1
|
Smith AQ, Campbell JL, Keys DA, Fisher JW. Rat Tissue and Blood Partition Coefficients for n-Alkanes (C8 to C12). Int J Toxicol 2016; 24:35-41. [PMID: 15981738 DOI: 10.1080/10915810590918698] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Rat tissue:air and blood:air partition coefficients (PCs) for octane, nonane, decane, undecane, and dodecane (n-C8 to n-C12 n-alkanes) were determined by vial equilibration. The blood:air PC values for n-C8 to n-C12 were 3.1, 5.8, 8.1, 20.4, and 24.6, respectively. The lipid solubility of n-alkanes increases with carbon length, suggesting that lipid solubility is an important determinant in describing n-alkane blood:air PC values. The muscle:blood, liver: blood, brain:blood, and fat:blood PC values were octane (1.0, 1.9, 1.4, and 247), nonane (0.8, 1.9, 3.8, and 274), decane (0.9, 2.0, 4.8, and 328), undecane (0.7, 1.5, 1.7, and 529), and dodecane (1.2, 1.9, 19.8, and 671), respectively. The tissue:blood PC values were greatest in fat and the least in muscle. The brain:air PC value for undecane was inconsistent with other n-alkane values. Using the measured partition coefficient values of these n-alkanes, linear regression was used to predict tissue (except brain) and blood:air partition coefficient values for larger n-alkanes, tridecane, tetradecane, pentadecane, hexadecane, and heptadecane (n-C13 to n-C17).Good agreement between measured and predicted tissue:air and blood:air partition coefficient values for n-C8 to n-C12 offer confidence in the partition coefficient predictions for longer chain n-alkanes.
Collapse
Affiliation(s)
- A Q Smith
- College of Public Health, Department of Environmental Health Science, University of Georgia, Athens, Georgia 30602-2102, USA
| | | | | | | |
Collapse
|
2
|
Salvo P, Ferrari C, Persia R, Ghimenti S, Lomonaco T, Bellagambi F, Di Francesco F. A dual mode breath sampler for the collection of the end-tidal and dead space fractions. Med Eng Phys 2015; 37:539-44. [PMID: 25922294 DOI: 10.1016/j.medengphy.2015.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 03/17/2015] [Accepted: 03/24/2015] [Indexed: 11/16/2022]
Abstract
This work presents a breath sampler prototype automatically collecting end-tidal (single and multiple breaths) or dead space air fractions (multiple breaths). This result is achieved by real time measurements of the CO2 partial pressure and airflow during the expiratory and inspiratory phases. Suitable algorithms, used to control a solenoid valve, guarantee that a Nalophan(®) bag is filled with the selected breath fraction even if the subject under test hyperventilates. The breath sampler has low pressure drop (<0.5 kPa) and uses inert or disposable components to avoid bacteriological risk for the patients and contamination of the breath samples. A fully customisable software interface allows a real time control of the hardware and software status. The performances of the breath sampler were evaluated by comparing (a) the CO2 partial pressure calculated during the sampling with the CO2 pressure measured off-line within the Nalophan(®) bag; (b) the concentrations of four selected volatile organic compounds in dead space, end-tidal and mixed breath fractions. Results showed negligible deviations between calculated and off-line CO2 pressure values and the distributions of the selected compounds into dead space, end-tidal and mixed breath fractions were in agreement with their chemical-physical properties.
Collapse
Affiliation(s)
- P Salvo
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Risorgimento 35, 56126 Pisa, Italy
| | - C Ferrari
- National Research Council of Italy, C.N.R., Istituto Nazionale di Ottica, (INO) - UOS Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - R Persia
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Risorgimento 35, 56126 Pisa, Italy
| | - S Ghimenti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Risorgimento 35, 56126 Pisa, Italy
| | - T Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Risorgimento 35, 56126 Pisa, Italy
| | - F Bellagambi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Risorgimento 35, 56126 Pisa, Italy
| | - F Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Risorgimento 35, 56126 Pisa, Italy.
| |
Collapse
|
3
|
Amann A, Mochalski P, Ruzsanyi V, Broza YY, Haick H. Assessment of the exhalation kinetics of volatile cancer biomarkers based on their physicochemical properties. J Breath Res 2014; 8:016003. [PMID: 24566039 DOI: 10.1088/1752-7155/8/1/016003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The current review provides an assessment of the exhalation kinetics of volatile organic compounds (VOCs) that have been linked with cancer. Towards this end, we evaluate various physicochemical properties, such as 'breath:air' and 'blood:fat' partition coefficients, of 112 VOCs that have been suggested over the past decade as potential markers of cancer. With these data, we show that the cancer VOC concentrations in the blood and in the fat span over 12 and 8 orders of magnitude, respectively, in order to provide a specific counterpart concentration in the exhaled breath (e.g., 1 ppb). This finding suggests that these 112 different compounds have different storage compartments in the body and that their exhalation kinetics depends on one or a combination of the following factors: (i) the VOC concentrations in different parts of the body; (ii) the VOC synthesis and metabolism rates; (iii) the partition coefficients between tissue(s), blood and air; and (iv) the VOCs' diffusion constants. Based on this analysis, we discuss how this knowledge allows modeling and simulating the behavior of a specific VOC under different sampling protocols (with and without exertion of effort). We end this review by a brief discussion on the potential role of these scenarios in screening and therapeutic monitoring of cancer.
Collapse
Affiliation(s)
- Anton Amann
- Breath Research Institute, Leopold-Franzens University of Innsbruck, 6850 Dornbirn, Austria. Department of Anesthesiology and Critical Care Medicine, Innsbruck Medical University, 6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
4
|
Haick H, Broza YY, Mochalski P, Ruzsanyi V, Amann A. Assessment, origin, and implementation of breath volatile cancer markers. Chem Soc Rev 2013; 43:1423-49. [PMID: 24305596 DOI: 10.1039/c3cs60329f] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new non-invasive and potentially inexpensive frontier in the diagnosis of cancer relies on the detection of volatile organic compounds (VOCs) in exhaled breath samples. Breath can be sampled and analyzed in real-time, leading to fascinating and cost-effective clinical diagnostic procedures. Nevertheless, breath analysis is a very young field of research and faces challenges, mainly because the biochemical mechanisms behind the cancer-related VOCs are largely unknown. In this review, we present a list of 115 validated cancer-related VOCs published in the literature during the past decade, and classify them with respect to their "fat-to-blood" and "blood-to-air" partition coefficients. These partition coefficients provide an estimation of the relative concentrations of VOCs in alveolar breath, in blood and in the fat compartments of the human body. Additionally, we try to clarify controversial issues concerning possible experimental malpractice in the field, and propose ways to translate the basic science results as well as the mechanistic understanding to tools (sensors) that could serve as point-of-care diagnostics of cancer. We end this review with a conclusion and a future perspective.
Collapse
Affiliation(s)
- Hossam Haick
- The Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | | | | | | | | |
Collapse
|
5
|
Tissue-to-blood distribution coefficients in the rat: Utility for estimation of the volume of distribution in man. Eur J Pharm Sci 2013; 50:526-43. [DOI: 10.1016/j.ejps.2013.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/03/2013] [Accepted: 08/13/2013] [Indexed: 12/21/2022]
|
6
|
Ruder AM, Yiin JH, Waters MA, Carreón T, Hein MJ, Butler MA, Calvert GM, Davis-King KE, Schulte PA, Mandel JS, Morton RF, Reding DJ, Rosenman KD, Stewart PA. The Upper Midwest Health Study: gliomas and occupational exposure to chlorinated solvents. Occup Environ Med 2012; 70:73-80. [PMID: 23104734 DOI: 10.1136/oemed-2011-100588] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Occupational exposure to chlorinated aliphatic solvents has been associated with an increased cancer risk, including brain cancer. However, many of these solvents remain in active, large-volume use. We evaluated glioma risk from non-farm occupational exposure (ever/never and estimated cumulative exposure) to any of the six chlorinated solvents--carbon tetrachloride, chloroform, methylene chloride, trichloroethylene, tetrachloroethylene or 1,1,1--trichloroethane-among 798 cases and 1175 population-based controls, aged 18-80 years and non-metropolitan residents of Iowa, Michigan, Minnesota and Wisconsin. Methods Solvent use was estimated based on occupation, industry and era, using a bibliographic database of published exposure levels and exposure determinants. Unconditional logistic regression was used to calculate ORs adjusted for frequency matching variables age group and sex, and age and education. Additional analyses were limited to 904 participants who donated blood specimens (excluding controls reporting a previous diagnosis of cancer) genotyped for glutathione-S-transferases GSTP1, GSTM3 and GSTT1. Individuals with functional GST genes might convert chlorinated solvents crossing the blood-brain barrier into cytotoxic metabolites. RESULTS Both estimated cumulative exposure (ppm-years) and ever exposure to chlorinated solvents were associated with decreased glioma risk and were statistically significant overall and for women. In analyses comparing participants with a high probability of exposure with the unexposed, no associations were statistically significant. Solvent-exposed participants with functional GST genes were not at increased risk of glioma. CONCLUSIONS We observed no associations of glioma risk and chlorinated solvent exposure. Large pooled studies are needed to explore the interaction of genetic pathways and environmental and occupational exposures in glioma aetiology.
Collapse
Affiliation(s)
- Avima M Ruder
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Foster PP. The "brain-skin connection" in protein misfolding and amyloid deposits: embryological, pathophysiological, and therapeutic common grounds? Front Neurol 2012; 3:56. [PMID: 22536194 PMCID: PMC3332220 DOI: 10.3389/fneur.2012.00056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 03/27/2012] [Indexed: 02/06/2023] Open
Affiliation(s)
- Philip P Foster
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch Galveston, TX, USA
| |
Collapse
|
8
|
Abstract
Interspecies extrapolation encompasses two related but distinct topic areas that are germane to quantitative extrapolation and hence computational toxicology-dose scaling and parameter scaling. Dose scaling is the process of converting a dose determined in an experimental animal to a toxicologically equivalent dose in humans using simple allometric assumptions and equations. In a hierarchy of quantitative extrapolation approaches, this option is used when minimal information is available for a chemical of interest. Parameter scaling refers to cross-species extrapolation of specific biological processes describing rates associated with pharmacokinetic (PK) or pharmacodynamic (PD) events on the basis of allometric relationships. These parameters are used in biologically based models of various types that are designed for not only cross-species extrapolation but also for exposure route (e.g., inhalation to oral) and exposure scenario (duration) extrapolation. This area also encompasses in vivo scale-up of physiological rates determined in various experimental systems. Results from in vitro metabolism studies are generally most useful for interspecies extrapolation purposes when integrated into a physiologically based pharmacokinetic (PBPK) modeling framework. This is because PBPK models allow consideration and quantitative evaluation of other physiological factors, such as binding to plasma proteins and blood flow to the liver, which may be as or more influential than metabolism in determining relevant dose metrics for risk assessment.
Collapse
Affiliation(s)
- Elaina M Kenyon
- Pharmacokinetics Branch, Integrated Systems Toxicology Division, MD B105-03, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
9
|
Royland JE, Kodavanti PRS, Schmid JE, MacPhail RC. Toluene effects on gene expression in the hippocampus of young adult, middle-age, and senescent Brown Norway Rats. Toxicol Sci 2011; 126:193-212. [PMID: 22166486 DOI: 10.1093/toxsci/kfr340] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Differential susceptibility to environmental exposures across life stages is an area of toxicology about which little is known. We examined the effects of toluene on transcriptomic changes and oxidative stress (OS) parameters (e.g., NQO1 and GPX) in the rat brain at different life stages to elucidate key molecular pathways responsible for toluene-induced neurotoxicity, as well as possible age-related interactions. Changes in assessed end points following acute oral toluene (0, 0.65, and 1.0 g/kg) were examined 4 h after exposure in hippocampi of Brown Norway Rats at 4, 12, and 24 months of age. Genomic data were analyzed by two-way ANOVA to identify the effects of age, toluene, and interactions between the two factors. Analysis by one-way ANOVA identified 183 genes whose expression changed ≥ 1.25-fold with age. The majority of the genes were upregulated between life stages (> 79%). Similar analysis for toluene-related genes found only two sequences to vary significantly with dose. Fifty-six genes were identified to have expression changes due to an age-toluene interaction. Expression of genes with roles in immune response, cytoskeleton, protein, and energy metabolism was changed with advancing life stage, indicating changes in basic cellular homeostasis. Toluene affected similar cell functions, enhancing the effects of aging. OS parameters also indicated age-related changes in response mechanisms, evidence of toluene damage, and supported an age-toluene interaction. The data indicate that life stage can alter the toxicity of acute toluene exposure in various and complex ways, highlighting the need for further investigation into the role of aging in susceptibility.
Collapse
Affiliation(s)
- Joyce E Royland
- Genetic and Cellular Toxicology Branch, Integrated Systems Toxicology Division, U.S.Environmental Protection Agency, Durham, NC 27711, USA.
| | | | | | | |
Collapse
|
10
|
Sari-Minodier I, Truchon G, Charest-Tardif G, Bérubé A, Tardif R. The effect of workload on biological monitoring of occupational exposure to toluene and n-Hexane: contribution of physiologically based toxicokinetic modeling. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2009; 6:415-432. [PMID: 19384711 DOI: 10.1080/15459620902928141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A physiologically based toxicokinetic model was used to examine the impact of work load on the relationship between the airborne concentrations and exposure indicator levels of two industrial solvents, toluene and n-Hexane. The authors simulated occupational exposure (8 hr/day, 5 days/week) at different concentrations, notably 20 ppm and 50 ppm, which are the current threshold limit values recommended by ACGIH for toluene and n-hexane, respectively. Different levels of physical activity, namely, rest, 25 W, and 50 W (for 12 hr followed by 12 hr at rest) were simulated to assess the impact of work load on the recommended biological exposure indices: toluene in blood prior to the last shift of the workweek, urinary o-cresol (a metabolite of toluene) at the end of the shift, and free (nonhydrolyzed) 2,5-hexanedione (a metabolite of n-hexane) at the end of the shift at the end of the workweek. In addition, urinary excretion of unchanged toluene was simulated. The predicted biological concentrations were compared with the results of both experimental studies among human volunteers and field studies among workers. The highest predicted increase with physical exercise was noted for toluene in blood (39 microg/L at 50 W vs. 14 microg/L at rest for 20 ppm, i.e., a 2.8-fold increase). The end-of-shift urinary concentrations of o-cresol and toluene were two times higher at 50 W than at rest (for 20 ppm, 0.65 vs. 0.33 mg/L for o-cresol and 43 vs. 21 microg/L for toluene). Urinary 2,5-hexanedione predicted for 50 ppm was 1.07 mg/L at 50 W and 0.92 mg/L at rest (+16%). The simulations that best describe the concentrations among workers exposed to toluene are those corresponding to 25 W or less. In conclusion, toxicokinetic modeling confirms the significant impact of work load on toluene exposure indicators, whereas only a very slight effect is noted on n-hexane kinetics. These results highlight the necessity of taking work load into account in risk assessment relative to toluene exposure.
Collapse
Affiliation(s)
- Irène Sari-Minodier
- Groupe de recherche interdisciplinaire en santé, Département de santé environnementale et santé au travail, Université de Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
11
|
Benignus VA, Bushnell PJ, Boyes WK, Eklund C, Kenyon EM. Neurobehavioral Effects of Acute Exposure to Four Solvents: Meta-analyses. Toxicol Sci 2009; 109:296-305. [DOI: 10.1093/toxsci/kfp063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Boyes WK, Bercegeay M, Oshiro WM, Krantz QT, Kenyon EM, Bushnell PJ, Benignus VA. Acute Perchloroethylene Exposure Alters Rat Visual-Evoked Potentials in Relation to Brain Concentrations. Toxicol Sci 2008; 108:159-72. [DOI: 10.1093/toxsci/kfn265] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Benignus VA, Coleman T, Eklund CR, Kenyon EM. A General Physiological and Toxicokinetic (GPAT) Model for Simulating Complex Toluene Exposure Scenarios in Humans. Toxicol Mech Methods 2008; 16:27-36. [DOI: 10.1080/15376520500191862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Aprea C, Sciarra G, Bozzi N, Pagliantini M, Perico A, Bavazzano P, Leandri A, Carrieri M, Scapellato ML, Bettinelli M, Bartolucci GB. Reference values of urinary trans,trans-muconic acid: Italian Multicentric Study. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2008; 55:329-340. [PMID: 18214577 DOI: 10.1007/s00244-007-9119-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 12/20/2007] [Indexed: 05/25/2023]
Abstract
This article reports the results of a study, conducted in the framework of the scientific activities of the Italian Society for Reference Values, aimed at defining reference values of urinary trans,trans-muconic acid (t,t-MA) in the general population not occupationally exposed to benzene. t,t-MA concentrations detected in 376 subjects of the resident population in three areas of Italy, two in central (Florence and southern Tuscany) and one in northern Italy (Padua), by three laboratories, compared by repeated interlaboratory controls, showed an interval of 14.4-225.0 microg/L (5th-95th percentile) and a geometric mean of 52.5 microg/L. The concentrations measured were influenced by tobacco smoking in a statistically significant way: Geometric mean concentrations were 44.8 microg/L and 76.1 microg/Ll in nonsmokers (264 subjects) and smokers (112 subjects), respectively. In the nonsmoking population, a significant influence of gender was found when concentrations were corrected for urinary creatinine, geometric mean concentrations being 36.7 microg/g creatinine in males (128 subjects) and 44.7 microg/g creatinine in females (136 subjects). The place of residence of subjects did not seem to influence urinary excretion of the metabolite, although personal inhalation exposure to benzene over a 24-h period showed slightly higher concentrations in Padua and Florence (geometric means of 6.5 microg/m(3) and 6.6 microg/m(3), respectively) than in southern Tuscany (geometric mean of 3.9 microg/m(3)). Concentration of t,t-MA in urine samples collected at the end of personal air sampling showed little relationship to personal inhalation exposure to benzene, confirming the importance of other factors in determining excretion of t,t-MA when concentrations in personal air samples are very low.
Collapse
Affiliation(s)
- C Aprea
- Laboratorio di Sanità Pubblica, Azienda USL 7 di Siena, Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kenyon EM, Benignus V, Eklund C, Highfill JW, Oshiro WM, Samsam TE, Bushnell PJ. Modeling the toxicokinetics of inhaled toluene in rats: influence of physical activity and feeding status. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2008; 71:249-265. [PMID: 18253891 DOI: 10.1080/15287390701528363] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Toluene is found in petroleum-based fuels and used as a solvent in consumer products and industrial applications. The critical effects following inhalation exposure involve the brain and nervous system in both humans and experimental animals, whether exposure duration is acute or chronic. The goals of this physiologically based pharmacokinetic (PBPK) model development effort were twofold: (1) to evaluate and explain the influence of feeding status and activity level on toluene pharmacokinetics utilizing our own data from toluene-exposed Long Evans (LE) rats, and (2) to evaluate the ability of the model to simulate data from the published literature and explain differing toluene kinetics. Compartments in the model were lung, slowly and rapidly perfused tissue groups, fat, liver, gut, and brain; tissue transport was blood-flow limited and metabolism occurred in the liver. Chemical-specific parameters and initial organ volumes and blood flow rates were obtained from the literature. Sensitivity analysis revealed that the single most influential parameter for our experimental conditions was alveolar ventilation; other moderately influential parameters (depending upon concentration) included cardiac output, rate of metabolism, and blood flow to fat. Based on both literature review and sensitivity analysis, other parameters (e.g., partition coefficients and metabolic rate parameters) were either well defined (multiple consistent experimental results with low variability) or relatively noninfluential (e.g. organ volumes). Rats that were weight-maintained compared to free-fed rats in our studies could be modeled with a single set of parameters because feeding status did not have a significant impact on toluene pharmacokinetics. Heart rate (HR) measurements in rats performing a lever-pressing task indicated that the HR increased in proportion to task intensity. For rats acclimated to eating in the lab during the day, both sedentary rats and rats performing the lever-pressing task required different alveolar ventilation rates to successfully predict the data. Model evaluation using data from diverse sources together with statistical evaluation of the resulting fits revealed that the model appropriately predicted blood and brain toluene concentrations with some minor exceptions. These results (1) emphasize the importance of experimental conditions and physiological status in explaining differing kinetic data, and (2) demonstrate the need to consider simulation conditions when estimating internal dose metrics for toxicity studies in which kinetic data were not collected.
Collapse
Affiliation(s)
- Elaina M Kenyon
- Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Kamgang E, Peyret T, Krishnan K. An integrated QSPR-PBPK modelling approach for in vitro-in vivo extrapolation of pharmacokinetics in rats. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2008; 19:669-680. [PMID: 19061083 DOI: 10.1080/10629360802547313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In vitro data on metabolism and partitioning may be integrated within physiologically-based pharmacokinetic (PBPK) models to provide simulations of the kinetics and bioaccumulation of chemicals in intact organisms. Quantitative structure-property relationship (QSPR) modelling of available in vitro data may be performed to predict metabolism rates and partition coefficients (PCs) for developing in vivo PBPK models. The objective of the present study was to develop an integrated QSPR-PBPK modelling approach for the conduct of in vitro to in vivo extrapolation. For this purpose, data on rat blood:air (P(b)) and fat:air (P(f)) PCs, as well as intrinsic metabolic clearance (CL(int)) obtained using rat liver slices for some C(5)-C(10) volatile organic compounds (VOCs) were compiled from the literature. Multilinear additive QSPR models for P(f), P(b) and CL(int) were developed based on the number and nature of molecular fragments in these VOCs (CH(3), CH(2), CH, C, C=C, H, benzene ring and H in benzene ring structure). The mean estimated/experimental (est/exp) ratios (+/-SD; range) were 1.0 (+/-0.04; 0.93 - 1.06) for log P(f), 1.08 (+/-0.26; 0.70 - 1.62) for log P(b), and 1.07 (+/- 0.21; 0.80 - 1.44) for CL(int). By accounting for the difference in the content of neutral lipids in fat and other tissues, the liver : air and muscle : air PCs of the compounds investigated in this study, with the excerption of n-decane, were adequately predicted from P(f). Integrating the QSPRs for P(f), P(b) and CL(int) within a rat PBPK model, simulations of inhalation pharmacokinetics of several VOCs were generated on the basis of molecular structure, for a given exposure scenario. The integrated QSPR-PBPK model developed in this study is a potentially useful tool for predicting in vivo kinetics and bioaccumulation of chemicals in rats under poor data situations.
Collapse
Affiliation(s)
- E Kamgang
- Groupe de recherche interdisciplinaire en sante, Faculte de medecine, Universite de Montreal, Montreal, QC, Canada
| | | | | |
Collapse
|
17
|
Boyes WK, Bercegeay M, Krantz QT, Kenyon EM, Bale AS, Shafer TJ, Bushnell PJ, Benignus VA. Acute Toluene Exposure and Rat Visual Function in Proportion to Momentary Brain Concentration. Toxicol Sci 2007; 99:572-81. [PMID: 17623699 DOI: 10.1093/toxsci/kfm172] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acute exposure to toluene was assessed in two experiments to determine the relationship between brain toluene concentration and changes in neurophysiological function. The concentration of toluene in brain tissue at the time of assessment was estimated using a physiologically based pharmacokinetic model. Brain neurophysiological function was measured using pattern-elicited visual evoked potentials (VEP) recorded from electrodes located over visual cortex of adult male Long-Evans rats. In the first experiment, VEPs were recorded before and during exposure to control air or toluene at 1000 ppm for 4 h, 2000 ppm for 2 h, 3000 ppm for 1.3 h, or 4000 ppm for 1 h. In the second experiment, VEPs were recorded during and after exposure to clean air or 3000 or 4000 ppm toluene. In both experiments, the response amplitude of the major spectral component of the VEP (F2 at twice the stimulus rate in steady-state responses) was reduced by toluene. A logistic function was fit to baseline-adjusted F2 amplitudes from the first experiment that described a significant relationship between brain toluene concentration and VEP amplitude deficits. In the second experiment, 3000 ppm caused equivalent VEP deficits during or after exposure as a function of estimated brain concentration, but 4000 ppm showed a rapid partial adaptation to the acute effects of toluene after exposure. In general, however, the neurophysiological deficits caused by acute toluene exposure could be described by estimates of the momentary concentration of toluene in the brain at the time of VEP evaluation.
Collapse
Affiliation(s)
- William K Boyes
- Neurotoxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Katritzky AR, Kuanar M, Fara DC, Karelson M, Acree WE, Solov'ev VP, Varnek A. QSAR modeling of blood:air and tissue:air partition coefficients using theoretical descriptors. Bioorg Med Chem 2005; 13:6450-63. [PMID: 16202613 DOI: 10.1016/j.bmc.2005.06.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 06/29/2005] [Accepted: 06/30/2005] [Indexed: 11/21/2022]
Abstract
Human blood:air, human and rat tissue (fat, brain, liver, muscle, and kidney):air partition coefficients of a diverse set of organic compounds were correlated and predicted using structural descriptors by employing CODESSA-PRO and ISIDA programs. Four and five descriptor regression models developed using CODESSA-PRO were validated on three different test sets. Overall, these models have reasonable values of correlation coefficients (R(2)) and leave-one-out correlation coefficients (R(cv)(2)): R(2) = 0.881-0.983; R(cv)(2) = 0.826-0.962. Calculations with ISIDA resulted in models based on atom/bond sequences involving two to three atoms with statistical parameters that were similar to those of models obtained with CODESSA-PRO (R(2) = 0.911-0.974; R(cv)(2) = 0.831-0.936). A mixed pool of molecular and fragment descriptors did not lead to significant improvement of the models.
Collapse
Affiliation(s)
- Alan R Katritzky
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, 32611, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Thrall K, Woodstock A. Evaluation of the dermal bioavailability of aqueous xylene in F344 rats and human volunteers. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2003; 66:1267-1281. [PMID: 12851123 DOI: 10.1080/15287390306407] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Xylene is a clear, colorless liquid used as a solvent in the printing, rubber, and leather industries and is commonly found in paint thinners, paints, varnishes, and adhesives. Although humans are most likely to be exposed to xylene via inhalation, xylene is also found in well and surface water. Therefore, an assessment of the dermal contribution to total xylene uptake is useful for understanding human exposures. To evaluate the significance of these exposures, the dermal absorption of o-xylene was assessed in F344 male rats and human volunteers using a combination of real-time exhaled breath analysis and physiologically based pharmacokinetic (PBPK) modeling. Animals were exposed to o-xylene dermally. Immediately following the initiation of exposure, individual animals were placed in a glass off-gassing chamber and exhaled breath was monitored. Human volunteers participating in the study placed both legs into a stainless steel hydrotherapy tub containing an initial concentration of approximately 500 microg/L o-xylene. Exhaled breath was continually analyzed from each volunteer before, during, and after exposure to track absorption and subsequent elimination of the compound in real time. In both animal and human studies, a PBPK model was used to estimate the dermal permeability coefficient (K(p)) to describe each set of exhaled breath data. Rat skin was found to be approximately 12 times more permeable to aqueous o-xylene than human skin. The estimated human and rat aqueous o-xylene K(p) values were 0.005 +/- 0.001 cm/h and 0.058 +/- 0.009 cm/h, respectively.
Collapse
Affiliation(s)
- Karla Thrall
- Chemical Dosimetry Group, Biological Sciences Division, Battelle, Pacific Northwest Laboratory, Richland, Washington 99352, USA.
| | | |
Collapse
|