1
|
Kalita A, Talukdar AK. Streamlined synthesis of iron and cobalt loaded MCM-48: High-performance heterogeneous catalysts for selective liquid-phase oxidation of toluene to benzaldehyde. Heliyon 2024; 10:e27296. [PMID: 38510017 PMCID: PMC10950511 DOI: 10.1016/j.heliyon.2024.e27296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Hydrothermal synthesis of MCM-48 molecular sieves featuring the incorporation of both iron and cobalt with Si/M ratios of 20, 40 and 80 (where M represents either iron or cobalt) was performed using tetraethyl orthosilicate as the silica source and cetyltrimethylammonium bromide as a template. To gain a comprehensive understanding of the synthesized materials, these were thoroughly characterized using various techniques, including XRD, XPS, UV-Vis (DRS), FT-IR, N2 adsorption-desorption analysis, SEM with EDX, TEM, TGA and NH3-TPD analysis. XRD analysis revealed the presence of well-ordered MCM-48 structure in the metal-incorporated materials, while XPS and UV-Vis DRS confirmed the successful partial incorporation of metal ions precisely in their desired tetrahedral coordination within the framework. To assess their catalytic performance, we studied the activity and selectivity of these catalysts in liquid phase oxidation of toluene using tert-butyl hydroperoxide as the oxidant. Under optimized conditions, employing a 6% (w/w) Fe-MCM-48 (40) catalyst and maintaining a toluene to oxidant molar ratio of 1:3 at 353 K in a solvent-free environment for 8 h, the oxidation reaction resulted in the formation of benzaldehyde (88.1%) as the major product and benzyl alcohol (11.9%) as the minor product.
Collapse
Affiliation(s)
- Arnab Kalita
- Department of Chemistry, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, Assam, 781014, India
| | - Anup Kumar Talukdar
- Department of Chemistry, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, Assam, 781014, India
| |
Collapse
|
2
|
Açin Ok R, Kutluay S. Designing novel perlite-Fe 3O 4@SiO 2@8-HQ-5-SA as a promising magnetic nanoadsorbent for competitive adsorption of multicomponent VOCs. CHEMOSPHERE 2023; 338:139636. [PMID: 37495054 DOI: 10.1016/j.chemosphere.2023.139636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Volatile organic compounds (VOCs), which emerge as multicomponent pollutants through many industrial processes, pose a serious threat to human health and the eco-environment due to their volatility, toxicity and dispersion. Hence, the study of competitive adsorption of multicomponent VOCs is of practical and scientific importance. Herein, the perlite-supported Fe3O4@SiO2@8-hydroxyquinoline-5-sulfonic acid (perlite-Fe3O4@SiO2@8-HQ-5-SA) was designed as a novel magnetic nanoadsorbent by a simple strategy and employed for the competitive adsorption of multicomponent toluene, ethylbenzene and xylene in the vapor-phase targeted as VOCs. The successfully prepared perlite-Fe3O4@SiO2@8-HQ-5-SA was characterized by means of SEM, EDX, FT-IR, VSM and BET analyses. Adsorption capacities of 558 mg/g, 680 mg/g and 716 mg/g were achieved for single component toluene, ethylbenzene and xylene, respectively. It was concluded that the adsorption capacities for both binary and ternary components were significantly decreased compared to single component adsorption. The competitive adsorption capacity order of the binary and ternary component VOCs was xylene > ethylbenzene > toluene due to their competitive dominance. The rate-limiting kinetic analysis indicated that the adsorption rates were determined by both the film diffusion and intraparticle diffusion. The analysis of the error metrics demonstrated that the three-parameter isotherm models better described the adsorption data compared to the two-parameter models. In particular, the Toth model provided the closest fit to the experimental equilibrium data. The thermodynamic analysis indicated the spontaneous nature and probability (ΔG° <0), exothermic (ΔH° <0), physical (ΔH° <20 kJ/mol) and a declination in the degree of randomness (ΔS° <0) of the adsorption processes. The reuse efficiency of perlite-Fe3O4@SiO2@8-HQ-5-SA for toluene, ethylbenzene and xylene decreased to only by 88.91%, 88.07% and 87.16% after five recycles. The perlite-Fe3O4@SiO2@8-HQ-5-SA has a significant adsorptive potential compared to other adsorbents reported in the literature, thus it could be recommended as a promising nanoadsorbent for VOCs in industrial processes.
Collapse
Affiliation(s)
- Rahime Açin Ok
- Department of Chemical Engineering, Faculty of Engineering, Siirt University, 56100, Siirt, Turkey
| | - Sinan Kutluay
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Chemical Engineering, Faculty of Engineering, Siirt University, 56100, Siirt, Turkey.
| |
Collapse
|
3
|
Kutluay S, Temel F. Silica gel based new adsorbent having enhanced VOC dynamic adsorption/desorption performance. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125848] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Baytar O, Şahin Ö, Horoz S, Kutluay S. High-performance gas-phase adsorption of benzene and toluene on activated carbon: response surface optimization, reusability, equilibrium, kinetic, and competitive adsorption studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26191-26210. [PMID: 32361973 DOI: 10.1007/s11356-020-08848-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/13/2020] [Indexed: 05/24/2023]
Abstract
In recent years, volatile organic compounds (VOCs) have become a group of major pollutants that endanger human health and the ecological environment. The main purpose of this study was to investigate the gas-phase adsorption processes of benzene and toluene, which are important VOCs, on the activated carbon (AC) produced from Elaeagnus angustifolia seeds by physical activation method. In this context, the central composite design (CCD) approach-based response surface methodology (RSM) was applied to examine and optimize the effects of process parameters on the adsorption of benzene and toluene by AC adsorbent. The characterization of the produced AC was performed by the Brunauer-Emmett-Teller surface area, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. The optimum process parameters were achieved (adsorption time of 74.98 min, initial benzene concentration of 16.68 ppm, and temperature of 26.97 °C, and adsorption time of 73.26 min, initial toluene concentration of 18.46 ppm and temperature of 29.80 °C) for benzene and toluene, respectively. The maximum adsorption capacities of benzene and toluene on AC were determined to be 437.36 and 512.03 mg/g, respectively, under optimum parameters. The adsorption process kinetics and equilibrium isotherms were also evaluated. Besides, AC reusability studies were performed five times for the gas-phase adsorption and desorption of benzene and toluene. After five cycles, it was observed that the benzene and toluene adsorption capacity of the AC decreased slightly by 8.10% and 7.42%, respectively. The results revealed that the produced AC could be utilized successfully for the removal of benzene and toluene in the gas-phase adsorption systems because of its high surface area, high adsorption capacity, and high reusability performance. Furthermore, the adsorption processes of benzene and toluene were investigated, both sole components and in a binary mixture. It was concluded that the adsorption behaviors of benzene and toluene against AC were quite different when they were in the competition (in a binary mixture) and without competition (sole components). Graphical abstract.
Collapse
Affiliation(s)
- Orhan Baytar
- Department of Chemical Engineering, Siirt University, 56100, Siirt, Turkey
| | - Ömer Şahin
- Department of Chemical Engineering, Siirt University, 56100, Siirt, Turkey
| | - Sabit Horoz
- Department of Electrical &Electronics Engineering, Siirt University, 56100, Siirt, Turkey
| | - Sinan Kutluay
- Department of Chemical Engineering, Siirt University, 56100, Siirt, Turkey.
| |
Collapse
|
5
|
Yao S, Chen Z, Xie H, Yuan Y, Zhou R, Xu B, Chen J, Wu X, Wu Z, Jiang B, Tang X, Lu H, Nozaki T, Kim HH. Highly efficient decomposition of toluene using a high-temperature plasma-catalysis reactor. CHEMOSPHERE 2020; 247:125863. [PMID: 31972485 DOI: 10.1016/j.chemosphere.2020.125863] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Plasma-catalysis technologies (PCTs) have the potential to control the emissions of volatile organic compounds, although their low-energy efficiency is a bottleneck for their practical applications. A plasma-catalyst reactor filled with a CeO2/γ-Al2O3 catalyst was developed to decompose toluene with a high-energy efficiency enhanced by the elevating reaction temperature. When the reaction temperature was raised from 50 °C to 250 °C, toluene conversion dramatically increased from 45.3% to 95.5% and the energy efficiency increased from 53.5 g/kWh to 113.0 g/kWh. Conversely, the toluene conversion using a thermal catalysis technology (TCT) exhibited a maximum of 16.7%. The activation energy of toluene decomposition using PCTs is 14.0 kJ/mol, which is far lower than those of toluene decomposition using TCTs, which implies that toluene decomposition using PCT differs from that using TCT. The experimental results revealed that the Ce3+/Ce4+ ratio decreased and Oads/Olatt ratio increased after the 40-h evaluation experiment, suggesting that CeO2 promoted the formation of the reactive oxygen species that is beneficial for toluene decomposition.
Collapse
Affiliation(s)
- Shuiliang Yao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China; School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China.
| | - Zhizong Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Han Xie
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Yuchen Yuan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Ruowen Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Bingqing Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Junxia Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Xinyue Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Zuliang Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China; School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China.
| | - Boqiong Jiang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Xiujuan Tang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Hao Lu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Tomohiro Nozaki
- Department of Mechanical Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Hyun-Ha Kim
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8560, Japan
| |
Collapse
|
6
|
|
7
|
Xie ZZ, Wang L, Cheng G, Shi L, Zhang YB. Adsorption properties of regenerative materials for removal of low concentration of toluene. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2016; 66:1224-1236. [PMID: 27580427 DOI: 10.1080/10962247.2016.1209257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/11/2016] [Indexed: 06/06/2023]
Abstract
UNLABELLED A specific type of material, activated carbon fiber (ACF), was modified by SiO2, and the final products ACF-x were obtained as ACF-12.5, ACF-20, ACF-40, and ACF-80 according to different dosages of tetraethoxysilane (TEOS). The modified material on the ACF surface had a significant and smooth cover layer with low content of silica from scanning electron microscope (SEM) image. The modified ACF-x showed the stronger hydrophobicity, thermal stability, and adsorption capacity, which had almost no effect in the presence of water vapor and no destruction in multiple cycles. ACF-20 was proven as the most efficient adsorbent in humid conditions. The dual-function system composed of the regenerative adsorbents and the combustion catalyst would be efficient in consecutive toluene adsorption/oxidation cycles, in which the combustion catalyst was prepared by the displacement reaction of H2PtCl6 with foam Ni. Therefore, the adsorption/catalytic oxidation could be a promising technique in the indoor air purification, especially in the case of very low volatile organic compound (VOC; toluene) concentration levels. IMPLICATIONS Exploring highly effective adsorptive materials with less expensive costs becomes an urgent issue in the indoor air protection. ACF-20 modified by SiO2 with Pt/Ni catalysts shows stronger hydrophobicity, thermal stability, and adsorption capacity. This dual-function system composed of the regenerative materials and the combustion catalyst would be a promising technique in the indoor air purification, especially in the case of removal of very low concentration of toluene.
Collapse
Affiliation(s)
- Zhen-Zhen Xie
- a College of Public Health , Jilin University , Changchun , People's Republic of China
| | - Lin Wang
- a College of Public Health , Jilin University , Changchun , People's Republic of China
| | - Ge Cheng
- a College of Public Health , Jilin University , Changchun , People's Republic of China
| | - Lei Shi
- a College of Public Health , Jilin University , Changchun , People's Republic of China
| | - Yi-Bo Zhang
- b Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , People's Republic of China
| |
Collapse
|