in recent years because of the excellent biocompatibility, degradability, hemostasis and antibacterial properties of chitosan and their unique sponge-like morphology for high fluid absorption rate and priority aggregation of blood cells/platelets to achieve rapid hemostasis. In this review, we provide a historical perspective on the use of chitosan hemostatic sponges as the new generation of hemostatic materials for uncontrolled bleeding emergencies in complex wounds. We summarize the modification of chitosan, review the current status of preparation protocols of chitosan sponges based on various composite systems, and highlight the recent achievements on the detailed breakdown of the existing chitosan sponges to present the relationship between their composition, physical properties, and hemostatic capacity. Finally, the future opportunities and challenges of chitosan hemostatic sponges are also proposed.
Collapse
|
7
|
Singh Chandel AK, Ohta S, Taniguchi M, Yoshida H, Tanaka D, Omichi K, Shimizu A, Isaji M, Hasegawa K, Ito T. Balance of antiperitoneal adhesion, hemostasis, and operability of compressed bilayer ultrapure alginate sponges. BIOMATERIALS ADVANCES 2022; 137:212825. [PMID: 35929240 DOI: 10.1016/j.bioadv.2022.212825] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
In surgery, both antiperitoneal adhesion barriers and hemostats with high efficiency and excellent handling are necessary. However, antiadhesion and hemostasis have been examined separately. In this study, six different ultrapure alginate bilayer sponges with thicknesses of 10, 50, 100, 200, 300, and 500 μm were fabricated via lyophilization and subsequent mechanical compression. Compression significantly enhanced mechanical strength and improved handling. Furthermore, it had a complex effect on dissolution time and contact angle. Therefore, the 100 μm compressed sponge showed the highest hemostatic activity in the liver bleeding model in mice, whereas the 200 μm sponge demonstrated the highest antiadhesion efficacy among the compressed sponges in a Pean crush hepatectomy-induced adhesion model in rats. For the first time, we systematically evaluated the effect of sponge compression on foldability, fluid absorption, mechanical strength, hemostatic effect, and antiadhesion properties. The optimum thickness of an alginate bilayer sponge by compression balances antiperitoneal adhesion and hemostasis simultaneously.
Collapse
Affiliation(s)
- Arvind K Singh Chandel
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Seiichi Ohta
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Machiko Taniguchi
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiromi Yoshida
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daichi Tanaka
- Mochida Pharmaceutical Co. Ltd., 1-1 Ichigaya honmuracho, Shinjuku-ku, Tokyo 162-0845, Japan
| | - Kiyohiko Omichi
- Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsushi Shimizu
- Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuko Isaji
- Mochida Pharmaceutical Co. Ltd., 1-1 Ichigaya honmuracho, Shinjuku-ku, Tokyo 162-0845, Japan
| | - Kiyoshi Hasegawa
- Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
8
|
Parmar S, Kaur H, Singh J, Matharu AS, Ramakrishna S, Bechelany M. Recent Advances in Green Synthesis of Ag NPs for Extenuating Antimicrobial Resistance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1115. [PMID: 35407234 PMCID: PMC9000675 DOI: 10.3390/nano12071115] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Combating antimicrobial resistance (AMR) is an on-going global grand challenge, as recognized by several UN Sustainable Development Goals. Silver nanoparticles (Ag NPs) are well-known for their efficacy against antimicrobial resistance, and a plethora of green synthesis methodologies now exist in the literature. Herein, this review evaluates recent advances in biological approaches for Ag NPs, and their antimicrobial potential of Ag NPs with mechanisms of action are explored deeply. Moreover, short and long-term potential toxic effects of Ag NPs on animals, the environment, and human health are briefly discussed. Finally, we also provide a summary of the current state of the research and future challenges on a biologically mediated Ag-nanostructures-based effective platform for alleviating AMR.
Collapse
Affiliation(s)
- Simerjeet Parmar
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, India; (S.P.); (H.K.)
| | - Harwinder Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, India; (S.P.); (H.K.)
| | - Jagpreet Singh
- Department of Chemical Engineering, Chandigarh University, Gharuan, Mohali 140413, India
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Avtar Singh Matharu
- Department of Chemistry, Green Chemistry Centre of Excellence, University of York, York YO10 5DD, UK;
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Centre for Nanotechnology & Sustainability, National University of Singapore, Singapore 117575, Singapore;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, University of Montpellier, ENSCM, CNRS, 34000 Montpellier, France
| |
Collapse
|
9
|
Aly AA, Ali IM, Khalil M, Hameed AM, Alrefaei AF, Alessa H, Alfi AA, Hassan M, Abo El-Naga M, Hegazy AA, Rabie M, Ammar M. Chemical, microbial and biological studies on fresh mango juice in presence of nanoparticles of zirconium molybdate embedded chitosan and alginate. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|