1
|
Verma A, Aljohani K, Aljohani BS, Lal B, Jadeja Y, Ballal S, Chahar M, Suman R. Innovations in cellulose-based hydrogels for enhanced wastewater treatment through adsorption. Int J Biol Macromol 2025; 303:140660. [PMID: 39909242 DOI: 10.1016/j.ijbiomac.2025.140660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/24/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Cellulose-based hydrogels are versatile and biodegradable materials derived from renewable cellulose sources. These hydrogels possess unique properties, such as high water absorption capacity, tunable mechanical strength and excellent biocompatibility. Their porous structure and functional groups enable effective interactions with contaminants and making them ideal candidates for water purification. In wastewater treatment, cellulose-based hydrogels are widely utilized for adsorbing heavy metals and dyes because of their exceptional adsorption capacity and reusability. Chemical changes and enhanced fabrication processes can improve these materials capacity to combat different contaminants under demanding environmental conditions. This review comprehensively explores the extraction and modification of cellulose, the functional and structural properties of cellulose derivatives and the synthesis techniques for cellulose-based hydrogels. It delves into the adsorption mechanisms and highlighting their efficiency in removing specific contaminants. Factors influencing adsorption behavior, such as crosslink density, pollutant concentration, pH, temperature and ionic strength are also discussed. Finally, review outlines current challenges and provides future perspectives to guide research and innovation in this field. It emphasizes the potential of cellulose-based hydrogels as sustainable solutions for wastewater remediation.
Collapse
Affiliation(s)
- Ankit Verma
- Faculty of Science and Technology, ICFAI University, Himachal Pradesh, India.
| | - Khalid Aljohani
- Department of Mechanical Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Bassam S Aljohani
- Department of Mechanical Engineering, College of Engineering, Yanbu 41911, Taibah University, Saudi Arabia
| | - Basant Lal
- Department of Chemistry, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Yashwantsinh Jadeja
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - R Suman
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India; Department of Mathematics, Graphic Gra (Deemed to be University), Dehradun, India
| |
Collapse
|
2
|
Zhen C, Sun H, Ma M, Mu T, Garcia-Vaquero M. Applications of modified lignocellulose and its composites prepared by different pretreatments in biomedicine: A review. Int J Biol Macromol 2025; 301:140347. [PMID: 39870275 DOI: 10.1016/j.ijbiomac.2025.140347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Lignocellulosic biomass represents one of the most abundant renewable biological resources on earth. Despite its current underutilization as a source of high-value chemicals, it has promising applications in biomedical and other fields. Presently, lignocellulose is predominantly transformed into high-value-added products, e.g. cellulose nanocrystals (CNCs), cellulose nanofibers (CNFs), etc., through a variety of physical, chemical and biological methods. The mechanical properties and biocompatibility of these products make them important as vital components in drug delivery agents and tissue engineering materials in the biomedical field. This review offers a comprehensive overview of the underexploited lignocellulosic biomass, the main pretreatment methods for converting it into valuable compounds, and the associated limitations. It also highlights the emerging applications of these compounds in the biomedical field, including sensors, wound dressings, excipients, and artificial skin. In addition, current commercialized products and related regulations are discussed, and future research advancements in this field are also envisaged.
Collapse
Affiliation(s)
- Cheng Zhen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hongnan Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China.
| | - Mengmei Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China.
| | - Taihua Mu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China.
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
3
|
Saenchoopa A, Plaeyao K, Talodthaisong C, Thet Tun WS, Nasomjai P, Lapmanee S, Somsakeesit LO, Hutchison JA, Kulchat S. Development of Antibacterial Hydrogels Based on Biopolymer Aloe Vera/Gelatin/Sodium Alginate Composited With SM-AgNPs Loaded Curcumin-Nanoliposomes. Macromol Biosci 2025:e2400504. [PMID: 39748596 DOI: 10.1002/mabi.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Indexed: 01/04/2025]
Abstract
To address the rising prevalence of bacterial infections and the need for innovative therapeutic solutions, this study has developed a novel antibacterial hydrogel composite composed of Aloe vera, gelatin, sodium alginate, and Sterculia monosperma-silver nanoparticles (SM-AgNPs) loaded curcumin-nanoliposomes (NLPs). The aloe vera/gelatin/sodium alginate hydrogels (AGS) are prepared using different weight ratios of Aloe vera, gelatin, and sodium alginate, aiming to optimize mechanical properties and biocompatibility for biomedical applications. The incorporation of SM-AgNPs and curcumin-loaded NLPs enhanced the hydrogels' antibacterial properties. Characterizations of the hydrogels are performed by using Fourier-transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. Additional examinations, such as water absorption analysis, rheology measurements, thermal stability, and injectability, along with pH and temperature responsiveness, are also conducted. The AGS-3 hydrogel formulation, with a 1:5:3 ratio of Aloe vera to gelatin to sodium alginate, exhibited significant performance in all tests, making it suitable for further experiments. Furthermore, antimicrobial activity assays showed that AGS hydrogels containing SM-AgNPs/NLP composites effectively inhibited the growth of both gram-positive Staphylococcus aureus (S.aureus) and gram-negative Escherichia coli (E.coli) bacteria. These results indicate that the SM-AgNPs/NLP-AGS hydrogel is a promising material for biomedical applications including wound healing, infection prevention, and targeted drug delivery.
Collapse
Affiliation(s)
- Apichart Saenchoopa
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kittiya Plaeyao
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chanon Talodthaisong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wonn Shweyi Thet Tun
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pitak Nasomjai
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao, 56000, Thailand
| | - Sarawut Lapmanee
- Division of Physiology, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 10120, Thailand
| | - La-Or Somsakeesit
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen, 40000, Thailand
| | - James A Hutchison
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sirinan Kulchat
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
4
|
Das R, Suryawanshi N, Burnase N, Barapatre A, Dharshini RS, Kumar B, Saravana Kumar P. Classification and bibliometric analysis of hydrogels in periodontitis treatment: Trends, mechanisms, advantages, and future research directions. Dent Mater 2025; 41:81-99. [PMID: 39510856 DOI: 10.1016/j.dental.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVES The review assess the potential of hydrogel-based drug delivery systems in treating periodontitis. Hydrogels are classified based on source, composition, configuration, crosslinking methods, ionic charge, and response to stimuli. METHODS The methodology comprised of comprehensive data collection from WoS, Scopus and PubMed databases covering the period of 2004-2024 of 626 documents. A bibliometric analysis was conducted using VOS Viewer to identify research trends, key contributors, prominent topics, and leading journals. A comparative analysis was performed to examine the benefits of hydrogels over conventional periodontitis treatments. Current research and innovations in hydrogel formulations were reviewed, including ongoing clinical trials and commercial products. RESULTS China was found to be the leading contributor to hydrogel research in periodontitis, with key topics including "hydrogels," "nanoparticles," and "drug delivery." A detailed classification system for hydrogels was established, aiding in their application for targeted drug delivery and tissue regeneration. Hydrogels were found to offer controlled drug release, support for tissue regeneration, and improved clinical outcomes compared to traditional treatments. Innovations highlighted including the use of various polymers like nano-hydroxyapatite/collagen composites, PLGA-based materials, and chitosan gels in clinical trials, demonstrating enhanced cell proliferation and tissue regeneration. SIGNIFICANCE This review underscores the significant potential of hydrogel-based therapies in advancing the treatment of periodontitis. By providing a comprehensive bibliometric analysis and highlighting key research and innovations, it emphasizes the advantages of hydrogels in terms of targeted drug delivery, minimal invasiveness, and support for tissue regeneration. The findings suggest that with further clinical trials and regulatory approvals, hydrogels could become a mainstream, effective treatment option for periodontitis, offering improved patient outcomes and potentially transforming periodontal therapy.
Collapse
Affiliation(s)
- Reena Das
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamilnadu, India.
| | - Nisha Suryawanshi
- Department of Zoology, Government College, Rau, Indore 453331, Madhya Pradesh, India
| | - Nishant Burnase
- Molecular Virology Laboratory, Department of Microbiology, Chhattisgarh Institute of Medical Sciences, Bilaspur 495001, Chhattisgarh, India
| | - Anand Barapatre
- Central Instrumentation Facility, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak 484886, Madhya Pradesh, India
| | - Rajathirajan Siva Dharshini
- Microbiology Team, Cavinkare R& D Centre, 12, Poonamalle Road, Ekkattuthangal, Chennai 600032, Tamilnadu, India; Molecular Genetics Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamilnadu, India
| | - Bikash Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore 453552, Madhya Pradesh, India.
| | - Pachaiyappan Saravana Kumar
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamilnadu, India; Department of Chemistry, School of Science and Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
5
|
Otarbayeva S, Berillo D. Poly(Vinyl Alcohol) Drug and PVA-Drug-Surfactant Complex Organogel with Dimethyl Sulfoxide as a Drug Delivery System. Gels 2024; 10:753. [PMID: 39590109 PMCID: PMC11593573 DOI: 10.3390/gels10110753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
The relevance of active research lies in the need to develop new technologies to improve drug delivery methods for the effective treatment of wound healing. Additionally, the potential application of organogels in other areas of biomedicine, such as creating medical patches with controlled drug delivery, indicates a wide range of possibilities for using this technology. This study focuses on developing controlled drug delivery systems using organogels as carriers for ceftriaxone and ofloxacin. By selecting optimal formulations, organogels were created to immobilize the drugs, facilitating their effective and sustained release. The swelling behavior of the hydrogels was studied, showing a swelling coefficient between 16 and 32%, indicating their ability to absorb liquid relative to their weight. Drug release studies demonstrated that ceftriaxone was released 1.8 times slower than ofloxacin, ensuring a more controlled delivery. Microbiological tests confirmed that the organogels containing ofloxacin exhibited antimicrobial activity against Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. However, it was a challenge to estimate activity for the model antibiotic ceftriaxone due to bacterial resistance to it. Organogel poly(vinyl alcohol) (PVA)-DMSO-alginate modifications with surfactant cetylpyridinium bromide led to the formation of a polyelectrolyte complex on the interphase, allowing further enhanced the prolonged release of the drugs. The research identified that the optimal compositions for sustained drug release were organogels with compositions PVA (10%)-PVP (1%) DMSO (50%) and PVA (10%)-DMSO (50%) formulations, illustrating the transparent nature of these organogels making them suitable for ophthalmological application. Various organogels compositions (PVA-DMSO, PVA-poly(vinylpyrrolidone)-DMSO, PVA-DMSO-alginate, PVA-DMSO-PLGA, PVA-DMSO-drug-surfactant) loaded with ceftriaxone, ofloxacin, and surfactant were prepared and characterized, highlighting their potential use in antibiotic patches for wound healing. These organogels illustrate promising results for localized treatment of infections in wounds, cuts, burns, and other skin lesions.
Collapse
Affiliation(s)
- Sabina Otarbayeva
- Department of Chemistry and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan
| | - Dmitriy Berillo
- Department of Chemistry and Biochemical Engineering, Satbayev University, Almaty 050013, Kazakhstan
- Department of Biochemistry, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| |
Collapse
|
6
|
Wang F, Maimaitiyiming X. High-strength polyvinyl alcohol/gelatin/LiCl dual-network conductive hydrogel for multifunctional sensors and supercapacitors. Int J Biol Macromol 2024; 282:137293. [PMID: 39510458 DOI: 10.1016/j.ijbiomac.2024.137293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
The synthesis of conductive hydrogels with high mechanical strength, toughness, optimal fracture growth rate and the capability to detect diverse human body movements poses a significant challenge in the realm of flexible electronics. In this study, a one-pot technique utilized effectively to fabricate conductive materials by doping LiCl into a mixture of polyvinyl alcohol (PVA) and gelatin. The PVA/gelatin/LiCl0.3(PGL) conductive hydrogel demonstrates exceptional robustness, flexibility, and resistance to deformation, enabling the monitoring of various physiological signals such as temperature and humidity. Additionally, the PGL demonstrates exceptional elongation properties (up to 1111.32 %), high lifting capacity (up to 25 kg), resistance to deformation, and sustained stability of peak signals even after 300 cycles at 50 % strain. The hydrogel electrolyte exhibits a conductivity of 2.114 S/m at 25 °C and a specific capacitance of up to 48.75 F/g, along with favorable mechanical and electrochemical characteristics. These findings suggest that the PVA/gelatin/LiCl0.3 hydrogel supercapacitor (PGLSC) conductive hydrogel shows significant potential for integration into flexible electronics and wearable technology devices.
Collapse
Affiliation(s)
- Fan Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Xieraili Maimaitiyiming
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China.
| |
Collapse
|
7
|
Espona-Noguera A, Živanić M, Smits E, Bogaerts A, Privat-Maldonado A, Canal C. Unlocking Novel Anticancer Strategies: Bioactive Hydrogels for Local Delivery of Plasma-Derived Oxidants in an In Ovo Cancer Model. Macromol Biosci 2024; 24:e2400213. [PMID: 38899954 DOI: 10.1002/mabi.202400213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Cold atmospheric plasma (CAP) is a tool with the ability to generate reactive oxygen and nitrogen species (RONS), which can induce therapeutic effects like disinfection, wound healing, and cancer treatment. In the plasma oncology field, CAP-treated hydrogels (PTHs) are being explored for the local administration of CAP-derived RONS as a novel anticancer approach. PTHs have shown anticancer effects in vitro, however, they have not yet been studied in more relevant cancer models. In this context, the present study explores for the first time the therapeutic potential of PTHs using an advanced in ovo cancer model. PTHs composed of alginate (Alg), gelatin (Gel), Alg/Gel combination, or Alg/hyaluronic acid (HA) combination are investigated. All embryos survived the PTHs treatment, suggesting that the in ovo model could become a time- and cost-effective tool for developing hydrogel-based anticancer approaches. Results revealed a notable reduction in CD44+ cell population and their proliferative state for the CAP-treated Alg-HA condition. Moreover, the CAP-treated Alg-HA formulation alters the extracellular matrix composition, which may help combat drug-resistance. In conclusion, the present study validates the utility of in ovo cancer model for PTHs exploration and highlights the promising potential of Alg-based PTHs containing HA and CAP-derived RONS for cancer treatment.
Collapse
Affiliation(s)
- Albert Espona-Noguera
- Biomaterials, Biomechanics, and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, Barcelona, 08019, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, 08019, Spain
| | - Milica Živanić
- Biomaterials, Biomechanics, and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, Barcelona, 08019, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, 08019, Spain
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Antwerp, 2610, Belgium
| | - Evelien Smits
- Center for Oncological Research, Integrated Personalized and Precision Oncology Network, University of Antwerp, Antwerp, 2610, Belgium
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Antwerp, 2610, Belgium
| | - Angela Privat-Maldonado
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Antwerp, 2610, Belgium
| | - Cristina Canal
- Biomaterials, Biomechanics, and Tissue Engineering Group, Department of Materials Science and Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Av. Eduard Maristany 10-14, Barcelona, 08019, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Barcelona, 08019, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos II, Barcelona, 28029, Spain
| |
Collapse
|
8
|
Zhao Z, Qin Z, Zhao T, Li Y, Hou Z, Hu H, Su X, Gao Y. Crosslinked Biodegradable Hybrid Hydrogels Based on Poly(ethylene glycol) and Gelatin for Drug Controlled Release. Molecules 2024; 29:4952. [PMID: 39459320 PMCID: PMC11510199 DOI: 10.3390/molecules29204952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
A series of hybrid hydrogels of poly(ethylene glycol) (PEG) were synthesized using gelatin as a crosslinker and investigated for controlled delivery of the first-generation cephalosporin antibiotic, Cefazedone sodium (CFD). A commercially available 4-arm-PEG-OH was first modified to obtain four-arm-PEG-succinimidyl glutarate (4-arm-PEG-SG), which formed the gelatin-PEG composite hydrogels (SnNm) through crosslinking with gelatin. To regulate the drug delivery, SnNm hydrogels with various solid contents and crosslinking degrees were prepared. The effect of solid contents and crosslinking degrees on the thermal, mechanical, swelling, degradation, and drug release properties of the hydrogels were intensively investigated. The results revealed that increasing the crosslinking degree and solid content of SnNm could not only enhance the thermal stability, swelling ratio (SR), and compression resistance capacity of SnNm but also prolong the degradation and drug release times. The release kinetics of the SnNm hydrogels were found to follow the first-order model, suggesting that the transport rate of CFD within the matrix of hydrogels is proportional to the concentration of the drug where it is located. Specifically, S1N1-III showed 90% mass loss after 60 h of degradation and a sustained release duration of 72 h. The cytotoxicity assay using the MTT method revealed that cell viability rates of S1N1 were higher than 95%, indicating excellent cytocompatibility. This study offers new insights and methodologies for the development of hydrogels as biomedical composite materials.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- School of Advanced Agricultural Science, Weifang University, Weifang 261061, China;
| | - Zihao Qin
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China;
| | - Tianqing Zhao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228, China; (T.Z.); (H.H.); (X.S.); (Y.G.)
| | - Yuanyuan Li
- School of Advanced Agricultural Science, Weifang University, Weifang 261061, China;
| | - Zhaosheng Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China;
| | - Hui Hu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228, China; (T.Z.); (H.H.); (X.S.); (Y.G.)
| | - Xiaofang Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228, China; (T.Z.); (H.H.); (X.S.); (Y.G.)
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228, China; (T.Z.); (H.H.); (X.S.); (Y.G.)
| |
Collapse
|
9
|
Abid Mustafa M, Rashid Hussain H, Akbar Khan J, Ahmad N, Bashir S, Asad M, Saeed Shah H, Ali Khan A, Malik A, Fatima S, Mehmood Yousaf A, Nazir I. Development and In Vitro Characterization of Azadirachta Indica Gum Grafted Polyacrylamide Based pH-Sensitive Hydrogels to Improve the Bioavailability of Lansoprazole. Chem Biodivers 2024:e202401434. [PMID: 39404191 DOI: 10.1002/cbdv.202401434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/14/2024] [Indexed: 11/14/2024]
Abstract
The present study intended to develop a pH-responsive hydrogel based on Neem gum (Ng) to improve Lansoprazole (LSP) oral bioavailability. Azadirachta Indica seed extract was used to obtain Ng. pH-responsive hydrogel formulations (F1-F9) were prepared using different Ng ratios, Acrylamide (AAm), and methylene-bis-acrylamide (MBA). The formulated hydrogels were characterized through FTIR, thermal analysis, swelling ratio, SEM, sol-gel ratios, In-Vitro drug release, and cytotoxicity analysis. Azadirachta Indica was extracted to produce a powder containing 21.5 % Ng. Prepared hydrogels showed maximum swelling at pH 7.4, whereas the swelling at an acidic pH was insignificant. LSP-loaded hydrogel demonstrated a regulated release of LSP for up to 24 h and indicated a Super Case II transport release mechanism. During the cytotoxic evaluation, the delivery system showed minimal cytotoxicity towards normal cells, while percent cytotoxicity was carried out for a longer duration (up to 96 h). The present study revealed Azadirachta indica gum-based pH-responsive hydrogel as a promising technique for precisely delivering LSP.
Collapse
Affiliation(s)
- Muhammad Abid Mustafa
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, 54000, Pakistan
| | | | - Jawad Akbar Khan
- Center of Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Wahringerstrasse 13a, A-1090, Vienna, Austria
| | - Nadeem Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Sajid Bashir
- Lords College of Pharmacy, Lahore, 54000, Pakistan
| | | | - Hamid Saeed Shah
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sabiha Fatima
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh, 12371, Saudi Arabia
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| |
Collapse
|
10
|
Wu KY, Belaiche M, Wen Y, Choulakian MY, Tran SD. Advancements in Polymer Biomaterials as Scaffolds for Corneal Endothelium Tissue Engineering. Polymers (Basel) 2024; 16:2882. [PMID: 39458711 PMCID: PMC11511139 DOI: 10.3390/polym16202882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Corneal endothelial dysfunction is a leading cause of vision loss globally, frequently requiring corneal transplantation. However, the limited availability of donor tissues, particularly in developing countries, has spurred on the exploration of tissue engineering strategies, with a focus on polymer biomaterials as scaffolds for corneal endotlhelium regeneration. This review provides a comprehensive overview of the advancements in polymer biomaterials, focusing on their role in supporting the growth, differentiation, and functional maintenance of human corneal endothelial cells (CECs). Key properties of scaffold materials, including optical clarity, biocompatibility, biodegradability, mechanical stability, permeability, and surface wettability, are discussed in detail. The review also explores the latest innovations in micro- and nano-topological morphologies, fabrication techniques such as electrospinning and 3D/4D bioprinting, and the integration of drug delivery systems into scaffolds. Despite significant progress, challenges remain in translating these technologies to clinical applications. Future directions for research are highlighted, including the need for improved biomaterial combinations, a deeper understanding of CEC biology, and the development of scalable manufacturing processes. This review aims to serve as a resource for researchers and clinician-scientists seeking to advance the field of corneal endothelium tissue engineering.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Myriam Belaiche
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ying Wen
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mazen Y. Choulakian
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
11
|
Mendoza JJ, Arenas-de Valle C, Caldera-Villalobos M, Cano-Salazar LF, Flores-Guía TE, Espinosa-Neira R, Claudio-Rizo JA. Collagen-β-cyclodextrin hydrogels for advanced wound dressings: super-swelling, antibacterial action, inflammation modulation, and controlled drug release. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2170-2203. [PMID: 38913549 DOI: 10.1080/09205063.2024.2370208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
A key strategy in enhancing the efficacy of collagen-based hydrogels involves incorporating polysaccharides, which have shown great promise for wound healing. In this study, semi-interpenetrating polymeric network (semi-IPN) hydrogels comprised of collagen (Col) with the macrocyclic oligosaccharide β-cyclodextrin (β-CD) (20-80 wt.%) were synthesised. Fourier-transform infrared (FTIR) spectroscopy confirmed the successful fabrication of these Col/β-CD hydrogels, evidenced by the presence of characteristic absorption bands, including the urea bond band at ∼1740 cm-1, related with collagen crosslinking. Higher β-CD content was associated with increased crosslinking, higher swelling, and faster gelation. The β-CD content directly influenced the morphology and semi-crystallinity. All Col/β-CD hydrogels displayed superabsorbent properties, enhanced thermal stability, and exhibited slow degradation rates. Mechanical properties were significantly improved with contents higher than β-CD 40 wt.%. These hydrogels inhibited the growth of Escherichia coli bacteria and facilitated the controlled release of agents, such as malachite green, methylene blue, and ketorolac. The chemical composition of the Col/β-CD hydrogels did not induce cytotoxic effects on monocytes and fibroblast cells. Instead, they actively promoted cellular metabolic activity, encouraging cell growth and proliferation. Moreover, cell signalling modulation was observed, leading to changes in the expression of TNF-α and IL-10 cytokines. In summary, the results of this research indicate that these novel hydrogels possess multifunctional characteristics, including biocompatibility, super-swelling capacity, good thermal, hydrolytic, and enzymatic degradation resistance, antibacterial activity, inflammation modulation, and the ability to be used for controlled delivery of therapeutic agents, indicating high potential for application in advanced wound dressings.
Collapse
Affiliation(s)
- Juan J Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Mexico
| | | | | | - Lucía F Cano-Salazar
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Mexico
| | - Tirso E Flores-Guía
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Mexico
| | | | - Jesús A Claudio-Rizo
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Mexico
| |
Collapse
|
12
|
Xiao Y, Wang L, Zhang X, Ren Y, Wang J, Niu B, Li W. Preparation and Characterization of Silica-Coated Sodium Alginate Hydrogel Beads and the Delivery of Curcumin. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2153-2169. [PMID: 38953307 DOI: 10.1080/09205063.2024.2368957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/21/2024] [Indexed: 07/04/2024]
Abstract
In this study, to address the defects of sodium alginate (SA), such as its susceptibility to disintegration, silica was coated on the outer layer of sodium alginate hydrogel beads in order to improve its swelling and slow-release properties. Tetraethyl orthosilicate (TEOS) was used as the hydrolyzed precursor, and the solution of silica precursor was prepared by sol-gel reaction under acidic conditions. Then SA-silica hydrogel beads prepared by ionic crosslinking method were immersed into the SiO2 precursor solution to prepare SA-silica hydrogel beads. The chemical structure and morphology of the hydrogel beads were characterized by XRD, FTIR, and SEM, and the results showed that the surface of SA-silica beads was successfully encapsulated with the outer layer of SiO2, and the surface was smooth and dense. The swelling experiments showed that the swelling performance effectively decreased with the increase of TEOS molar concentration, and the maximum swelling ratio of the hydrogel beads decreased from 41.07 to 14.3, and the time to reach the maximum swelling ratio was prolonged from 4 h to 8 h. The sustained-release experiments showed that the SA-silica hydrogel beads possessed a good pH sensitivity, and the time of sustained-release was significantly prolonged in vitro. Hemolysis and cytotoxicity experiments showed that the SA-silica hydrogel beads were biocompatible when the TEOS molar concentration was lower than 0.375 M. The SA-silica-2 hydrogel beads had good biocompatibility, swelling properties, and slow-release properties at the same time.
Collapse
Affiliation(s)
- Yu Xiao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, PR China
| | - Lu Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, PR China
| | - Xueze Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, PR China
| | - Yi Ren
- First Hospital of Shanxi Medical University, Taiyuan, PR China
| | | | - Baolong Niu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, PR China
| | - Wenfeng Li
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, PR China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, PR China
| |
Collapse
|
13
|
Ahmad F, Nosheen A, Azam F, Mushtaq B, Ahmad S, Rasheed A, Nawab Y, Zafar MS, Fareed MA, Shahwan M. Hydroentangled waste cotton non-woven based alginate hydrogel wound dressing for high wound exudates. Heliyon 2024; 10:e37952. [PMID: 39328563 PMCID: PMC11425120 DOI: 10.1016/j.heliyon.2024.e37952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Hydrogels are used in modern wound dressings due to their ability to provide comfort with quick healing. However, poor mechanical properties of hydrogels limit their availability in commercial wound dressings. Nonwovens are highly porous, strong, and flexible structures that can provide support to hydrogels without compromising their properties. In this study, a cost-effective and sustainable hydroentangled nonwoven from industrial cotton waste was prepared and incorporated into alginate hydrogel for wound dressings. The novel composite of hydroentangled cotton nonwoven and alginate hydrogel was synthesized by a simple sol-gel technique. The effect of concentration of alginate hydrogel (0.5 wt%, 1 wt%, 1.5 wt %) and drying temperature (20 °C, 40 °C, 60 °C) of composite was analyzed for high wound exudates. The properties of prepared composite samples were characterized by scanning electron microscopy (SEM), XRD, tensile strength, tear strength, Air permeability, moisture management wound exudate test, and quantitative antimicrobial testing. Moreover, the comfort performance of these samples was evaluated by air permeability and moisture management testing. The properties of developed composites are highly dependent on the concentration of alginate and drying temperature. The results showed that maximum fluid absorbency (%) of 650 was achieved with good comfort properties. This study can help to increase the commercial availability of hydrogel-based wound dressings.
Collapse
Affiliation(s)
- Faheem Ahmad
- School of Engineering and Technology, National Textile University, Faisalabad, Pakistan
| | - Anum Nosheen
- School of Engineering and Technology, National Textile University, Faisalabad, Pakistan
| | - Farooq Azam
- School of Engineering and Technology, National Textile University, Faisalabad, Pakistan
| | - Bushra Mushtaq
- School of Engineering and Technology, National Textile University, Faisalabad, Pakistan
| | - Sheraz Ahmad
- School of Engineering and Technology, National Textile University, Faisalabad, Pakistan
| | - Abher Rasheed
- School of Engineering and Technology, National Textile University, Faisalabad, Pakistan
| | - Yasir Nawab
- School of Engineering and Technology, National Textile University, Faisalabad, Pakistan
| | - Muhammad Sohail Zafar
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- School of Dentistry, University of Jordan, Amman, Jordan
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Muhammad Amber Fareed
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, United Arab Emirates
| |
Collapse
|
14
|
Cieślak A, Krakos A, Kulbacka J, Detyna J. Overview of research on additive manufacturing of hydrogel-assisted lab-on-chip platforms for cell engineering applications in photodynamic therapy research. Mikrochim Acta 2024; 191:608. [PMID: 39292358 PMCID: PMC11410904 DOI: 10.1007/s00604-024-06683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Lab-on-chips supported by hydrogel matrices are excellent solutions for cell culture; thus, this literature review presents examples of scientific research in this area. Several works are presenting the properties of biocompatible hydrogels that mimic the cellular environment published recently. Hydrogels can also be treated as cell transporters or as a structural component of microfluidic devices. The rapidly growing scientific sector of hydrogel additive manufacturing is also described herein, with attention paid to the appropriate mechanical and biological properties of the inks used to extrude the material, specifically for biomedical purposes. The paper focuses on protocols employed for additive manufacturing, e.g., 3D printing parameters, calibration, ink preparation, crosslinking processes, etc. The authors also mention potential problems concerning manufacturing processes and offer example solutions. As the novel trend for hydrogels enriched with several biocompatible additives has recently risen, the article presents examples of the use of high-quality carbon nanotubes in hydrogel research enhancing biocompatibility, mechanical stability, and cell viability. Moving forward, the article points out the high applicability of the hydrogel-assisted microfluidic platforms used for cancer research, especially for photodynamic therapy (PDT). This innovative treatment strategy can be investigated directly on the chip, which was first proposed by Jędrych E. et al. in 2011. Summarizing, this literature review highlights recent developments in the additive manufacturing of microfluidic devices supported by hydrogels, toward reliable cell culture experiments with a view to PDT research. This paper gathers the current knowledge in these intriguing and fast-growing research paths.
Collapse
Affiliation(s)
- Adrianna Cieślak
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland.
| | - Agnieszka Krakos
- Department of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Wrocław, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Jerzy Detyna
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
15
|
Irantash S, Gholipour-Kanani A, Najmoddin N, Varsei M. A hybrid structure based on silk fibroin/PVA nanofibers and alginate/gum tragacanth hydrogel embedded with cardamom extract. Sci Rep 2024; 14:14010. [PMID: 38890349 PMCID: PMC11189390 DOI: 10.1038/s41598-024-63061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Hybrid structures made of natural-synthetic polymers have been interested due to high biological features combining promising physical-mechanical properties. In this research, a hybrid dressing consisting of a silk fibroin (SF)/polyvinyl alcohol (PVA) nanofibers and sodium alginate (SA)/gum tragacanth (GT) hydrogel incorporating cardamom extract as an antibacterial agent was prepared. Accordingly, SF was extracted from cocoons followed by electrospinning in blend form with PVA (SF/PVA ratio: 1:1) under the voltage of 18 kV and the distances of 15 cm. The SEM images confirmed the formation of uniform, bead free fibers with the average diameter of 199 ± 28 nm. FTIR and XRD results revealed the successful extraction of SF and preparation of mixed fibrous mats. Next, cardamom oil extract-loaded SA/GT hydrogel was prepared and the nanofibrous structure was placed on the surface of hydrogel. SEM analysis depicted the uniform morphology of hybrid structure with desirable matching between two layers. TGA analysis showed desired thermal stability. The swelling ratio was found to be 1251% after 24 h for the hybrid structure and the drug was released without any initial burst. MTT assay and cell attachment results showed favorable biocompatibility and cell proliferation on samples containing extract, and antibacterial activity values of 85.35% against S. aureus and 75% against E. coli were obtained as well. The results showed that the engineered hybrid nanofibrous-hydrogel film structure incorporating cardamom oil extract could be a promising candidate for wound healing applications and skin tissue engineering.
Collapse
Affiliation(s)
- Shadan Irantash
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Adeleh Gholipour-Kanani
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
- Department of Biomedical Engineering, Medical Engineering and Biology Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mehdi Varsei
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
16
|
Kalulu M, Chilikwazi B, Hu J, Fu G. Soft Actuators and Actuation: Design, Synthesis, and Applications. Macromol Rapid Commun 2024:e2400282. [PMID: 38850266 DOI: 10.1002/marc.202400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Soft actuators are one of the most promising technological advancements with potential solutions to diverse fields' day-to-day challenges. Soft actuators derived from hydrogel materials possess unique features such as flexibility, responsiveness to stimuli, and intricate deformations, making them ideal for soft robotics, artificial muscles, and biomedical applications. This review provides an overview of material composition and design techniques for hydrogel actuators, exploring 3D printing, photopolymerization, cross-linking, and microfabrication methods for improved actuation. It examines applications of hydrogel actuators in biomedical, soft robotics, bioinspired systems, microfluidics, lab-on-a-chip devices, and environmental, and energy systems. Finally, it discusses challenges, opportunities, advancements, and regulatory aspects related to hydrogel actuators.
Collapse
Affiliation(s)
- Mulenga Kalulu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Bright Chilikwazi
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| |
Collapse
|
17
|
Łabowska MB, Krakos A, Kubicki W. 3D Printed Hydrogel Sensor for Rapid Colorimetric Detection of Salivary pH. SENSORS (BASEL, SWITZERLAND) 2024; 24:3740. [PMID: 38931525 PMCID: PMC11207461 DOI: 10.3390/s24123740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Salivary pH is one of the crucial biomarkers used for non-invasive diagnosis of intraoral diseases, as well as general health conditions. However, standard pH sensors are usually too bulky, expensive, and impractical for routine use outside laboratory settings. Herein, a miniature hydrogel sensor, which enables quick and simple colorimetric detection of pH level, is shown. The sensor structure was manufactured from non-toxic hydrogel ink and patterned in the form of a matrix with 5 mm × 5 mm × 1 mm individual sensing pads using a 3D printing technique (bioplotting). The authors' ink composition, which contains sodium alginate, polyvinylpyrrolidone, and bromothymol blue indicator, enables repeatable and stable color response to different pH levels. The developed analysis software with an easy-to-use graphical user interface extracts the R(ed), G(reen), and B(lue) components of the color image of the hydrogel pads, and evaluates the pH value in a second. A calibration curve used for the analysis was obtained in a pH range of 3.5 to 9.0 using a laboratory pH meter as a reference. Validation of the sensor was performed on samples of artificial saliva for medical use and its mixtures with beverages of different pH values (lemon juice, coffee, black and green tea, bottled and tap water), and correct responses to acidic and alkaline solutions were observed. The matrix of square sensing pads used in this study provided multiple parallel responses for parametric tests, but the applied 3D printing method and ink composition enable easy adjustment of the shape of the sensing layer to other desired patterns and sizes. Additional mechanical tests of the hydrogel layers confirmed the relatively high quality and durability of the sensor structure. The solution presented here, comprising 3D printed hydrogel sensor pads, simple colorimetric detection, and graphical software for signal processing, opens the way to development of miniature and biocompatible diagnostic devices in the form of flexible, wearable, or intraoral sensors for prospective application in personalized medicine and point-of-care diagnosis.
Collapse
Affiliation(s)
- Magdalena B. Łabowska
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-371 Wroclaw, Poland
| | - Agnieszka Krakos
- Department of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372 Wroclaw, Poland; (A.K.); (W.K.)
| | - Wojciech Kubicki
- Department of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372 Wroclaw, Poland; (A.K.); (W.K.)
| |
Collapse
|
18
|
Akmal MH, Kalashgrani MY, Mousavi SM, Rahmanian V, Sharma N, Gholami A, Althomali RH, Rahman MM, Chiang WH. Recent advances in synergistic use of GQD-based hydrogels for bioimaging and drug delivery in cancer treatment. J Mater Chem B 2024; 12:5039-5060. [PMID: 38716622 DOI: 10.1039/d4tb00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Graphene quantum dot (GQD) integration into hydrogel matrices has become a viable approach for improving drug delivery and bioimaging in cancer treatment in recent years. Due to their distinct physicochemical characteristics, graphene quantum dots (GQDs) have attracted interest as adaptable nanomaterials for use in biomedicine. When incorporated into hydrogel frameworks, these nanomaterials exhibit enhanced stability, biocompatibility, and responsiveness to external stimuli. The synergistic pairing of hydrogels with GQDs has created new opportunities to tackle the problems related to drug delivery and bioimaging in cancer treatment. Bioimaging plays a pivotal role in the early detection and monitoring of cancer. GQD-based hydrogels, with their excellent photoluminescence properties, offer a superior platform for high-resolution imaging. The tunable fluorescence characteristics of GQDs enable real-time visualization of biological processes, facilitating the precise diagnosis and monitoring of cancer progression. Moreover, the drug delivery landscape has been significantly transformed by GQD-based hydrogels. Because hydrogels are porous, therapeutic compounds may be placed into them and released in a controlled environment. The large surface area and distinct interactions of graphene quantum dots (GQDs) with medicinal molecules boost loading capacity and release dynamics, ultimately improving therapeutic efficacy. Moreover, GQD-based hydrogels' stimulus-responsiveness allows for on-demand medication release, which minimizes adverse effects and improves therapeutic outcomes. The ability of GQD-based hydrogels to specifically target certain cancer cells makes them notable. Functionalizing GQDs with targeting ligands minimizes off-target effects and delivers therapeutic payloads to cancer cells selectively. Combined with imaging capabilities, this tailored drug delivery creates a theranostic platform for customized cancer treatment. In this study, the most recent advancements in the synergistic use of GQD-based hydrogels are reviewed, with particular attention to the potential revolution these materials might bring to the area of cancer theranostics.
Collapse
Affiliation(s)
- Muhammad Hussnain Akmal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | | | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Vahid Rahmanian
- Department of Mechanical Engineering, Université du Québec à Trois-Rivières, Drummondville, QC, Canada
| | - Neha Sharma
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir 11991, Al Kharj, Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia.
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| |
Collapse
|
19
|
Liu L, Li Z, Yang B, Jia X, Wang S. Recent Research Progress on Polyamidoamine-Engineered Hydrogels for Biomedical Applications. Biomolecules 2024; 14:620. [PMID: 38927024 PMCID: PMC11201556 DOI: 10.3390/biom14060620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Hydrogels are three-dimensional crosslinked functional materials with water-absorbing and swelling properties. Many hydrogels can store a variety of small functional molecules to structurally and functionally mimic the natural extracellular matrix; hence, they have been extensively studied for biomedical applications. Polyamidoamine (PAMAM) dendrimers have an ethylenediamine core and a large number of peripheral amino groups, which can be used to engineer various polymer hydrogels. In this review, an update on the progress of using PAMAM dendrimers for multifunctional hydrogel design was given. The synthesis of these hydrogels, which includes click chemistry reactions, aza-Michael addition, Schiff base reactions, amidation reactions, enzymatic reactions, and radical polymerization, together with research progress in terms of their application in the fields of drug delivery, tissue engineering, drug-free tumor therapy, and other related fields, was discussed in detail. Furthermore, the biomedical applications of PAMAM-engineered nano-hydrogels, which combine the advantages of dendrimers, hydrogels, and nanoparticles, were also summarized. This review will help researchers to design and develop more functional hydrogel materials based on PAMAM dendrimers.
Collapse
Affiliation(s)
- Li Liu
- Outpatient Department of Anhui Medical University First Affiliated Hospital, The First Affiliated Hospital of Anhui Medical University, No. 120 Wanshui Road, Hefei High-Tech Zone, Hefei 230000, China
| | - Zhiling Li
- Outpatient Department of Anhui Medical University First Affiliated Hospital, The First Affiliated Hospital of Anhui Medical University, No. 120 Wanshui Road, Hefei High-Tech Zone, Hefei 230000, China
| | - Baiyan Yang
- Outpatient Department of Anhui Medical University First Affiliated Hospital, The First Affiliated Hospital of Anhui Medical University, No. 120 Wanshui Road, Hefei High-Tech Zone, Hefei 230000, China
| | - Xiaoqing Jia
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
20
|
Monavari SM, Memarian N. A DFTB study on the electronic response of encapsulated DNA nucleobases onto chiral CNTs as a sequencer. Sci Rep 2024; 14:10826. [PMID: 38734799 PMCID: PMC11636929 DOI: 10.1038/s41598-024-61677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
Sequencing the DNA nucleobases is essential in the diagnosis and treatment of many diseases related to human genes. In this article, the encapsulation of DNA nucleobases with some of the important synthesized chiral (7, 6), (8, 6), and (10, 8) carbon nanotubes were investigated. The structures were modeled by applying density functional theory based on tight binding method (DFTB) by considering semi-empirical basis sets. Encapsulating DNA nucleobases on the inside of CNTs caused changes in the electronic properties of the selected chiral CNTs. The results confirmed that van der Waals (vdW) interactions, π-orbitals interactions, non-bonded electron pairs, and the presence of high electronegative atoms are the key factors for these changes. The result of electronic parameters showed that among the CNTs, CNT (8, 6) is a suitable choice in sequencing guanine (G) and cytosine (C) DNA nucleobases. However, they are not able to sequence adenine (A) and thymine (T). According to the band gap energy engineering approach and absorption energy, the presence of G and C DNA nucleobases decreased the band gap energy of CNTs. Hence selected CNTs suggested as biosensor substrates for sequencing G and C DNA nucleobases.
Collapse
Affiliation(s)
| | - Nafiseh Memarian
- Faculty of Physics, Semnan University, P.O. Box: 35195-363, Semnan, Iran.
| |
Collapse
|
21
|
Shi L, Zhou Y, Yin Y, Zhang J, Chen K, Liu S, Chen P, Jiang H, Liu J, Wu Y. Advancing Tissue Damage Repair in Geriatric Diseases: Prospects of Combining Stem Cell-Derived Exosomes with Hydrogels. Int J Nanomedicine 2024; 19:3773-3804. [PMID: 38708181 PMCID: PMC11068057 DOI: 10.2147/ijn.s456268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Geriatric diseases are a group of diseases with unique characteristics related to senility. With the rising trend of global aging, senile diseases now mainly include endocrine, cardiovascular, neurodegenerative, skeletal, and muscular diseases and cancer. Compared with younger populations, the structure and function of various cells, tissues and organs in the body of the elderly undergo a decline as they age, rendering them more susceptible to external factors and diseases, leading to serious tissue damage. Tissue damage presents a significant obstacle to the overall health and well-being of older adults, exerting a profound impact on their quality of life. Moreover, this phenomenon places an immense burden on families, society, and the healthcare system.In recent years, stem cell-derived exosomes have become a hot topic in tissue repair research. The combination of these exosomes with biomaterials allows for the preservation of their biological activity, leading to a significant improvement in their therapeutic efficacy. Among the numerous biomaterial options available, hydrogels stand out as promising candidates for loading exosomes, owing to their exceptional properties. Due to the lack of a comprehensive review on the subject matter, this review comprehensively summarizes the application and progress of combining stem cell-derived exosomes and hydrogels in promoting tissue damage repair in geriatric diseases. In addition, the challenges encountered in the field and potential prospects are presented for future advancements.
Collapse
Affiliation(s)
- Ling Shi
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yunjun Zhou
- The Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yongkui Yin
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Jin Zhang
- Clinical Laboratory, Zhejiang Medical & Health Group Quzhou Hospital, Quzhou, 324004, People’s Republic of China
| | - Kaiyuan Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Sen Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Peijian Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Hua Jiang
- The Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Jieting Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| |
Collapse
|
22
|
Ajvazi N, Milošev I, Cerc Korošec R, Rodič P, Božić B. Development and Characterization of Gelatin-Based Hydrogels Containing Triblock Copolymer and Phytic Acid. Gels 2024; 10:294. [PMID: 38786211 PMCID: PMC11121302 DOI: 10.3390/gels10050294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
In recent research, significant interest has been directed towards gelatin-based hydrogels due to their affordable price, extensive availability, and biocompatibility, making them promising candidates for various biomedical applications. The development and characterization of novel hydrogels formed from varying ratios of gelatin, triblock copolymer Pluronic F-127, and phytic acid have been presented. Swelling properties were examined at different pH levels. The morphology of hydrogels and their thermal properties were analyzed using scanning electron microscopy (SEM), thermogravimetric analysis (TG), and differential scanning calorimetry (DSC). Fourier-transform infrared (FTIR) analysis of the hydrogels was also performed. The introduction of phytic acid in the hydrogel plays a crucial role in enhancing the intermolecular interactions within gelatin-based hydrogels, contributing to a more stable, elastic, and robust network structure.
Collapse
Affiliation(s)
- Njomza Ajvazi
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (N.A.); (P.R.); (B.B.)
| | - Ingrid Milošev
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (N.A.); (P.R.); (B.B.)
- Valdoltra Orthopaedic Hospital, Jadranska c. 31, 6280 Ankaran, Slovenia
| | - Romana Cerc Korošec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, 1000 Ljubljana, Slovenia;
| | - Peter Rodič
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (N.A.); (P.R.); (B.B.)
| | - Bojan Božić
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (N.A.); (P.R.); (B.B.)
- Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Studenski Trg 3, 11000 Beograd, Serbia
| |
Collapse
|
23
|
Hameed H, Faheem S, Paiva-Santos AC, Sarwar HS, Jamshaid M. A Comprehensive Review of Hydrogel-Based Drug Delivery Systems: Classification, Properties, Recent Trends, and Applications. AAPS PharmSciTech 2024; 25:64. [PMID: 38514495 DOI: 10.1208/s12249-024-02786-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
As adaptable biomaterials, hydrogels have shown great promise in several industries, which include the delivery of drugs, engineering of tissues, biosensing, and regenerative medicine. These hydrophilic polymer three-dimensional networks have special qualities like increased content of water, soft, flexible nature, as well as biocompatibility, which makes it excellent candidates for simulating the extracellular matrix and promoting cell development and tissue regeneration. With an emphasis on their design concepts, synthesis processes, and characterization procedures, this review paper offers a thorough overview of hydrogels. It covers the various hydrogel material types, such as natural polymers, synthetic polymers, and hybrid hydrogels, as well as their unique characteristics and uses. The improvements in hydrogel-based platforms for controlled drug delivery are examined. It also looks at recent advances in bioprinting methods that use hydrogels to create intricate tissue constructions with exquisite spatial control. The performance of hydrogels is explored through several variables, including mechanical properties, degradation behaviour, and biological interactions, with a focus on the significance of customizing hydrogel qualities for particular applications. This review paper also offers insights into future directions in hydrogel research, including those that promise to advance the discipline, such as stimuli-responsive hydrogels, self-healing hydrogels, and bioactive hydrogels. Generally, the objective of this review paper is to provide readers with a detailed grasp of hydrogels and all of their potential uses, making it an invaluable tool for scientists and researchers studying biomaterials and tissue engineering.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan.
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Hafiz Shoaib Sarwar
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| |
Collapse
|
24
|
Mittal RK, Mishra R, Uddin R, Sharma V. Hydrogel Breakthroughs in Biomedicine: Recent Advances and Implications. Curr Pharm Biotechnol 2024; 25:1436-1451. [PMID: 38288792 DOI: 10.2174/0113892010281021231229100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 07/23/2024]
Abstract
OBJECTIVE The objective of this review is to present a succinct summary of the latest advancements in the utilization of hydrogels for diverse biomedical applications, with a particular focus on their revolutionary impact in augmenting the delivery of drugs, tissue engineering, along with diagnostic methodologies. METHODS Using a meticulous examination of current literary works, this review systematically scrutinizes the nascent patterns in applying hydrogels for biomedical progress, condensing crucial discoveries to offer a comprehensive outlook on their ever-changing importance. RESULTS The analysis presents compelling evidence regarding the growing importance of hydrogels in biomedicine. It highlights their potential to significantly enhance drug delivery accuracy, redefine tissue engineering strategies, and advance diagnostic techniques. This substantiates their position as a fundamental element in the progress of modern medicine. CONCLUSION In summary, the constantly evolving advancement of hydrogel applications in biomedicine calls for ongoing investigation and resources, given their diverse contributions that can revolutionize therapeutic approaches and diagnostic methods, thereby paving the way for improved patient well-being.
Collapse
Affiliation(s)
- Ravi K Mittal
- Galgotias College of Pharmacy, Greater Noida, 201310, Uttar Pradesh, India
| | - Raghav Mishra
- Lloyd School of Pharmacy, Knowledge Park II, Greater Noida-201306, Uttar Pradesh, India
- GLA University, Mathura-281406, Uttar Pradesh, India
| | - Rehan Uddin
- Sir Madanlal Institute of Pharmacy, Etawah-206001 Uttar Pradesh, India
| | - Vikram Sharma
- Galgotias College of Pharmacy, Greater Noida, 201310, Uttar Pradesh, India
| |
Collapse
|
25
|
Krakos A, Cieślak A, Hartel E, Łabowska MB, Kulbacka J, Detyna J. 3D bio-printed hydrogel inks promoting lung cancer cell growth in a lab-on-chip culturing platform. Mikrochim Acta 2023; 190:349. [PMID: 37572169 PMCID: PMC10423169 DOI: 10.1007/s00604-023-05931-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023]
Abstract
The results of a lab-on-chip (LOC) platform fabrication equipped with a hydrogel matrix is reported. A 3D printing technique was used to provide a hybrid, "sandwiched" type structure, including two microfluidic substrates of different origins. Special attention was paid to achieving uniformly bio-printed microfluidic hydrogel layers of a unique composition. Six different hydrogel inks were proposed containing sodium alginate, agar, chitosan, gelatin, methylcellulose, deionized water, or 0.9% NaCl, varying in proportions. All of them exhibited appropriate mechanical properties showing, e.g., the value of elasticity modulus as similar to that of biological tissues, such as skin. Utilizing our biocompatible, entirely 3D bio-printed structure, for the first time, a multi-drug-resistant lung cancer cell line (H69AR) was cultured on-chip. Biological validation of the device was performed qualitatively and quantitatively utilizing LIVE/DEAD assays and Presto blue staining. Although all bio-inks exhibited acceptable cell viability, the best results were obtained for the hydrogel composition including 3% sodium alginate + 7% gelatin + 90% NaCl (0.9%), reaching approximately 127.2% after 24 h and 105.4% after 48 h compared to the control group (100%). Further research in this area will focus on the microfluidic culture of the chosen cancer cell line (H69AR) and the development of novel drug delivery strategies towards appropriate in vivo models for chemotherapy and polychemotherapy treatment.
Collapse
Affiliation(s)
- Agnieszka Krakos
- Department of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372, Wroclaw, Poland.
| | - Adrianna Cieślak
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-371, Wroclaw, Poland
| | - Eliza Hartel
- Department of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372, Wroclaw, Poland
| | - Magdalena Beata Łabowska
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-371, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556, Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Jerzy Detyna
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-371, Wroclaw, Poland
| |
Collapse
|
26
|
Rao KM, Uthappa UT, Kim HJ, Han SS. Tissue Adhesive, Biocompatible, Antioxidant, and Antibacterial Hydrogels Based on Tannic Acid and Fungal-Derived Carboxymethyl Chitosan for Wound-Dressing Applications. Gels 2023; 9:gels9050354. [PMID: 37232946 DOI: 10.3390/gels9050354] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
This study aimed to develop hydrogels for tissue adhesion that are biocompatible, antioxidant, and antibacterial. We achieved this by using tannic acid (TA) and fungal-derived carboxymethyl chitosan (FCMCS) incorporated in a polyacrylamide (PAM) network using free-radical polymerization. The concentration of TA greatly influenced the physicochemical and biological properties of the hydrogels. Scanning electron microscopy showed that the nanoporous structure of the FCMCS hydrogel was retained with the addition of TA, resulting in a nanoporous surface structure. Equilibrium-swelling experiments revealed that increasing the concentration of TA significantly improved water uptake capacity. Antioxidant radical-scavenging assays and porcine skin adhesion tests confirmed the excellent adhesive properties of the hydrogels, with adhesion strengths of up to 39.8 ± 1.2 kPa for 1.0TA-FCMCS due to the presence of abundant phenolic groups on TA. The hydrogels were also found to be biocompatible with skin fibroblast cells. Furthermore, the presence of TA significantly enhanced the antibacterial properties of the hydrogels against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. Therefore, the developed drug-free antibacterial and tissue-adhesive hydrogels can potentially be used as wound dressings for infected wounds.
Collapse
Affiliation(s)
- Kummara Madhusudana Rao
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Uluvangada Thammaiah Uthappa
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Hyeon Jin Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
27
|
Vildanova RR, Petrova SF, Kolesov SV, Khutoryanskiy VV. Biodegradable Hydrogels Based on Chitosan and Pectin for Cisplatin Delivery. Gels 2023; 9:gels9040342. [PMID: 37102954 PMCID: PMC10138284 DOI: 10.3390/gels9040342] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Preparation of stable hydrogels using physically (electrostatically) interacting charge-complementary polyelectrolyte chains seems to be more attractive from a practical point of view than the use of organic crosslinking agents. In this work natural polyelectrolytes-chitosan and pectin-were used, due to their biocompatibility and biodegradability. The biodegradability of hydrogels is confirmed by experiments with hyaluronidase as an enzyme. It has been shown that the use of pectins with different molecular weights makes it possible to prepare hydrogels with different rheological characteristics and swelling kinetics. These polyelectrolyte hydrogels loaded with cytostatic cisplatin as a model drug provide an opportunity for its prolonged release, which is important for therapy. The drug release is regulated to a certain extent by the choice of hydrogel composition. The developed systems can potentially improve the effects of cancer treatment due to the prolonged release of cytostatic cisplatin.
Collapse
Affiliation(s)
- Regina R Vildanova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Svetlana F Petrova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Sergey V Kolesov
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| | | |
Collapse
|
28
|
Araújo D, Rodrigues T, Roma-Rodrigues C, Alves VD, Fernandes AR, Freitas F. Chitin-Glucan Complex Hydrogels: Physical-Chemical Characterization, Stability, In Vitro Drug Permeation, and Biological Assessment in Primary Cells. Polymers (Basel) 2023; 15:polym15040791. [PMID: 36850075 PMCID: PMC9963717 DOI: 10.3390/polym15040791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Chitin-glucan complex (CGC) hydrogels were fabricated by coagulation of the biopolymer from an aqueous alkaline solution, and their morphology, swelling behavior, mechanical, rheological, and biological properties were studied. In addition, their in vitro drug loading/release ability and permeation through mimic-skin artificial membranes (Strat-M) were assessed. The CGC hydrogels prepared from 4 and 6 wt% CGC suspensions (Na51*4 and Na51*6 hydrogels, respectively) had polymer contents of 2.40 ± 0.15 and 3.09 ± 0.22 wt%, respectively, and displayed a highly porous microstructure, characterized by compressive moduli of 39.36 and 47.30 kPa and storage moduli of 523.20 and 7012.25 Pa, respectively. Both hydrogels had a spontaneous and almost immediate swelling in aqueous media, and a high-water retention capacity (>80%), after 30 min incubation at 37 °C. Nevertheless, the Na51*4 hydrogels had higher fatigue resistance and slightly higher-water retention capacity. These hydrogels were loaded with caffeine, ibuprofen, diclofenac, or salicylic acid, reaching entrapment efficiency values ranging between 13.11 ± 0.49% for caffeine, and 15.15 ± 1.54% for salicylic acid. Similar release profiles in PBS were observed for all tested APIs, comprising an initial fast release followed by a steady slower release. In vitro permeation experiments through Strat-M membranes using Franz diffusion cells showed considerably higher permeation fluxes for caffeine (33.09 µg/cm2/h) and salicylic acid (19.53 µg/cm2/h), compared to ibuprofen sodium and diclofenac sodium (4.26 and 0.44 µg/cm2/h, respectively). Analysis in normal human dermal fibroblasts revealed that CGC hydrogels have no major effects on the viability, migration ability, and morphology of the cells. Given their demonstrated features, CGC hydrogels are very promising structures, displaying tunable physical properties, which support their future development into novel transdermal drug delivery platforms.
Collapse
Affiliation(s)
- Diana Araújo
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departmento Ciências da Vida, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Thomas Rodrigues
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Catarina Roma-Rodrigues
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departmento Ciências da Vida, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Vítor D. Alves
- LEAF—Linking Landscape, Environment, Agriculture and Food, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Alexandra R. Fernandes
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departmento Ciências da Vida, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- Correspondence: ; Tel.: +351-212948300
| |
Collapse
|
29
|
Eivazzadeh-Keihan R, Farrokhi-Hajiabad F, Aliabadi HAM, Ziabari EZ, Geshani S, Kashtiaray A, Bani MS, Pishva B, Cohan RA, Maleki A, Mahdavi M. A novel magnetic nanocomposite based on alginate-tannic acid hydrogel embedded with silk fibroin with biological activity and hyperthermia application. Int J Biol Macromol 2022; 224:1478-1486. [DOI: 10.1016/j.ijbiomac.2022.10.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
|
30
|
Detailed Structural Characterization of Oxidized Sucrose and Its Application in the Fully Carbohydrate-Based Preparation of a Hydrogel from Carboxymethyl Chitosan. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186137. [PMID: 36144870 PMCID: PMC9503324 DOI: 10.3390/molecules27186137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022]
Abstract
Oxidized sucrose (OS) is a bio-based cross-linking agent with excellent biological safety and environmental non-toxicity. However, the precise structure of OS has not been elucidated owing to its structural complexity and low purity. Accordingly, in this study, complete chemical shift assignments were performed by applying various nuclear magnetic resonance techniques, which permitted the structural and quantitative characterization of the two main OS products, each of which contained four aldehyde groups. In addition, we investigated the use of OS as a cross-linking agent in the preparation of a hydrogel from carboxymethyl chitosan (CMC), one of the most popular polysaccharides for use in biomedical applications. The primary amine groups of CMC were immediately cross-linked with the aldehyde groups of OS to form hydrogels without the requirement for a catalyst. It was found that the degree of cross-linking could be easily controlled by the feed amount of OS during CMC hydrogel preparation and the final cross-linking degree affected the thermal, swelling, and rheological properties of the obtained hydrogel. The results presented in this study are therefore expected to be applicable in the preparation of fully carbohydrate-based hydrogels for medical and pharmaceutical applications.
Collapse
|