1
|
Mashkoor NR, Abed SA, Davoudi A, Jassim ZAA, Faraj ZY, Akbari F, Bajgiran FA, Hedayati M, Salehzadeh A. Synthesis of platinum nanoparticles functionalized with glutamine and conjugated with thiosemicarbazone and their cytotoxic effects on MDA-MB-231 breast cancer cell line and evaluation of CASP-8 gene expression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03629-z. [PMID: 39665983 DOI: 10.1007/s00210-024-03629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Breast cancer (BC) is the most prevalent form of cancer among women and is a major contributor to cancer-related fatalities. Nanotechnology has provided novel approaches to drug delivery to cancer cells. In this work, we synthesized platinum (Pt) nanoparticles, functionalized them with glutamine, conjugated them with thiosemicarbazone (TSC), and characterized their anticancer effects on the MDA-MB-231 breast cancer cell line. Characteristics of the nanoparticles were assessed by FT-IR, XRD, EDS mapping, SEM, TEM, DLS, and zeta potential measurement. Cell viability was characterized by MTT assay, and cell necrosis/apoptosis levels were determined by flow cytometry. The expression level of the CASP-8 gene was investigated by real-time PCR. Pt@Gln-TSC nanoparticles are spherical, 20-70 nm in diameter in dry form, 662 nm after hydration, and their zeta potential was - 6.6 mV. The 50% inhibitory concentration (IC50) for MDA-MB-231 (breast cancer) and HDF (normal) cell lines was 170 and 348µg/ml, respectively. Also, the IC50 of oxaliplatin drug and TSC on MDA-MB-231 cells was 184 µg/ml and 307 µg/ml, respectively. Treatment with Pt@Gln-TSC nanoparticles caused an increase in cell necrosis and primary apoptosis and elevated the expression of the CASP-8 gene by 2.54 folds. This study shows that Pt@Gln-TSC nanoparticles are significantly more toxic to breast cancer cells than to normal cells and can inhibit MDA-MB-231 cells by activating extrinsic apoptosis.
Collapse
Affiliation(s)
- Nabeel Rahi Mashkoor
- Department of Pathological Analysis, College of Science, AL-Qadisiyah University, Al Diwaniyah, AL-Qadisiyah, Iraq
| | - Salwan Ali Abed
- Environmental Science Department, College of Science, AL-Qadisiyah University, Al Diwaniyah, AL-Qadisiyah, Iraq
| | - Arash Davoudi
- Division of Cytogenetic, Dr. Keshavarz Medical Genetics Lab, Rasht, Iran
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | - Zainab Yousif Faraj
- Scientific Affairs Department, AL-Qadisiyah University, Al Diwaniyah, AL-Qadisiyah, Iraq
| | - Fatemeh Akbari
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | | | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
| |
Collapse
|
2
|
Vančo J, Trávníček Z, Malina T, Hošek J, Dvořák Z. Cellular Effects of Cationic Copper(II) Schiff Base Complexes: Anti-Inflammatory and Antiproliferative Properties. ChemMedChem 2024; 19:e202400214. [PMID: 39031727 DOI: 10.1002/cmdc.202400214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
A series of potassium isothiocyanato-(N-salicylidene-aminoacidato) cuprates (1-5) with the general formula of the monomeric unit K[Cu(sal-aa)(NCS)] ⋅ xH2O (x=0 or 2), containing a Schiff-base ligand (H2sal-aa) derived from natural amino acids such as glycine, DL-α-alanine, DL-valine, DL-phenylalanine and β-alanine, and salicylaldehyde, was screened for in vitro antiradical and major cellular effects against selected cancerous and normal cells. The complexes exhibited strong antioxidant properties against superoxide in vitro and a protective effect on DNA under Fenton-like reaction conditions. Screening of their cellular effects revealed moderate in vitro cytotoxicity against human cancer cell lines (A2780, A2780R and MCF-7), with IC50 values of 25-35 μM, and relatively low toxicity to normal fibroblast MRC-5 cells (with IC50 values>50 μM). Additional experiments performed on A2780 cells revealed that the most potent complex 5 significantly increased the number of A2780 cells arrested in the G2/M phase of the cell cycle and triggered intracellular oxidative stress. The selected flow cytometry experiments (detection of apoptosis/autophagy and activation of caspases 3/7 and depletion of mitochondrial membrane potential) did not reveal the dominant mechanism underlying the cytotoxicity of the complexes but clearly differentiated their molecular effects from those of the reference drug cisplatin. All the complexes exerted anti-inflammatory effects by modulating the levels of the proinflammatory cytokines TNF-α and IL-1β in LPS-activated THP-1 macrophage-like cells. Complex 5 also slightly influenced the activity of the upstream NF-κB transcription factor, while no effect on PPARγ activation was detected.
Collapse
Affiliation(s)
- Ján Vančo
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Tomáš Malina
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Jan Hošek
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-779 00, Olomouc, Czech Republic
| |
Collapse
|
3
|
Fabra D, Amariei G, Ruiz-Camino D, Matesanz AI, Rosal R, Quiroga AG, Horcajada P, Hidalgo T. Proving the Antimicrobial Therapeutic Activity on a New Copper-Thiosemicarbazone Complex. Mol Pharm 2024; 21:1987-1997. [PMID: 38507593 DOI: 10.1021/acs.molpharmaceut.3c01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The misuse and overdose of antimicrobial medicines are fostering the emergence of novel drug-resistant pathogens, providing negative repercussions not only on the global healthcare system due to the rise of long-term or chronic patients and inefficient therapies but also on the world trade, productivity, and, in short, to the global economic growth. In view of these scenarios, novel action plans to constrain this antibacterial resistance are needed. Thus, given the proven antiproliferative tumoral and microbial features of thiosemicarbazone (TSCN) ligands, we have here synthesized a novel effective antibacterial copper-thiosemicarbazone complex, demonstrating both its solubility profile and complex stability under physiological conditions, along with their safety and antibacterial activity in contact with human cellular nature and two most predominant bacterial strains, respectively. A significant growth inhibition (17% after 20 h) is evidenced over time, paving the way toward an effective antibacterial therapy based on these copper-TSCN complexes.
Collapse
Affiliation(s)
- David Fabra
- Department of Inorganic Chemistry, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Georgiana Amariei
- Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Daniel Ruiz-Camino
- Department of Inorganic Chemistry, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana I Matesanz
- Department of Inorganic Chemistry, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Adoracion G Quiroga
- Department of Inorganic Chemistry, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramon de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Tania Hidalgo
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramon de la Sagra 3, 28935 Móstoles-Madrid, Spain
| |
Collapse
|
4
|
Gao Y, Wu J, Zhang D, Wang P, Wang Y, Zhu L, Li C, Wang W, Zhao J, Yang C, Yang K. The impact of alloying element Cu on corrosion and biofilms of 316L stainless steel exposed to seawater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18842-18855. [PMID: 38351355 DOI: 10.1007/s11356-024-32354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024]
Abstract
Copper-containing stainless steel (SS) has been reported to mitigate biofilms in industrial and clinical environments. However, the impact of copper released from copper-containing SS in natural seawater on biofilms and corrosion is still unclear. In this study, three kinds of 316L SS were immersed in natural seawater for 6 months, and the pitting depth decreased in the order: 316L-Cu SS (annealed) > 316L SS > 316L-Cu SS (aged). The biofilm thickness and number of sessile cells on the surface of 316L-Cu SS (annealed) and 316L SS were similar but notably greater than those of 316L-Cu SS (aged). Furthermore, the results of the community analysis indicated that the addition of copper in 316L-Cu SS (aged) reduced the diversity and richness of the microbial community, resulting in a significant reduction in the number of genera constituting the biofilms. Copper ions exhibit a broad-spectrum bactericidal effect, effectively reducing the abundance of dominant populations and microbial genera in the biofilms, thereby mitigating pitting corrosion induced by microorganisms. In addition, the PCoA scatter plot showed that time also played an important role in the regulation of microbial community structure.
Collapse
Affiliation(s)
- Yaohua Gao
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajia Wu
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Dun Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Peng Wang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yi Wang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Liyang Zhu
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ce Li
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenkai Wang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinlong Zhao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Chunguang Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
5
|
Silva BRMGDA, Bezerra Júnior NDAS, Oliveira JFDE, Duarte DMFA, Marques DSC, Nogueira F, Lima MCADE, Cruz Filho IJDA. In silico ADMET prediction, evaluation of cytotoxicity in mouse splenocytes and preliminary evaluation of in vitro antimalarial activity of 4-(4-chlorophenyl)thiazole compounds. AN ACAD BRAS CIENC 2023; 95:e20230566. [PMID: 38055446 DOI: 10.1590/0001-3765202320230566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/27/2023] [Indexed: 12/08/2023] Open
Abstract
In this work, an in silico study and evaluation of the cytotoxicity of 4-(4-chlorophenyl)thiazole compounds against mouse splenocytes and the chloroquine-sensitive Plasmodium falciparum 3D7 strain are reported. The in silico results showed that the compounds have important pharmacokinetic properties for compounds with potential drug candidates. Regarding cytotoxicity assays against splenocytes, the compounds have low cytotoxicity. In addition, they were able to promote activation of these cells by increasing nitric oxide production without promoting cell death. Finally, they were able to promote cell proliferation. Regarding the in vitro anti-P. falciparum activity assays, it was observed that the compounds were able to inhibit the parasite's growth, presenting IC50 values ranging from 0.79 to greater than 10 µM. These results are promising when compared to chloroquine. Therefore, this study showed that 4-(4-chlorophenyl)thiazole compounds are promising candidates for antimalarials.
Collapse
Affiliation(s)
- Beatriz R M G DA Silva
- Universidade Federal de Pernambuco (UFPE), Campus Recife, Centro de Biociências, Departamento de Antibioticos, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Natanael DA Silva Bezerra Júnior
- Universidade Federal de Pernambuco (UFPE), Campus Recife, Centro de Biociências, Departamento de Antibioticos, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Jamerson F DE Oliveira
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira (UNILAB) Rua José Franco de Oliveira, s/n, 62790-970 Redenção, CE, Brazil
| | - Denise Maria F A Duarte
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal
| | - Diego S C Marques
- Universidade Federal de Pernambuco (UFPE), Campus Recife, Centro de Biociências, Departamento de Antibioticos, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Fátima Nogueira
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal
| | - Maria Carmo A DE Lima
- Universidade Federal de Pernambuco (UFPE), Campus Recife, Centro de Biociências, Departamento de Antibioticos, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Iranildo José DA Cruz Filho
- Universidade Federal de Pernambuco (UFPE), Campus Recife, Centro de Biociências, Departamento de Antibioticos, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| |
Collapse
|
6
|
Alshamrani M. Recent advances and therapeutic journey of pyridine-based Cu(II) complexes as potent anticancer agents: a review (2015–2022). J COORD CHEM 2023. [DOI: 10.1080/00958972.2022.2164190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
7
|
Souza RAC, Cunha VL, de Faria Franca E, Deflon VM, Maia PIS, Oliveira CG. Synthesis, Structural Characterization, X‐ray, Hirshfeld Surfaces, DFT calculations, In Silico ADME Approach and a Molecular Docking Study of a New Nickel(II) Complex. ChemistrySelect 2022. [DOI: 10.1002/slct.202202409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Vito Labruna Cunha
- Institute of Chemistry Federal University of Uberlândia 38400-902 Uberlândia Brazil
| | | | - Victor Marcelo Deflon
- São Carlos Institute of Chemistry University of São Paulo 13560-970 São Carlos Brazil
| | - Pedro I. S. Maia
- Departament of Chemistry Federal University of the Triângulo Mineiro 38025-440 Uberaba MG Brazil
| | | |
Collapse
|
8
|
Bai XG, Zheng Y, Qi J. Advances in thiosemicarbazone metal complexes as anti-lung cancer agents. Front Pharmacol 2022; 13:1018951. [PMID: 36238553 PMCID: PMC9551402 DOI: 10.3389/fphar.2022.1018951] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/13/2022] [Indexed: 01/31/2023] Open
Abstract
The great success of cisplatin as a chemotherapeutic agent considerably increased research efforts in inorganic biochemistry to identify more metallic drugs having the potential of treating lung cancer. Metal coordination centres, which exhibit a wide range of coordination numbers and geometries, various oxidised and reduced states and the inherent ligand properties offer pharmaceutical chemists a plethora of drug structures. Owing to the presence of C=N and C=S bonds in a thiosemicarbazone Schiff base, N and S atoms in its hybrid orbital has lone pair of electrons, which can generate metal complexes with different stabilities with most metal elements under certain conditions. Such ligands and complexes play key roles in the treatment of anti-lung cancer. Research regarding metallic anti-lung cancer has advanced considerably, but there remain several challenges. In this review, we discuss the potential of thiosemicarbazone Schiff base complexes as anti-lung cancer drugs, their anti-cancer activities and the most likely action mechanisms involving the recent families of copper, nickel, platinum, ruthenium and other complexes.
Collapse
Affiliation(s)
| | | | - Jinxu Qi
- *Correspondence: Yunyun Zheng, ; Jinxu Qi,
| |
Collapse
|
9
|
Jevtovic V, Alshammari N, Latif S, Alsukaibi AKD, Humaidi J, Alanazi TYA, Abdulaziz F, Matalka SI, Pantelić NĐ, Marković M, Rakić A, Dimić D. Synthesis, Crystal Structure, Theoretical Calculations, Antibacterial Activity, Electrochemical Behavior, and Molecular Docking of Ni(II) and Cu(II) Complexes with Pyridoxal-Semicarbazone. Molecules 2022; 27:molecules27196322. [PMID: 36234859 PMCID: PMC9570950 DOI: 10.3390/molecules27196322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/25/2022] Open
Abstract
New Ni (II) and Cu (II) complexes with pyridoxal-semicarbazone were synthesized and their structures were solved by X-ray crystallography. This analysis showed the bis-ligand octahedral structure of [Ni(PLSC-H)2]·H2O and the dimer octahedral structure of [Cu(PLSC)(SO4)(H2O)]2·2H2O. Hirshfeld surface analysis was employed to determine the most important intermolecular interactions in the crystallographic structures. The structures of both complexes were further examined using density functional theory and natural bond orbital analysis. The photocatalytic decomposition of methylene blue in the presence of both compounds was investigated. Both compounds were active toward E. coli and S. aureus, with a minimum inhibition concentration similar to that of chloramphenicol. The obtained complexes led to the formation of free radical species, as was demonstrated in an experiment with dichlorofluorescein-diacetate. It is postulated that this is the mechanistic pathway of the antibacterial and photocatalytic activities. Cyclic voltammograms of the compounds showed the peaks of the reduction of metal ions. A molecular docking study showed that the Ni(II) complex exhibited promising activity towards Janus kinase (JAK), as a potential therapy for inflammatory diseases, cancers, and immunologic disorders.
Collapse
Affiliation(s)
- Violeta Jevtovic
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | - Njood Alshammari
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | - Salman Latif
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | | | - Jamal Humaidi
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | - Tahani Y. A. Alanazi
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | - Fahad Abdulaziz
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | - Samah I. Matalka
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | - Nebojša Đ. Pantelić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Milica Marković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Aleksandra Rakić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
10
|
Zheng Y, Li B, Ai Y, Chen M, Zheng X, Qi J. Synthesis, crystal structures and anti-cancer mechanism of Cu(II) complex derived from 2-acetylpyrazine thiosemicarbazone. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2111660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Yunyun Zheng
- Medical School of Pingdingshan University, Pingdingshan, Henan, China
| | - Bin Li
- Medical School of Pingdingshan University, Pingdingshan, Henan, China
| | - Yu Ai
- Medical School of Pingdingshan University, Pingdingshan, Henan, China
| | - Mengyao Chen
- Medical School of Pingdingshan University, Pingdingshan, Henan, China
| | - Xinhua Zheng
- Medical School of Pingdingshan University, Pingdingshan, Henan, China
| | - Jinxu Qi
- Medical School of Pingdingshan University, Pingdingshan, Henan, China
| |
Collapse
|
11
|
Jevtović V, Hamoud H, Al-Zahrani S, Alenezi K, Latif S, Alanazi T, Abdulaziz F, Dimić D. Synthesis, Crystal Structure, Quantum Chemical Analysis, Electrochemical Behavior, and Antibacterial and Photocatalytic Activity of Co Complex with Pyridoxal-(S-Methyl)-isothiosemicarbazone Ligand. Molecules 2022; 27:4809. [PMID: 35956756 PMCID: PMC9369583 DOI: 10.3390/molecules27154809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 01/17/2023] Open
Abstract
New complex Co(III) with ligand Pyridoxal-S-methyl-isothiosemicarbazone, (PLITSC) was synthesized. X-ray analysis showed the bis-ligand octahedral structure of the cobalt complex [Co(PLITSC-H)2]BrNO3·CH3OH (compound 1). The intermolecular interactions governing the crystal structure were described by the Hirsfeld surface analysis. The structure of compound 1 and the corresponding Zn complex (([Zn(PLTSC)(H2O)2]SO4·H2O)) were optimized at the B3LYP/6-31 + G (d,p)/LanL2DZ level of theory, and the applicability was assessed by comparison with the crystallographic structure. The natural bond orbital analysis was used for the discussion on the stability of formed compounds. The antibacterial activity of obtained complexes towards S. aureus and E. coli was determined, along with the effect of compound 1 on the formation of free radical species. Activity of compound 1 towards the removal of methylene blue was also investigated. The voltammograms of these compounds showed the reduction of metal ions, as well as the catalyzed reduction of CO2 in acidic media.
Collapse
Affiliation(s)
- Violeta Jevtović
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Haneen Hamoud
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Salma Al-Zahrani
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Khalaf Alenezi
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Salman Latif
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Tahani Alanazi
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Fahad Abdulaziz
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia
| |
Collapse
|
12
|
Kozyra P, Krasowska D, Pitucha M. New Potential Agents for Malignant Melanoma Treatment-Most Recent Studies 2020-2022. Int J Mol Sci 2022; 23:6084. [PMID: 35682764 PMCID: PMC9180979 DOI: 10.3390/ijms23116084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
Malignant melanoma (MM) is the most lethal skin cancer. Despite a 4% reduction in mortality over the past few years, an increasing number of new diagnosed cases appear each year. Long-term therapy and the development of resistance to the drugs used drive the search for more and more new agents with anti-melanoma activity. This review focuses on the most recent synthesized anti-melanoma agents from 2020-2022. For selected agents, apart from the analysis of biological activity, the structure-activity relationship (SAR) is also discussed. To the best of our knowledge, the following literature review delivers the latest achievements in the field of new anti-melanoma agents.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Danuta Krasowska
- Department of Dermatology, Venerology and Pediatric Dermatology, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
13
|
Adhikari HS, Garai A, Thapa M, Adhikari R, Yadav PN. Chitosan functionalized thiophene-2-thiosemicarbazones, and their copper(II) complexes: synthesis, characterization, and anticancer activity. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2021.2022982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hari Sharan Adhikari
- Institute of Engineering, Pashchimanchal Campus, Department of Applied Sciences, Tribhuvan University, Pokhara, Nepal
| | - Aditya Garai
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Machchhendra Thapa
- Central Department of Biotechnology, Tribhuvan University, Kathmandu, Nepal
| | - Rameshwar Adhikari
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
- Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kathmandu, Nepal
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
14
|
Zalevskaya OA, Gur’eva YA. Recent Studies on the Antimicrobial Activity of Copper Complexes. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421120046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Tsakanova G, Stepanyan A, Arakelova E, Ayvazyan V, Tonoyan V, Arakelyan A, Hildebrandt G, Schültke E. The radioenhancement potential of Schiff base derived copper (II) compounds against lung carcinoma in vitro. PLoS One 2021; 16:e0253553. [PMID: 34143847 PMCID: PMC8213134 DOI: 10.1371/journal.pone.0253553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022] Open
Abstract
For the last years, copper complexes have been intensively implicated in biomedical research as components of cancer treatment. Herewith, we provide highlights of the synthesis, physical measurements, structural characterization of the newly developed Cu(II) chelates of Schiff Bases, Cu(Picolinyl-L-Tryptopahanate)2, Cu(Picolinyl-L-Tyrosinate)2, Cu(Isonicotinyl-L-Tyrosinate)2, Cu(Picolinyl-L-Phenylalaninate)2, Cu(Nicotinyl-L-Phenylalaninate)2, Cu(Isonicotinyl-L-Phenylalaninate)2, and their radioenhancement capacity at kV and MV ranges of irradiation of human lung carcinoma epithelial cells in vitro. The methods of cell growth, viability and proliferation were used. All compounds exerted very potent radioenhancer capacities in the irradiated lung carcinoma cells at both kV and MV ranges in a 100 μM concentration. At a concentration of 10 μM, only Cu(Picolinyl-L-Tyrosinate)2, Cu(Isonicotinyl-L-Tyrosinate)2, Cu(Picolinyl-L-Phenylalaninate)2 possessed radioenhancer properties at kV and MV ranges. Cu(Picolinyl-L-Tryptophanate)2 showed radioenhancer properties only at kV range. Cu(Nicotinyl-L-Phenylalaninate)2 and Cu(Isonicotinyl-L-Phenylalaninate)2 showed remarkable radioenhancer activity only at MV range. All compounds acted in dose-dependent manner at both tested energy ranges. These copper (II) compounds, in combination with 1 Gy irradiation at either 120 kV or 6 MV, are more efficient at delaying cell growth of lung cancer cells and at reducing cell viability in vitro than the irradiation administered alone. Thus, we have demonstrated that the studied copper compounds have a good potential for radioenhancement.
Collapse
Affiliation(s)
- Gohar Tsakanova
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
- CANDLE Synchrotron Research Institute, Yerevan, Armenia
| | - Ani Stepanyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | | | | | - Vahan Tonoyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | | | - Guido Hildebrandt
- Department of Radiooncology, Rostock University Medical Center, Rostock, Germany
| | - Elisabeth Schültke
- Department of Radiooncology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
16
|
Pitucha M, Korga-Plewko A, Czylkowska A, Rogalewicz B, Drozd M, Iwan M, Kubik J, Humeniuk E, Adamczuk G, Karczmarzyk Z, Fornal E, Wysocki W, Bartnik P. Influence of Complexation of Thiosemicarbazone Derivatives with Cu (II) Ions on Their Antitumor Activity against Melanoma Cells. Int J Mol Sci 2021; 22:ijms22063104. [PMID: 33803618 PMCID: PMC8002893 DOI: 10.3390/ijms22063104] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
A series of thiosemicarbazone derivatives was prepared and their anti-tumor activity in vitro was tested. The X-ray investigation performed for compounds T2, T3 and T5 confirmed the synthesis pathway and assumed molecular structures of analyzed thiosemicarbazones. The conformational preferences of the thiosemicarbazone system were characterized using theoretical calculations by AM1 method. Selected compounds were converted into complexes of Cu (II) ions. The effect of complexing on anti-tumor activity has been investigated. The copper(II) complexes, with Schiff bases T1, T10, T12, T13, and T16 have been synthesized and characterized by chemical and elemental analysis, FTIR spectroscopy and TGA method. Thermal properties of coordination compounds were studied using TG-DTG techniques under dry air atmosphere. G361, A375, and SK-MEL-28 human melanoma cells and BJ human normal fibroblast cells were treated with tested compounds and their cytotoxicity was evaluated with MTT test. The compounds with the most promising anti-tumour activity were then selected and their cytotoxicity was verified with cell cycle analysis and apoptosis/necrosis detection. Additionally, DNA damages in the form of a basic sites presence and the expression of oxidative stress and DNA damage response genes were evaluated. The obtained results indicate that complexation of thiosemicarbazone derivatives with Cu (II) ions improves their antitumor activity against melanoma cells. The observed cytotoxic effect is associated with DNA damage and G2/M phase of cell cycle arrest as well as disorders of the antioxidant enzymes expression.
Collapse
Affiliation(s)
- Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, PL-20093 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-448-7240
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, PL-20093 Lublin, Poland; (A.K.-P.); (J.K.); (E.H.); (G.A.)
| | - Agnieszka Czylkowska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (A.C.); (B.R.)
| | - Bartłomiej Rogalewicz
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (A.C.); (B.R.)
| | - Monika Drozd
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, PL-20093 Lublin, Poland;
| | - Magdalena Iwan
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, PL-20093 Lublin, Poland;
| | - Joanna Kubik
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, PL-20093 Lublin, Poland; (A.K.-P.); (J.K.); (E.H.); (G.A.)
| | - Ewelina Humeniuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, PL-20093 Lublin, Poland; (A.K.-P.); (J.K.); (E.H.); (G.A.)
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, PL-20093 Lublin, Poland; (A.K.-P.); (J.K.); (E.H.); (G.A.)
| | - Zbigniew Karczmarzyk
- Faculty of Science, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland; (Z.K.); (W.W.); (P.B.)
| | - Emilia Fornal
- Chair and Department of Pathophysiology, Faculty of Medicine, Medical University of Lublin, PL-20090 Lublin, Poland;
| | - Waldemar Wysocki
- Faculty of Science, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland; (Z.K.); (W.W.); (P.B.)
| | - Paulina Bartnik
- Faculty of Science, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland; (Z.K.); (W.W.); (P.B.)
| |
Collapse
|
17
|
Affiliation(s)
| | | | - S. M. Rahatul Alam
- Department of Chemistry, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|