1
|
Oxalato as polyatomic coordination center and magnetic coupler in copper(II)-polypyrazole inverse polynuclear complexes and coordination polymers. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Su L, Yang D, Jiang Y, Li Y, Di K, Wang B, Ye S, Qu J. A Bioinspired Iron‐Molybdenum μ‐Nitrido Complex and Its Reactivity toward Ammonia Formation. Angew Chem Int Ed Engl 2022; 61:e202203121. [DOI: 10.1002/anie.202203121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Linan Su
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Yang Jiang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116024 China
| | - Yahui Li
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Kai Di
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Shengfa Ye
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116024 China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
- State Key Laboratory of Bioreactor Engineering Shanghai Collaborative Innovation Centre for Biomanufacturing Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
3
|
Della Pergola R, Garlaschelli L, Macchi P, Facchinetti I, Ruffo R, Racioppi S, Sironi A. From Small Metal Clusters to Molecular Nanoarchitectures with a Core-Shell Structure: The Synthesis, Redox Fingerprint, Theoretical Analysis, and Solid-State Structure of [Co 38As 12(CO) 50] 4. Inorg Chem 2022; 61:9888-9896. [PMID: 35731613 PMCID: PMC9937531 DOI: 10.1021/acs.inorgchem.2c00506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cluster [Co38As12(CO)50]4- was obtained by pyrolysis of [Co6As(CO)16]-. The metal cage features a closed-packed core inside a Co/As shell that progressively deforms from a cubic face-centered symmetry. The redox and acid-base reactivities were determined by cyclic voltammetry and spectrophotometric titrations. The calculated electron density revealed the shell-constrained distribution of the atomic charges, induced by the presence of arsenic.
Collapse
Affiliation(s)
- Roberto Della Pergola
- Dipartimento
di Scienze dell’Ambiente e della Terra, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy,
| | - Luigi Garlaschelli
- Dipartimento
di Chimica, University of Milano, via Venezian 21, 20133 Milano, Italy
| | - Piero Macchi
- Department
of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| | - Irene Facchinetti
- Dipartimento
di Scienze dei Materiali, University of
Milano-Bicocca, via Cozzi
5, 20126 Milano, Italy
| | - Riccardo Ruffo
- Dipartimento
di Scienze dei Materiali, University of
Milano-Bicocca, via Cozzi
5, 20126 Milano, Italy
| | - Stefano Racioppi
- Dipartimento
di Chimica, University of Milano, via Venezian 21, 20133 Milano, Italy,Department
of Chemistry, State University of New York
at Buffalo, Buffalo, New York 14260-3000, United states
| | - Angelo Sironi
- Dipartimento
di Chimica, University of Milano, via Venezian 21, 20133 Milano, Italy,
| |
Collapse
|
4
|
Su L, Yang D, Jiang Y, Li Y, Di K, Wang B, Ye S, Qu J. A Bioinspired Iron‐Molybdenum μ‐Nitrido Complex and Its Reactivity toward Ammonia Formation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Linan Su
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Yang Jiang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116024 China
| | - Yahui Li
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Kai Di
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Shengfa Ye
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116024 China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 China
- State Key Laboratory of Bioreactor Engineering Shanghai Collaborative Innovation Centre for Biomanufacturing Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
5
|
Ng R, Chong MC, Cheung WM, Sung HHY, Williams ID, Leung WH. Heterometallic Iridium, Rhodium and Ruthenium Nitrido Complexes Supported by Oxygen and Sulfur Donor Ligands. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rain Ng
- Hong Kong University of Science and Technology School of Science Chemistry HONG KONG
| | - Man-Chun Chong
- Hong Kong University of Science and Technology School of Science Chemistry HONG KONG
| | - Wai-Man Cheung
- Hong Kong University of Science and Technology School of Science Chemistry HONG KONG
| | - Herman H.-Y. Sung
- Hong Kong University of Science and Technology School of Science Chemistry HONG KONG
| | - Ian D. Williams
- Hong Kong University of Science and Technology School of Science Chemistry HONG KONG
| | - Wa-Hung Leung
- Hong Kong Univ.of Sci.& Techn. Department of Chemistry Clear Water Bay Hong Kong Hong Kong CHINA
| |
Collapse
|
6
|
Ng R, Ng WM, Cheung WM, Sung HHY, Williams ID, Leung WH. Heterometallic iron(IV) μ-nitrido complexes supported by a tetradentate Schiff base ligand. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Rabelo R, Castellano M, Barros WP, Carbonell-Vilar JM, Viciano-Chumillas M, Lloret F, Julve M, Pasán J, Cañadillas-Delgado L, Ruiz-García R, Cano J. Molecular engineering of an inverse hexacopper(II) coordination complex with a photoactive metallacyclophane centroligand as prototype of a magnetic photoswitch†. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Al Isawi WA, Mezei G. Doubling the Carbonate-Binding Capacity of Nanojars by the Formation of Expanded Nanojars. Molecules 2021; 26:3083. [PMID: 34064130 PMCID: PMC8196769 DOI: 10.3390/molecules26113083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Anion binding and extraction from solutions is currently a dynamic research topic in the field of supramolecular chemistry. A particularly challenging task is the extraction of anions with large hydration energies, such as the carbonate ion. Carbonate-binding complexes are also receiving increased interest due to their relevance to atmospheric CO2 fixation. Nanojars are a class of self-assembled, supramolecular coordination complexes that have been shown to bind highly hydrophilic anions and to extract even the most hydrophilic ones, including carbonate, from water into aliphatic solvents. Here we present an expanded nanojar that is able to bind two carbonate ions, thus doubling the previously reported carbonate-binding capacity of nanojars. The new nanojar is characterized by detailed single-crystal X-ray crystallographic studies in the solid state and electrospray ionization mass spectrometric (including tandem MS/MS) studies in solution.
Collapse
Affiliation(s)
| | - Gellert Mezei
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008, USA;
| |
Collapse
|
9
|
Heinl V, Balázs G, Koschabek S, Eckhardt M, Piesch M, Seidl M, Scheer M. Coordination Behavior of [Cp″ 2Zr(µ 1:1-As 4)] towards Lewis Acids. Molecules 2021; 26:2966. [PMID: 34067648 PMCID: PMC8156824 DOI: 10.3390/molecules26102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022] Open
Abstract
The functionalization of the arsenic transfer reagent [Cp″2Zr(η1:1-As4)] (1) focuses on modifying its properties and enabling a broader scope of reactivity. The coordination behavior of 1 towards different Lewis-acidic transition metal complexes and main group compounds is investigated by experimental and computational studies. Depending on the steric requirements of the Lewis acids and the reaction temperature, a variety of new complexes with different coordination modes and coordination numbers could be synthesized. Depending on the Lewis acid (LA) used, a mono-substitution in [Cp″2Zr(µ,η1:1:1:1-As4)(LA)] (LA = Fe(CO)4 (4); B(C6F5)3 (7)) and [Cp″2Zr(µ,η3:1:1-As4)(Fe(CO)3)] (5) or a di-substitution [Cp″2Zr(µ3,η1:1:1:1-As4)(LA)2] (LA = W(CO)5 (2); CpMn(CO)2 (3); AlR3 (6, R = Me, Et, iBu)) are monitored. In contrast to other coordination products, 5 shows an η3 coordination in which the butterfly As4 ligand is rearranged to a cyclo-As4 ligand. The reported complexes are rationalized in terms of inverse coordination.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Manfred Scheer
- Faculty for Chemistry and Pharmacy, Institute of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany; (V.H.); (G.B.); (S.K.); (M.E.); (M.P.); (M.S.)
| |
Collapse
|
10
|
Castro I, Calatayud ML, Orts-Arroyo M, Moliner N, Marino N, Lloret F, Ruiz-García R, Munno GD, Julve M. Ferro- and Antiferromagnetic Interactions in Oxalato-Centered Inverse Hexanuclear and Chain Copper(II) Complexes with Pyrazole Derivatives. Molecules 2021; 26:molecules26092792. [PMID: 34068482 PMCID: PMC8126003 DOI: 10.3390/molecules26092792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Two novel copper(II) complexes of formulas {[Cu(4-Hmpz)4][Cu(4-Hmpz)2(µ3-ox-κ2O1,O2:κO2':κO1')(ClO4)2]}n (1) and {[Cu(3,4,5-Htmpz)4]2[Cu(3,4,5-Htmpz)2(µ3-ox-κ2O1,O2:κO2':κO1')(H2O)(ClO4)]2[Cu2(3,4,5-Htmpz)4(µ-ox-κ2O1,O2:κ2O2',O1')]}(ClO4)4·6H2O (2) have been obtained by using 4-methyl-1H-pyrazole (4-Hmpz) and 3,4,5-trimethyl-1H-pyrazole (3,4,5-Htmpz) as terminal ligands and oxalate (ox) as the polyatomic inverse coordination center. The crystal structure of 1 consists of perchlorate counteranions and cationic copper(II) chains with alternating bis(pyrazole)(µ3-κ2O1,O2:κO2':κO1'-oxalato)copper(II) and tetrakis(pyrazole)copper(II) fragments. The crystal structure of 2 is made up of perchlorate counteranions and cationic centrosymmetric hexanuclear complexes where an inner tetrakis(pyrazole)(µ-κ2O1,O2:κ2O2',O1'-oxalato)dicopper(II) entity and two outer mononuclear tetrakis(pyrazole)copper(II) units are linked through two mononuclear aquabis(pyrazole)(µ3-κ2O1,O2:κO2':κO1'-oxalato)copper(II) units. The magnetic properties of 1 and 2 were investigated in the temperature range 2.0-300 K. Very weak intrachain antiferromagnetic interactions between the copper(II) ions through the µ3-ox-κ2O1,O2:κO2':κO1' center occur in 1 [J = -0.42(1) cm-1, the spin Hamiltonian being defined as H = -J∑S1,i · S2,i+1], whereas very weak intramolecular ferromagnetic [J = +0.28(2) cm-1] and strong antiferromagnetic [J' = -348(2) cm-1] couplings coexist in 2 which are mediated by the µ3-ox-κ2O1,O2:κO2':κO1' and µ-ox-κ2O1,O2:κ2O2',O1' centers, respectively. The variation in the nature and magnitude of the magnetic coupling for this pair of oxalato-centered inverse copper(II) complexes is discussed in the light of their different structural features, and a comparison with related oxalato-centered inverse copper(II)-pyrazole systems from the literature is carried out.
Collapse
Affiliation(s)
- Isabel Castro
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, Spain; (M.L.C.); (M.O.-A.); (N.M.); (F.L.); (R.R.-G.)
- Correspondence: (I.C.); (N.M.); (G.D.M.); (M.J.)
| | - M. Luisa Calatayud
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, Spain; (M.L.C.); (M.O.-A.); (N.M.); (F.L.); (R.R.-G.)
| | - Marta Orts-Arroyo
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, Spain; (M.L.C.); (M.O.-A.); (N.M.); (F.L.); (R.R.-G.)
| | - Nicolás Moliner
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, Spain; (M.L.C.); (M.O.-A.); (N.M.); (F.L.); (R.R.-G.)
| | - Nadia Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende, Italy
- Correspondence: (I.C.); (N.M.); (G.D.M.); (M.J.)
| | - Francesc Lloret
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, Spain; (M.L.C.); (M.O.-A.); (N.M.); (F.L.); (R.R.-G.)
| | - Rafael Ruiz-García
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, Spain; (M.L.C.); (M.O.-A.); (N.M.); (F.L.); (R.R.-G.)
| | - Giovanni De Munno
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende, Italy
- Correspondence: (I.C.); (N.M.); (G.D.M.); (M.J.)
| | - Miguel Julve
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, Spain; (M.L.C.); (M.O.-A.); (N.M.); (F.L.); (R.R.-G.)
- Correspondence: (I.C.); (N.M.); (G.D.M.); (M.J.)
| |
Collapse
|
11
|
Bejan A, Doroftei F, Cheng X, Marin L. Phenothiazine-chitosan based eco-adsorbents: A special design for mercury removal and fast naked eye detection. Int J Biol Macromol 2020; 162:1839-1848. [PMID: 32745550 DOI: 10.1016/j.ijbiomac.2020.07.232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
The aim of the paper was to investigate the ability of an eco-friendly luminescent xerogel prepared by chitosan crosslinking with a phenothiazine luminogen to detect and remove heavy metals. Its ability to give a divergent morphological and optical response towards fifteen environmental relevant metals was investigated by naked eye and UV lamp, fluorescence spectroscopy and scanning electron microscopy. A distinct response was noted for mercury, consisting in the transformation of the xerogel into a rubber-like material accompanied by the red shifting of the color of emitted light from yellow-green to greenish-yellow domain. The particularities of the metals anchoring into the xerogel were analyzed by FTIR spectroscopy and X-ray diffraction. The morphological changes and the metal uptake were analyzed by SEM-EDAX, swelling and gravimetric methods. It was concluded that mercury has a superior affinity towards this heteroatoms rich system, leading to a secondary crosslinking. This directed a great absorption capacity of 1673 mg/g and a specific morphological response for mercury ion concentrations up to 0.001 ppm.
Collapse
Affiliation(s)
- Andrei Bejan
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania
| | - Florica Doroftei
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania.
| |
Collapse
|
12
|
Haiduc I. ReviewInverse coordination. Organic nitrogen heterocycles as coordination centers. A survey of molecular topologies and systematization. Part 1. Five-membered and smaller rings. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1641702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ionel Haiduc
- Facultatea de Chimie, Universitatea Babeş-Bolyai, Cluj-Napoca, Romania
| |
Collapse
|