1
|
Dutta J, Mala AA, Kyzas GZ. Chitosan beads coated with almond and walnut shells for the adsorption of gatifloxacin antibiotic compound from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23553-23567. [PMID: 36327083 DOI: 10.1007/s11356-022-23892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In the present study, chitosan (C), walnut (W), and almond shell (A) powder adsorbent (in different combinations as almond shells:walnut:chitosan 2:1:1 (AWC), chitosan:almond shell:walnut 2:1:1 (CAW), and walnut:almond shells:chitosan 2:1:1 (WAC)) powder were combined in different ratios to produce low-cost composite adsorbent beads for the removal of antibiotics gatifloxacin (GAT) from synthetic wastewater. The beads were characterized by a scanning electron microscope, Fourier transform infrared spectrum spectrophotometer, and energy-dispersive X-ray spectroscopy. The batch adsorption approach was employed to remove the antibiotic from the water. Moreover, isotherm and kinetics were conducted to illustrate the adsorption mechanism. Parameters like the effect of the adsorbent's dosage, pH, initial concentration, and contact time on antibiotic adsorption were evaluated. Adsorption percentage increased slightly with the increase in adsorbent dosage. The optimum pH for GAT adsorption on beads was 5-7. In addition, adsorption increased with initial antibiotic concentration and time rise. The adsorption isotherm data were successfully fitted to Langmuir isotherm for AWC and CAW beads, while WAC beads followed the Freundlich isotherm. The highest adsorption was attained at pH 5 on CAW beads and pH 7 on AWC and WAC beads. The optimal contact time for equilibrium studies was 120 min for all types of beads. The adsorption isotherm data in AWC beads fit well with the Langmuir model and Freundlich adsorption for CAW and WAC beads. The rate of adsorption on beads follows Lagergren pseudo-second-order kinetics. The results indicate that prepared combination beads can be used to remove antibiotics from wastewater.
Collapse
Affiliation(s)
- Joydeep Dutta
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Aijaz Ahmad Mala
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, 654 04, Kavala, Greece
| |
Collapse
|
2
|
Yao Y, Li QX. Efficient, fast and robust degradation of chlortetracycline in wastewater catalyzed by recombinant Arthromyces ramosus peroxidase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159872. [PMID: 36461571 DOI: 10.1016/j.scitotenv.2022.159872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Chlortetracycline (CTC), a widely used antibiotic, is recalcitrant and ubiquitous in the environment. Enzymatic degradation of CTC is an economical and efficient bioremediation method. In this work, recombinant Arthromyces ramosus peroxidase (rARP) at a concentration of 3.13 × 10-9 M was used to catalyze rapid degradation of CTC in water. The second-order rate constants of rARP showed up to 62-fold catalytic efficiency of horseradish peroxidase (HRP) toward CTC. The degradation half-life of CTC at the concentrations of 2 and 40 mg L-1 in wastewater under the rARP catalysis was, respectively, 5.3 and 5.7 min at 25 °C, and 2.7 and 3.1 min at 40 °C, which were up to 15-fold and 111-fold faster than HRP and laccase, respectively, but use of 3 % the amount of rARP as HRP. rARP catalyzed degradation of CTC at 2-40 mg L-1 in wastewater completed in 20-24 min, and its catalytic efficiency varied within only 2-fold at 25-40 °C. rARP showed only 2-3-fold discrepancy of catalytic efficiency among pH 5.0, 7.5 and 9.0. CTC under rARP catalysis underwent demethylation and oxidation to form nontoxic N-dedimethyl-9-hydroxy-CTC. The high catalytic efficiency of rARP agreed with a short distance between rARP's δN-His56 and CTC's dimethylamine N as indicated by docking simulation. rARP is a useful enzyme for CTC bioremediation.
Collapse
Affiliation(s)
- Yuqun Yao
- School of Medicine, Guangxi University of Science and Technology, Liushi Road 257, Liuzhou 545025, China; Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
3
|
Baquero F, Coque TM, Martínez JL. Natural detoxification of antibiotics in the environment: A one health perspective. Front Microbiol 2022; 13:1062399. [PMID: 36504820 PMCID: PMC9730888 DOI: 10.3389/fmicb.2022.1062399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
The extended concept of one health integrates biological, geological, and chemical (bio-geo-chemical) components. Anthropogenic antibiotics are constantly and increasingly released into the soil and water environments. The fate of these drugs in the thin Earth space ("critical zone") where the biosphere is placed determines the effect of antimicrobial agents on the microbiosphere, which can potentially alter the composition of the ecosystem and lead to the selection of antibiotic-resistant microorganisms including animal and human pathogens. However, soil and water environments are highly heterogeneous in their local composition; thus the permanence and activity of antibiotics. This is a case of "molecular ecology": antibiotic molecules are adsorbed and eventually inactivated by interacting with biotic and abiotic molecules that are present at different concentrations in different places. There are poorly explored aspects of the pharmacodynamics (PD, biological action) and pharmacokinetics (PK, rates of decay) of antibiotics in water and soil environments. In this review, we explore the various biotic and abiotic factors contributing to antibiotic detoxification in the environment. These factors range from spontaneous degradation to the detoxifying effects produced by clay minerals (forming geochemical platforms with degradative reactions influenced by light, metals, or pH), charcoal, natural organic matter (including cellulose and chitin), biodegradation by bacterial populations and complex bacterial consortia (including "bacterial subsistence"; in other words, microbes taking antibiotics as nutrients), by planktonic microalgae, fungi, plant removal and degradation, or sequestration by living and dead cells (necrobiome detoxification). Many of these processes occur in particulated material where bacteria from various origins (microbiota coalescence) might also attach (microbiotic particles), thereby determining the antibiotic environmental PK/PD and influencing the local selection of antibiotic resistant bacteria. The exploration of this complex field requires a multidisciplinary effort in developing the molecular ecology of antibiotics, but could result in a much more precise determination of the one health hazards of antibiotic production and release.
Collapse
Affiliation(s)
- Fernando Baquero
- Division of Biology and Evolution of Microorganisms, Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, and Centro de Investigación Biomédica en Red, Epidemiología y Salud Pública (CIBERESP), Madrid, Spain,*Correspondence: Fernando Baquero,
| | - Teresa M. Coque
- Division of Biology and Evolution of Microorganisms, Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, and Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFECT), Madrid, Spain
| | | |
Collapse
|
4
|
Zhang Y, Yu X, Liu Y, Wu S, Yu R, Chen T. Adsorption of chlortetracycline in aquaculture wastewater by lanthanum modified multi-walled carbon nanotubes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:369-378. [PMID: 35502619 DOI: 10.1080/03601234.2022.2061261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The lanthanum modified multi-walled carbon nanotubes (La-CNTs) prepared by an impregnation method were investigated for the adsorption of chlortetracycline (CTC) in aquaculture wastewater. The adsorbents were characterized by SEM, EDS, XRD and BET. The effects of some factors including La-containing impregnant concentration, adsorbent dosage, CTC adsorbate concentration, adsorption time, pH of the adsorbate solution and additional ions on the CTC adsorption by La-CNTs were investigated in detail, and the optimal adsorption conditions were determined. The adsorption kinetics obeyed the quasi-second-order kinetic model. The adsorption isotherms obeyed the Langmuir model and the fitted maximum capacity of La-CNTs for CTC adsorption was 55.3 mg/g.
Collapse
Affiliation(s)
- Yuqi Zhang
- College of Ocean Technique and Environmental Engineering, Dalian Ocean University, Dalian, China
- Marine Biological Resources Utilization and Ecological Environmental Protection Technology Research Institute, Liaoning Industrial Technology Research Institute, Liaoning, China
| | - Xiaocai Yu
- College of Ocean Technique and Environmental Engineering, Dalian Ocean University, Dalian, China
- Marine Biological Resources Utilization and Ecological Environmental Protection Technology Research Institute, Liaoning Industrial Technology Research Institute, Liaoning, China
| | - Yifu Liu
- College of Ocean Technique and Environmental Engineering, Dalian Ocean University, Dalian, China
- Marine Biological Resources Utilization and Ecological Environmental Protection Technology Research Institute, Liaoning Industrial Technology Research Institute, Liaoning, China
| | - Shini Wu
- College of Ocean Technique and Environmental Engineering, Dalian Ocean University, Dalian, China
- Marine Biological Resources Utilization and Ecological Environmental Protection Technology Research Institute, Liaoning Industrial Technology Research Institute, Liaoning, China
| | - Runqiang Yu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Liaoning, China
| | - Tao Chen
- College of Ocean Technique and Environmental Engineering, Dalian Ocean University, Dalian, China
- Marine Biological Resources Utilization and Ecological Environmental Protection Technology Research Institute, Liaoning Industrial Technology Research Institute, Liaoning, China
| |
Collapse
|
5
|
Behzadi A, Hashemi Motlagh G, Raef M, Motahari S. Rational design of in‐situ‐modified resorcinol formaldehyde aerogels for removing chlortetracycline antibiotics from aqueous solutions. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alireza Behzadi
- Advanced Polymer Materials & Processing Lab, School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran
| | - Ghodratollah Hashemi Motlagh
- Advanced Polymer Materials & Processing Lab, School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran
| | - Mohammad Raef
- Department of Mining‐Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering in Bilbao University of the Basque Country (UPV/EHU) Bilbao Spain
| | - Siamak Motahari
- Advanced Polymer Materials & Processing Lab, School of Chemical Engineering, College of Engineering University of Tehran Tehran Iran
| |
Collapse
|
6
|
Wang Q, Tu S, Wang W, Chen W, Duan X, Chang L. Optimized Indium modified Ti/PbO2 anode for electrochemical degradation of antibiotic cefalexin in aqueous solutions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Tunç MS, Yıldız B, Taşar Ş. Removal of paracetamol from aqueous solution by wood sawdust-derived activated carbon: Process optimization using response surface methodology. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1978075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Müslün Sara Tunç
- Department of Environmental Engineering, Faculty of Engineering, Firat University, Elazığ, Turkey
| | - Burçin Yıldız
- Department of Environmental Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van, Turkey
| | - Şeyda Taşar
- Department of Chemical Engineering, Faculty of Engineering, Firat University, Elazig, Turkey
| |
Collapse
|