1
|
Wu X, Chen J, Subotnik J. A Constrained CASSCF(2,2) Approach to Study Electron Transfer between a Molecule and Metal Cluster. J Phys Chem A 2024; 128:9538-9550. [PMID: 39431682 DOI: 10.1021/acs.jpca.4c04843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
We have implemented a constrained CASSCF(2,2) calculation so as to study thermal electron transfer between a chlorine ion and a cluster of lithium atoms of variable size (from 1 to 17). Our calculations illustrate how the geometry of the ground state-charge transfer state crossing point (as well as the strength of a diabatic coupling) can depend sensitively on the number of metal ions (i.e., the size of the cluster) and the relative positioning of the donor and acceptor. Thus, this set of calculations is an initial step toward understanding the transition from homogeneous to heterogeneous electron transfer. In the future, these constrained calculations should allow us to model still far larger systems, ideally opening up a pathway to study meaningful electrochemical phenomena.
Collapse
Affiliation(s)
- Xinchun Wu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Junhan Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Joseph Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Schatz GC, Wodtke AM, Yang X. Spiers Memorial Lecture: New directions in molecular scattering. Faraday Discuss 2024; 251:9-62. [PMID: 38764350 DOI: 10.1039/d4fd00015c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The field of molecular scattering is reviewed as it pertains to gas-gas as well as gas-surface chemical reaction dynamics. We emphasize the importance of collaboration of experiment and theory, from which new directions of research are being pursued on increasingly complex problems. We review both experimental and theoretical advances that provide the modern toolbox available to molecular-scattering studies. We distinguish between two classes of work. The first involves simple systems and uses experiment to validate theory so that from the validated theory, one may learn far more than could ever be measured in the laboratory. The second class involves problems of great complexity that would be difficult or impossible to understand without a partnership of experiment and theory. Key topics covered in this review include crossed-beams reactive scattering and scattering at extremely low energies, where quantum effects dominate. They also include scattering from surfaces, reactive scattering and kinetics at surfaces, and scattering work done at liquid surfaces. The review closes with thoughts on future promising directions of research.
Collapse
Affiliation(s)
- George C Schatz
- Dept of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Alec M Wodtke
- Institute for Physical Chemistry, Georg August University, Goettingen, Germany
- Max Planck Institute for Multidisciplinary Natural Sciences, Goettingen, Germany.
- International Center for the Advanced Studies of Energy Conversion, Georg August University, Goettingen, Germany
| | - Xueming Yang
- Dalian Institute for Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
3
|
Rahinov I, Kandratsenka A, Schäfer T, Shirhatti P, Golibrzuch K, Wodtke AM. Vibrational energy transfer in collisions of molecules with metal surfaces. Phys Chem Chem Phys 2024; 26:15090-15114. [PMID: 38757203 PMCID: PMC11135613 DOI: 10.1039/d4cp00957f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/27/2024] [Indexed: 05/18/2024]
Abstract
The Born-Oppenheimer approximation (BOA), which serves as the basis for our understanding of chemical bonding, reactivity and dynamics, is routinely violated for vibrationally inelastic scattering of molecules at metal surfaces. The title-field therefore represents a fascinating challenge to our conventional wisdom calling for new concepts that involve explicit electron dynamics occurring in concert with nuclear motion. Here, we review progress made in this field over the last decade, which has witnessed dramatic advances in experimental methods, thereby providing a much more extensive set of diverse observations than has ever before been available. We first review the experimental methods used in this field and then provide a systematic tour of the vast array of observations that are currently available. We show how these observations - taken together and without reference to computational simulations - lead us to a simple and intuitive picture of BOA failure in molecular dynamics at metal surfaces, one where electron transfer between the molecule and the metal plays a preeminent role. We also review recent progress made in the theory of electron transfer mediated BOA failure in molecule-surface interactions, describing the most important methods and their ability to reproduce experimental observation. Finally, we outline future directions for research and important unanswered questions.
Collapse
Affiliation(s)
- Igor Rahinov
- Department of Natural Sciences, The Open University of Israel, 4353701 Raanana, Israel.
| | - Alexander Kandratsenka
- Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Goettingen, Germany.
| | - Tim Schäfer
- Institute for Physical Chemistry, Georg-August University of Goettingen, Tammannstraße 6, 37077 Goettingen, Germany
| | - Pranav Shirhatti
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally, Hyderabad 500046, Telangana, India
| | - Kai Golibrzuch
- Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Goettingen, Germany.
| | - Alec M Wodtke
- Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Goettingen, Germany.
- Institute for Physical Chemistry, Georg-August University of Goettingen, Tammannstraße 6, 37077 Goettingen, Germany
- International Center for Advanced Studies of Energy Conversion, Georg-August University of Goettingen, Tammannstraße 6, 37077 Goettingen, Germany
| |
Collapse
|
4
|
Arguelles EF, Sugino O. Time-dependent electron transfer and energy dissipation in condensed media. J Chem Phys 2024; 160:144102. [PMID: 38591675 DOI: 10.1063/5.0196143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
We study a moving adsorbate interacting with a metal electrode immersed in a solvent using the time-dependent Newns-Anderson-Schmickler model Hamiltonian. We have adopted a semiclassical trajectory treatment of the adsorbate to discuss the electron and energy transfers that occur between the adsorbate and the electrode. Using Keldysh Green's function scheme, we found a non-adiabatically suppressed electron transfer caused by the motion of the adsorbate and coupling with bath phonons that model the solvent. The energy is thus dissipated into electron-hole pair excitations, which are hindered by interacting with the solvent modes and facilitated by the applied electrode potential. The average energy transfer rate is discussed in terms of the electron friction coefficient and given an analytical expression in the slow-motion limit.
Collapse
Affiliation(s)
- Elvis F Arguelles
- Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Osamu Sugino
- Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
5
|
Guo X, Li G, Shi Z, Wang L. Surface Hopping with Reliable Wave Function by Introducing Auxiliary Wave Packets to Trajectory Branching. J Phys Chem Lett 2024:3345-3353. [PMID: 38498301 DOI: 10.1021/acs.jpclett.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
It is well-known that the widely utilized fewest switches surface hopping method suffers from the severe overcoherence problem, and thus adiabatic populations calculated by wave functions are generally inferior to those based on active states. More importantly, to achieve a complete description of nonadiabatic dynamics, the density matrix is essential. In this paper, we present an auxiliary branching corrected surface hopping (A-BCSH) method that introduces auxiliary wave packets (WPs) on the adiabatic potential energy surfaces for trajectory branching. Both rapid and gradual separation of WP components on different surfaces are characterized, and thus the correct decoherence time along each trajectory is captured. As demonstrated in the three standard Tully models, A-BCSH exhibits excellent internal consistency. Namely, close adiabatic populations are obtained based on both wave functions and active states. In particular, A-BCSH successfully obtains a reliable time-dependent spatial distribution of the density matrix, which relies only on electronic wave functions. Due to its high performance, our A-BCSH method provides a new and highly promising perspective on further development of more consistent surface hopping with reliable wave function.
Collapse
Affiliation(s)
- Xin Guo
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Guijie Li
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhecun Shi
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Malpathak S, Ananth N. A Linearized Semiclassical Dynamics Study of the Multiquantum Vibrational Relaxation of NO Scattering from a Au(111) Surface. J Phys Chem Lett 2024; 15:794-801. [PMID: 38232133 DOI: 10.1021/acs.jpclett.3c03041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The vibrational relaxation of NO molecules scattering from a Au(111) surface has served as the focus of efforts to understand nonadiabatic energy transfer at metal-molecule interfaces. Experimental measurements and previous theoretical efforts suggest that multiquantal NO vibrational energy relaxation occurs via electron-hole pair excitations in the metal. Here, using a linearized semiclassical approach, we accurately predict the vibrational relaxation of NO from the νi = 3 state for different incident translational energies. We also accurately capture the central role of transient electron transfer from the metal to the molecule in mediating the vibrational relaxation process but fall short of quantitatively predicting the full extent of multiquantum relaxation for high incident vibrational excitations (νi = 16).
Collapse
Affiliation(s)
- Shreyas Malpathak
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Nandini Ananth
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
7
|
Gardner J, Habershon S, Maurer RJ. Assessing Mixed Quantum-Classical Molecular Dynamics Methods for Nonadiabatic Dynamics of Molecules on Metal Surfaces. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:15257-15270. [PMID: 37583439 PMCID: PMC10424245 DOI: 10.1021/acs.jpcc.3c03591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/30/2023] [Indexed: 08/17/2023]
Abstract
Mixed quantum-classical (MQC) methods for simulating the dynamics of molecules at metal surfaces have the potential to accurately and efficiently provide mechanistic insight into reactive processes. Here, we introduce simple two-dimensional models for the scattering of diatomic molecules at metal surfaces based on recently published electronic structure data. We apply several MQC methods to investigate their ability to capture how nonadiabatic effects influence molecule-metal energy transfer during the scattering process. Specifically, we compare molecular dynamics with electronic friction, Ehrenfest dynamics, independent electron surface hopping, and the broadened classical master equation approach. In the case of independent electron surface hopping, we implement a simple decoherence correction approach and assess its impact on vibrationally inelastic scattering. Our results show that simple, low-dimensional models can be used to qualitatively capture experimentally observed vibrational energy transfer and provide insight into the relative performance of different MQC schemes. We observe that all approaches predict similar kinetic energy dependence but return different vibrational energy distributions. Finally, by varying the molecule-metal coupling, we can assess the coupling regime in which some MQC methods become unsuitable.
Collapse
Affiliation(s)
- James Gardner
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Scott Habershon
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Reinhard J. Maurer
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Department
of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
8
|
Dan X, Shi Q. Theoretical study of nonadiabatic hydrogen atom scattering dynamics on metal surfaces using the hierarchical equations of motion method. J Chem Phys 2023; 159:044101. [PMID: 37486050 DOI: 10.1063/5.0155172] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
Hydrogen atom scattering on metal surfaces is investigated based on a simplified Newns-Anderson model. Both the nuclear and electronic degrees of freedom are treated quantum mechanically. By partitioning all the surface electronic states as the bath, the hierarchical equations of motion method for the fermionic bath is employed to simulate the scattering dynamics. It is found that, with a reasonable set of parameters, the main features of the recent experimental studies of hydrogen atom scattering on metal surfaces can be reproduced. Vibrational states on the chemisorption state whose energies are close to the incident energy are found to play an important role, and the scattering process is dominated by a single-pass electronic transition forth and back between the diabatic physisorption and chemisorption states. Further study on the effects of the atom-surface coupling strength reveals that, upon increasing the atom-surface coupling strength, the scattering mechanism changes from typical nonadiabatic transitions to dynamics in the electronic friction regime.
Collapse
Affiliation(s)
- Xiaohan Dan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Chen J, Subotnik JE. A Dynamically Weighted Constrained Complete Active Space Ansatz for Constructing Multiple Potential Energy Surfaces within the Anderson-Holstein Model. J Chem Theory Comput 2023. [PMID: 37399506 DOI: 10.1021/acs.jctc.3c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
We derive and implement the necessary equations for solving a dynamically weighted, state-averaged constrained CASSCF(2,2) wave function describing a molecule on a metal surface, where we constrain the overlap between two active orbitals and the impurity atomic orbitals to be a finite number. We show that a partial constraint is far more robust than a full constraint. We further calculate the system-bath electronic couplings that arise because, near a metal, there is a continuum (rather than discrete) number of electronic states. This approach should be very useful for simulating heterogeneous electron transfer and electrochemical dynamics going forward.
Collapse
Affiliation(s)
- Junhan Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Chen J, Subotnik J. Nonadiabatic Potential Energy Surfaces for a Molecule on a Surface as Found by Constrained Complete Active Space Theory. J Phys Chem Lett 2023:5665-5673. [PMID: 37311218 DOI: 10.1021/acs.jpclett.3c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In order to study electron-transfer mediated chemical processes on a metal surface, one requires not one but two potential energy surfaces (one ground state and one excited state) as in Marcus theory. In this letter, we report that a novel, dynamically weighted, state-averaged constrained CASSCF(2,2) (DW-SA-cCASSCF(2,2)) can produce such surfaces for the Anderson impurity model. Both ground and excited state potentials are smooth, they incorporate states with a charge transfer character, and the accuracy of the ground state surface can be verified for some model problems by renormalization group theory. Future development of gradients and nonadiabatic derivative couplings should allow for the study of nonadiabatic dynamics for molecules near metal surfaces.
Collapse
Affiliation(s)
- Junhan Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
11
|
Krüger K, Wang Y, Tödter S, Debbeler F, Matveenko A, Hertl N, Zhou X, Jiang B, Guo H, Wodtke AM, Bünermann O. Hydrogen atom collisions with a semiconductor efficiently promote electrons to the conduction band. Nat Chem 2023; 15:326-331. [PMID: 36411362 PMCID: PMC9986106 DOI: 10.1038/s41557-022-01085-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022]
Abstract
The Born-Oppenheimer approximation is the keystone of modern computational chemistry and there is wide interest in understanding under what conditions it remains valid. Hydrogen atom scattering from insulator, semi-metal and metal surfaces has helped provide such information. The approximation is adequate for insulators and for metals it fails, but not severely. Here we present hydrogen atom scattering from a semiconductor surface: Ge(111)c(2 × 8). Experiments show bimodal energy-loss distributions revealing two channels. Molecular dynamics trajectories within the Born-Oppenheimer approximation reproduce one channel quantitatively. The second channel transfers much more energy and is absent in simulations. It grows with hydrogen atom incidence energy and exhibits an energy-loss onset equal to the Ge surface bandgap. This leads us to conclude that hydrogen atom collisions at the surface of a semiconductor are capable of promoting electrons from the valence to the conduction band with high efficiency. Our current understanding fails to explain these observations.
Collapse
Affiliation(s)
- Kerstin Krüger
- Institute of Physical Chemistry, Georg-August University, Göttingen, Germany
| | - Yingqi Wang
- Department of Chemistry and Chemical Biology, University of New Mexico, NM, USA
| | - Sophia Tödter
- Institute of Physical Chemistry, Georg-August University, Göttingen, Germany
| | - Felix Debbeler
- Institute of Physical Chemistry, Georg-August University, Göttingen, Germany
| | - Anna Matveenko
- Institute of Physical Chemistry, Georg-August University, Göttingen, Germany
| | - Nils Hertl
- Department of Dynamics at Surfaces, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Xueyao Zhou
- Hefei National Research Center for Physical Science at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| | - Bin Jiang
- Hefei National Research Center for Physical Science at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, NM, USA
| | - Alec M Wodtke
- Institute of Physical Chemistry, Georg-August University, Göttingen, Germany
- Department of Dynamics at Surfaces, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Center of Advanced Studies of Energy Conversion, Georg-August University, Göttingen, Germany
| | - Oliver Bünermann
- Institute of Physical Chemistry, Georg-August University, Göttingen, Germany.
- Department of Dynamics at Surfaces, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany.
- International Center of Advanced Studies of Energy Conversion, Georg-August University, Göttingen, Germany.
| |
Collapse
|
12
|
Lee SW, Jeon B, Lee H, Park JY. Hot Electron Phenomena at Solid-Liquid Interfaces. J Phys Chem Lett 2022; 13:9435-9448. [PMID: 36194546 DOI: 10.1021/acs.jpclett.2c02319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the role of energy dissipation and charge transfer under exothermic chemical reactions on metal catalyst surfaces is important for elucidating the fundamental phenomena at solid-gas and solid-liquid interfaces. Recently, many surface chemistry studies have been conducted on the solid-liquid interface, so correlating electronic excitation in the liquid-phase with the reaction mechanism plays a crucial role in heterogeneous catalysis. In this review, we introduce the detection principle of electron transfer at the solid-liquid interface by developing cutting-edge technologies with metal-semiconductor Schottky nanodiodes. The kinetics of hot electron excitation are well correlated with the reaction rates, demonstrating that the operando method for understanding nonadiabatic interactions is helpful in studying the reaction mechanism of surface molecular processes. In addition to the detection of hot electrons excited by a catalytic reaction, we highlight recent results on how the transfer of the hot electrons influences surface chemical and photoelectrochemical reactions.
Collapse
Affiliation(s)
- Si Woo Lee
- Department of Chemistry Education, Korea National University of Education (KNUE), Chungbuk28173, Republic of Korea
| | - Beomjoon Jeon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon34141, Republic of Korea
| | - Hyosun Lee
- Department of Materials Science and Engineering, University of Seoul, Seoul04066, Republic of Korea
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon34141, Republic of Korea
| |
Collapse
|
13
|
Pradhan CS, Jain A. Detailed Balance and Independent Electron Surface-Hopping Method: The Importance of Decoherence and Correct Calculation of Diabatic Populations. J Chem Theory Comput 2022; 18:4615-4626. [PMID: 35880817 DOI: 10.1021/acs.jctc.2c00320] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We benchmark and improve the independent electron surface-hopping (IESH) method developed by J. C. Tully's group for nonadiabatic simulations near metal surfaces. We have incorporated decoherence within the IESH method as well as implemented a scheme for the accurate calculation of diabatic populations. We benchmark the original IESH method with the above inclusions for a model system to calculate rate constants and long-time populations. The original IESH method fails to capture the detailed balance for some of the parameters, which is corrected with the inclusion of decoherence and accurate calculation of diabatic populations. Total rate constants are well captured both within the original IESH method as well as within our modified IESH.
Collapse
Affiliation(s)
- Chinmay S Pradhan
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Amber Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
14
|
Kavokine N, Bocquet ML, Bocquet L. Fluctuation-induced quantum friction in nanoscale water flows. Nature 2022; 602:84-90. [PMID: 35110760 DOI: 10.1038/s41586-021-04284-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/25/2021] [Indexed: 11/09/2022]
Abstract
The flow of water in carbon nanochannels has defied understanding thus far1, with accumulating experimental evidence for ultra-low friction, exceptionally high water flow rates and curvature-dependent hydrodynamic slippage2-5. In particular, the mechanism of water-carbon friction remains unknown6, with neither current theories7 nor classical8,9 or ab initio molecular dynamics simulations10 providing satisfactory rationalization for its singular behaviour. Here we develop a quantum theory of the solid-liquid interface, which reveals a new contribution to friction, due to the coupling of charge fluctuations in the liquid to electronic excitations in the solid. We expect that this quantum friction, which is absent in Born-Oppenheimer molecular dynamics, is the dominant friction mechanism for water on carbon-based materials. As a key result, we demonstrate a marked difference in quantum friction between the water-graphene and water-graphite interface, due to the coupling of water Debye collective modes with a thermally excited plasmon specific to graphite. This suggests an explanation for the radius-dependent slippage of water in carbon nanotubes4, in terms of the electronic excitations of the nanotubes. Our findings open the way for quantum engineering of hydrodynamic flows through the electronic properties of the confining wall.
Collapse
Affiliation(s)
- Nikita Kavokine
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France. .,Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA.
| | - Marie-Laure Bocquet
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Universités, CNRS, Paris, France
| | - Lydéric Bocquet
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
15
|
Sun G, Sautet P. Active Site Fluxional Restructuring as a New Paradigm in Triggering Reaction Activity for Nanocluster Catalysis. Acc Chem Res 2021; 54:3841-3849. [PMID: 34582175 DOI: 10.1021/acs.accounts.1c00413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rationale of the catalytic activity observed in experiments is a crucial task in fundamental catalysis studies. Efficient catalyst design relies on an accurate understanding of the origin of the activity at the atomic level. Theoretical studies have been widely developed to reach such a fundamental atomic scale understanding of catalytic activity. Current theories ascribe the catalytic activity to the geometric and electronic structure of the active site, in which the geometrical and electronic structure effects are derived from the equilibrium geometry of active sites characterizing the static property of the catalyst; however catalysts, especially in the form of nanoclusters, may present fluxional and dynamic structure under reaction conditions, and the effect of this fluxional behavior is not yet widely recognized. Therefore, this Account will focus on the fluxionality of the active sites, which is driven by thermal fluctuations under finite temperature.Under reaction conditions, nanocluster catalysts can readily restructure, either being promoted to another metastable isomer (named as plastic fluxionality) or presenting ample deformations around their equilibrium geometry (named as elastic fluxionality). This Account summarizes our recent studies on the fluxionality of the nanoclusters and how plastic and elastic fluxionalities play roles in highly efficient reaction pathways. Our results show that the low energy metastable isomers formed by plastic fluxionality can manifest high reactivity despite their minor occurrence probability in the mixture of catalyst isomers. In the end, the highly active metastable isomer may dominate the total observed reactivity. In addition, the isomerization between the global minimum structure and the highly active metastable isomer can be a central step in catalytic transformations in order to circumvent some difficult reaction steps and may govern the overall mechanism. In addition, the thermal fluctuation driven elastic fluxionality is also found to play a key role, complementary to plastic fluxionality. The elastic fluxionality creates substantial structural deformations of the active site, and these deformed geometries enable low activation energies and high catalytic activity, which cannot be found from the static equilibrium geometry of the catalyst. A dedicated global activity search algorithm is proposed to search for the optimal reaction pathway on fluxional nanoclusters. In summary, our studies demonstrate that thermal-driven fluxionality provides a different paradigm for understanding the high activity of nanoclusters under reaction conditions beyond the static description of geometric and electronic structure. We first summarize our previous results and then provide a perspective for further studies on how to investigate and take the advantage of the fluxional geometry of nanoclusters. We will defend in this Account that the static picture for the active site is not complete and might miss critical reaction pathways that are highly efficient and only open after thermally induced restructuring of the active site.
Collapse
Affiliation(s)
- Geng Sun
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
16
|
Westermayr J, Marquetand P. Machine Learning for Electronically Excited States of Molecules. Chem Rev 2021; 121:9873-9926. [PMID: 33211478 PMCID: PMC8391943 DOI: 10.1021/acs.chemrev.0c00749] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/11/2022]
Abstract
Electronically excited states of molecules are at the heart of photochemistry, photophysics, as well as photobiology and also play a role in material science. Their theoretical description requires highly accurate quantum chemical calculations, which are computationally expensive. In this review, we focus on not only how machine learning is employed to speed up such excited-state simulations but also how this branch of artificial intelligence can be used to advance this exciting research field in all its aspects. Discussed applications of machine learning for excited states include excited-state dynamics simulations, static calculations of absorption spectra, as well as many others. In order to put these studies into context, we discuss the promises and pitfalls of the involved machine learning techniques. Since the latter are mostly based on quantum chemistry calculations, we also provide a short introduction into excited-state electronic structure methods and approaches for nonadiabatic dynamics simulations and describe tricks and problems when using them in machine learning for excited states of molecules.
Collapse
Affiliation(s)
- Julia Westermayr
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Data
Science @ Uni Vienna, University of Vienna, Währinger Strasse 29, 1090 Vienna, Austria
| |
Collapse
|
17
|
Abstract
Electronically excited states of molecules are at the heart of photochemistry, photophysics, as well as photobiology and also play a role in material science. Their theoretical description requires highly accurate quantum chemical calculations, which are computationally expensive. In this review, we focus on not only how machine learning is employed to speed up such excited-state simulations but also how this branch of artificial intelligence can be used to advance this exciting research field in all its aspects. Discussed applications of machine learning for excited states include excited-state dynamics simulations, static calculations of absorption spectra, as well as many others. In order to put these studies into context, we discuss the promises and pitfalls of the involved machine learning techniques. Since the latter are mostly based on quantum chemistry calculations, we also provide a short introduction into excited-state electronic structure methods and approaches for nonadiabatic dynamics simulations and describe tricks and problems when using them in machine learning for excited states of molecules.
Collapse
Affiliation(s)
- Julia Westermayr
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Data Science @ Uni Vienna, University of Vienna, Währinger Strasse 29, 1090 Vienna, Austria
| |
Collapse
|
18
|
Lecroart L, Hertl N, Dorenkamp Y, Jiang H, Kitsopoulos TN, Kandratsenka A, Bünermann O, Wodtke AM. Adsorbate modification of electronic nonadiabaticity: H atom scattering from p(2 × 2) O on Pt(111). J Chem Phys 2021; 155:034702. [PMID: 34293879 DOI: 10.1063/5.0058789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report inelastic differential scattering experiments for energetic H and D atoms colliding at a Pt(111) surface with and without adsorbed O atoms. Dramatically, more energy loss is seen for scattering from the Pt(111) surface compared to p(2 × 2) O on Pt(111), indicating that O adsorption reduces the probability of electron-hole pair (EHP) excitation. We produced a new full-dimensional potential energy surface for H interaction with O/Pt that reproduces density functional theory energies accurately. We then attempted to model the EHP excitation in H/D scattering with molecular dynamics simulations employing the electronic density information from the Pt(111) to calculate electronic friction at the level of the local density friction approximation (LDFA). This approach, which assumes that O atoms simply block the Pt atom from the approaching H atom, fails to reproduce experiment due to the fact that the effective collision cross section of the O atom is only 10% of the area of the surface unit cell. An empirical adiabatic sphere model that reduces electronic nonadiabaticity within an O-Pt bonding length scale of 2.8 Å reproduces experiment well, suggesting that the electronic structure changes induced by chemisorption of O atoms nearly remove the H atom's ability to excite EHPs in the Pt. Alternatives to LDFA friction are needed to account for this adsorbate effect.
Collapse
Affiliation(s)
- Loïc Lecroart
- Department of Dynamics at Surfaces, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Nils Hertl
- Department of Dynamics at Surfaces, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Yvonne Dorenkamp
- Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Hongyan Jiang
- Department of Dynamics at Surfaces, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Theofanis N Kitsopoulos
- Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Alexander Kandratsenka
- Department of Dynamics at Surfaces, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Oliver Bünermann
- Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Alec M Wodtke
- Department of Dynamics at Surfaces, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| |
Collapse
|
19
|
Auerbach DJ, Tully JC, Wodtke AM. Chemical dynamics from the gas‐phase to surfaces. ACTA ACUST UNITED AC 2021. [DOI: 10.1002/ntls.10005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Daniel J. Auerbach
- Institut für physikalische Chemie Georg‐August Universität Göttingen Göttingen Germany
- Abteilung für Dynamik an Oberflächen Max‐Planck‐Institut für biophysikalische Chemie Göttingen Germany
| | - John C. Tully
- Department of Chemistry Yale University New Haven Connecticut USA
| | - Alec M. Wodtke
- Institut für physikalische Chemie Georg‐August Universität Göttingen Göttingen Germany
- Abteilung für Dynamik an Oberflächen Max‐Planck‐Institut für biophysikalische Chemie Göttingen Germany
| |
Collapse
|
20
|
Jin Z, Subotnik JE. Nonadiabatic Dynamics at Metal Surfaces: Fewest Switches Surface Hopping with Electronic Relaxation. J Chem Theory Comput 2021; 17:614-626. [PMID: 33512137 DOI: 10.1021/acs.jctc.0c00997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new scheme is proposed for modeling molecular nonadiabatic dynamics near metal surfaces. The charge-transfer character of such dynamics is exploited to construct an efficient reduced representation for the electronic structure. In this representation, the fewest switches surface hopping (FSSH) approach can be naturally modified to include electronic relaxation (ER). The resulting FSSH-ER method is valid across a wide range of coupling strengths as supported by tests applied to the Anderson-Holstein model for electron transfer. Future work will combine this scheme with ab initio electronic structure calculations.
Collapse
Affiliation(s)
- Zuxin Jin
- Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| | - Joseph E Subotnik
- Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| |
Collapse
|
21
|
Simoni J, Daligault J. Nature of Non-Adiabatic Electron-Ion Forces in Liquid Metals. J Phys Chem Lett 2020; 11:8839-8843. [PMID: 32893639 DOI: 10.1021/acs.jpclett.0c02134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An accurate description of electron-ion interactions in materials is crucial for our understanding of their equilibrium and nonequilibrium properties. Here we assess the properties of frictional forces experienced by ions in noncrystalline metallic systems, including liquid metals and warm dense plasmas, that arise from electronic excitations driven by the nuclear motion due to the presence of a continuum of low-lying electronic states. To this end, we perform detailed ab initio calculations of the full friction tensor that characterizes the set of friction forces. The non-adiabatic electron-ion interactions introduce hydrodynamic couplings between the ionic degrees of freedom, which are sizable between nearest neighbors. The friction tensor is generally inhomogeneous, anisotropic, and nondiagonal, especially at lower densities.
Collapse
Affiliation(s)
- Jacopo Simoni
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jérôme Daligault
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
22
|
Abstract
Dynamics at molecule-metal interfaces are a subject of intense current interest and come in many different flavors of experiments: gas-phase scattering, chemisorption, electrochemistry, nanojunction transport, and heterogeneous catalysis, to name a few. These dynamics involve nuclear degrees of freedom entangled with many electronic degrees of freedom (in the metal), and as such there is always the possibility for nonadiabatic phenomena to appear: the nuclei do not necessarily need to move slower than the electrons to break the Born-Oppenheimer (BO) approximation. In this Feature Article, we review a set of dynamical methods developed recently to deal with such nonadiabatic phenomena at a metal surface, methods that serve as alternatives to Tully's independent electron surface hopping (IESH) model. In the weak molecule-metal coupling regime, a classical master equation (CME) can be derived and a simple surface hopping approach is proposed to propagate nuclear and electronic dynamics stochastically. In the strong molecule-metal interaction regime, a Fokker-Planck equation can be derived for the nuclear dynamics, with electronic DoFs incorporated into the overall friction and random force. Lastly, a broadened classical master equation (BCME) can interpolate between the weak and strong molecule-metal interactions. Here, we briefly review these methods and the relevant benchmarking data, showing in particular how the methods can be used to calculate nonequilibrium transport properties. We highlight several open questions and pose several avenues for future study.
Collapse
Affiliation(s)
- Wenjie Dou
- Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Joseph E Subotnik
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
23
|
Erpenbeck A, Thoss M. Hierarchical quantum master equation approach to vibronic reaction dynamics at metal surfaces. J Chem Phys 2019; 151:191101. [DOI: 10.1063/1.5128206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- A. Erpenbeck
- Institute of Physics, Albert-Ludwig University Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - M. Thoss
- Institute of Physics, Albert-Ludwig University Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| |
Collapse
|
24
|
Cremers T, Chefdeville S, Bakker JM, Leo Meerts W, van de Meerakker SYT. Direct excitation of the spin-orbit forbidden X2π 3/2 ← X2π 1/2 transition in NO using the intra-cavity free electron laser FELICE. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1589008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Theo Cremers
- Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - Simon Chefdeville
- Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - Joost M. Bakker
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Nijmegen, Netherlands
| | - W. Leo Meerts
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Nijmegen, Netherlands
| | | |
Collapse
|
25
|
Yin R, Zhang Y, Jiang B. Strong Vibrational Relaxation of NO Scattered from Au(111): Importance of the Adiabatic Potential Energy Surface. J Phys Chem Lett 2019; 10:5969-5974. [PMID: 31538787 DOI: 10.1021/acs.jpclett.9b01806] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Experimental observations of multiquantum relaxation of highly vibrationally excited NO scattering from Au(111) are a benchmark for the breakdown of the Born-Oppenheimer approximation in molecule-surface systems. This remarkable vibrational inelasticity was long thought to be almost exclusively mediated by electron transfer; however, no theories have quantitatively reproduced various experimental data. This was suggested to be due to errors in the adiabatic potential energy surface (PES) used in those studies. Here, we investigate electronically adiabatic molecular dynamics of this system with a globally accurate high-dimensional PES that is newly developed with neural networks from first principles. The NO vibrational energy loss is much larger than that on the earlier adiabatic PES. Additionally, the translational inelasticity and translational energy dependence of vibrational inelasticity are also more accurately reproduced. There is reason to be optimistic that electronically nonadiabatic theories using this adiabatic PES as a starting point might accurately reproduce experimental results on this important system.
Collapse
Affiliation(s)
- Rongrong Yin
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Yaolong Zhang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
26
|
Jin Z, Subotnik JE. A practical ansatz for evaluating the electronic friction tensor accurately, efficiently, and in a nearly black-box format. J Chem Phys 2019; 150:164105. [PMID: 31042890 DOI: 10.1063/1.5085683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is well-known that under conditions of fast electronic equilibration and weak nonadiabaticity, nonadiabatic effects induced by electron-hole pair excitations can be partly incorporated through a frictional force. However, ab initio computation of the electronic friction tensor suffers from numerical instability and usually demands a convergence check. In this study, we present an efficient and accurate interpolation method for computing the electronic friction tensor in a nearly black-box manner as appropriate for molecular dynamics. In almost all cases, our method agrees quite well with the exact friction tensor which is available for several quadratic Hamiltonians. As such, we outperform more conventional approaches that are based on the introduction of a broadening parameter. Future work will implement this interpolation approach within ab initio software packages.
Collapse
Affiliation(s)
- Zuxin Jin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
27
|
Li J, Zhang Y, Zheng J. Intermolecular energy flows between surface molecules on metal nanoparticles. Phys Chem Chem Phys 2019; 21:4240-4245. [PMID: 30747170 DOI: 10.1039/c8cp05932b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three model systems are designed to investigate energy transport between molecules on metal nanoparticle surfaces. Energy is rapidly transferred from one carbon monoxide (CO) molecule to another CO molecule or an organic molecule on adjacent surface sites of 2 nm Pt particles within a few picoseconds. On the contrary, energy flow from a surface organic molecule to an adjacent CO molecule is significantly slower and, in fact, within experimental sensitivity and uncertainty the transfer is not observed. The energy transport on particle surfaces (about 2 km s-1) is almost ten times faster than inside a molecule (200 m s-1). The seemingly perplexing observations can be well explained by the combination of electron/vibration and vibration/vibration coupling mechanisms, which mediate molecular energy dynamics on metal nanoparticle surfaces: the strong electron/vibration coupling rapidly converts CO vibrational energy into heat that can be immediately sensed by nearby molecules; but the vibration/vibration coupling dissipates the vibrational excitation in the organic molecule as low-frequency intramolecular vibrations that may or may not couple to surface electronic motions.
Collapse
Affiliation(s)
- Jiebo Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | | | | |
Collapse
|
28
|
Zhang Y, Maurer RJ, Guo H, Jiang B. Hot-electron effects during reactive scattering of H 2 from Ag(111): the interplay between mode-specific electronic friction and the potential energy landscape. Chem Sci 2019; 10:1089-1097. [PMID: 30774906 PMCID: PMC6346630 DOI: 10.1039/c8sc03955k] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/07/2018] [Indexed: 01/29/2023] Open
Abstract
The breakdown of the Born-Oppenheimer approximation gives rise to nonadiabatic effects in gas-surface reactions at metal surfaces. However, for a given reaction, it remains unclear which factors quantitatively determine whether these effects measurably contribute to surface reactivity in catalysis and photo/electrochemistry. Here, we systematically investigate hot electron effects during H2 scattering from Ag(111) using electronic friction theory. We combine first-principles calculations of tensorial friction by time-dependent perturbation theory based on density functional theory and an analytical neural network representation, to overcome the limitations of existing approximations and explicitly simulate mode-specific nonadiabatic energy loss during molecular dynamics. Despite sizable hot-electron-induced energy loss, no measurable nonadiabatic effects can be found for H2 scattering on Ag(111). This is in stark contrast to previous reports for vibrationally excited H2 scattering on Cu(111). By detailed analysis of the two systems, we attribute this discrepancy to a subtle interplay between the magnitude of electronic friction along intramolecular vibration and the shape of the potential energy landscape that controls the molecular velocity at impact. On the basis of this characterization, we offer guidance for the search of highly nonadiabatic surface reactions.
Collapse
Affiliation(s)
- Yaolong Zhang
- Hefei National Laboratory for Physical Science at the Microscale , Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| | - Reinhard J Maurer
- Department of Chemistry and Centre for Scientific Computing , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK .
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , USA
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale , Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| |
Collapse
|
29
|
Miao G, Ouyang W, Subotnik J. A comparison of surface hopping approaches for capturing metal-molecule electron transfer: A broadened classical master equation versus independent electron surface hopping. J Chem Phys 2019; 150:041711. [PMID: 30709317 DOI: 10.1063/1.5050235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Within a generalized Anderson-Holstein model, we investigate electron transfer rates using two different surface hopping algorithms: a broadened classical master equation (BCME) and independent electron surface hopping (IESH). We find that for large enough bandwidth and density of one electron states, and in the presence of external friction, the IESH results converge to the BCME results for impurity-bath model systems, recovering both relaxation rates and equilibrium populations. Without external friction, however, the BCME and IESH results can strongly disagree, and preliminary evidence suggests that IESH does not always recover the correct equilibrium state. Finally, we also demonstrate that adding an electronic thermostat to IESH does help drive the metallic substrate to the correct equilibrium state, but this improvement can sometimes come at the cost of worse short time dynamics. Overall, our results should be of use for all computational chemists looking to model either gas phase scattering or electrochemical dynamics at a metal interface.
Collapse
Affiliation(s)
- Gaohan Miao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Wenjun Ouyang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
30
|
Maurer RJ, Zhang Y, Guo H, Jiang B. Hot electron effects during reactive scattering of H2 from Ag(111): assessing the sensitivity to initial conditions, coupling magnitude, and electronic temperature. Faraday Discuss 2019; 214:105-121. [DOI: 10.1039/c8fd00140e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use an analytical representation of electronic friction for H2 on Ag(111) to assess the validity and robustness of the MDEF method based on TDPT.
Collapse
Affiliation(s)
- Reinhard J. Maurer
- Department of Chemistry
- Centre for Scientific Computing
- University of Warwick
- Coventry
- UK
| | - Yaolong Zhang
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| | - Hua Guo
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
31
|
Abstract
Electronic friction is a correction to the Born-Oppenheimer approximation, whereby nuclei in motion experience a drag in the presence of a manifold of electronic states. The notion of electronic friction has a long history and has been (re-)discovered in the context of a wide variety of different chemical and physical systems including, but not limited to, surface scattering events, surface reactions or chemisorption, electrochemistry, and conduction through molecular-(or nano-) junctions. Over the years, quite a few different forms of electronic friction have been offered in the literature. In this perspective, we briefly review these developments of electronic friction, highlighting the fact that we can now isolate a single, unifying form for (Markovian) electronic friction. We also focus on the role of electron-electron interactions for understanding frictional effects and offer our thoughts on the strengths and weaknesses of using electronic friction to model dynamics in general.
Collapse
Affiliation(s)
- Wenjie Dou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
32
|
Tamm A, Caro M, Caro A, Samolyuk G, Klintenberg M, Correa AA. Langevin Dynamics with Spatial Correlations as a Model for Electron-Phonon Coupling. PHYSICAL REVIEW LETTERS 2018; 120:185501. [PMID: 29775371 DOI: 10.1103/physrevlett.120.185501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/16/2018] [Indexed: 06/08/2023]
Abstract
Stochastic Langevin dynamics has been traditionally used as a tool to describe nonequilibrium processes. When utilized in systems with collective modes, traditional Langevin dynamics relaxes all modes indiscriminately, regardless of their wavelength. We propose a generalization of Langevin dynamics that can capture a differential coupling between collective modes and the bath, by introducing spatial correlations in the random forces. This allows modeling the electronic subsystem in a metal as a generalized Langevin bath endowed with a concept of locality, greatly improving the capabilities of the two-temperature model. The specific form proposed here for the spatial correlations produces a physical wave-vector and polarization dependency of the relaxation produced by the electron-phonon coupling in a solid. We show that the resulting model can be used for describing the path to equilibration of ions and electrons and also as a thermostat to sample the equilibrium canonical ensemble. By extension, the family of models presented here can be applied in general to any dense system, solids, alloys, and dense plasmas. As an example, we apply the model to study the nonequilibrium dynamics of an electron-ion two-temperature Ni crystal.
Collapse
Affiliation(s)
- A Tamm
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - M Caro
- Department of Mechanical Engineering, Virginia Polytechnic Institute, Arlington, Virginia 22033, USA
| | - A Caro
- George Washington University, Ashburn, Virginia 20147, USA
| | - G Samolyuk
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - M Klintenberg
- Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| | - A A Correa
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
33
|
Spiering P, Meyer J. Testing Electronic Friction Models: Vibrational De-excitation in Scattering of H 2 and D 2 from Cu(111). J Phys Chem Lett 2018; 9:1803-1808. [PMID: 29528648 PMCID: PMC5890313 DOI: 10.1021/acs.jpclett.7b03182] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/12/2018] [Indexed: 05/29/2023]
Abstract
At present, molecular dynamics with electronic friction (MDEF) is the workhorse model to go beyond the Born-Oppenheimer approximation in modeling dynamics of molecules at metal surfaces. Concomitant friction coefficients can be calculated with either the local density friction approximation (LDFA) or orbital-dependent friction (ODF), which, unlike LDFA, accounts for anisotropy while relying on other approximations. Due to the computational cost of ODF, extensive high-dimensional MDEF trajectory calculations of experimentally measurable observables have hitherto only been performed based on LDFA. We overcome this limitation with a continuous neural-network-based representation. In our first application to the scattering of vibrationally excited H2 and D2 from Cu(111), we predict up to three times higher vibrational de-excitation probabilities with ODF than with LDFA. These results indicate that anisotropic electronic friction can be important for specific molecular observables. Future experiments can test for this "fingerprint" of different approximations underlying state-of-the-art MDEF.
Collapse
Affiliation(s)
- Paul Spiering
- Leiden Institute of Chemistry,
Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jörg Meyer
- Leiden Institute of Chemistry,
Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
34
|
Ge A, Rudshteyn B, Zhu J, Maurer RJ, Batista VS, Lian T. Electron-Hole-Pair-Induced Vibrational Energy Relaxation of Rhenium Catalysts on Gold Surfaces. J Phys Chem Lett 2018; 9:406-412. [PMID: 29227669 DOI: 10.1021/acs.jpclett.7b02885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A combination of time-resolved vibrational spectroscopy and density functional theory techniques have been applied to study the vibrational energy relaxation dynamics of the Re(4,4'-dicyano-2,2'-bipyridine)(CO)3Cl (Re(CO)3Cl) catalyst for CO2 to CO conversion bound to gold surfaces. The kinetics of vibrational relaxation exhibits a biexponential decay including an ultrafast initial relaxation and complete recovery of the ground vibrational state. Ab initio molecular dynamics simulations and time-dependent perturbation theory reveal the former to be due to vibrational population exchange between CO stretching modes and the latter to be a combination of intramolecular vibrational relaxation (IVR) and electron-hole pair (EHP)-induced energy transfer into the gold substrate. EHP-induced energy transfer from the Re(CO)3Cl adsorbate into the gold surface occurs on the same time scale as IVR of Re(CO)3Cl in aprotic solvents. Therefore, it is expected to be particularly relevant to understanding the reduced catalytic activity of the homogeneous catalyst when anchored to a metal surface.
Collapse
Affiliation(s)
- Aimin Ge
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Benjamin Rudshteyn
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
- Yale Energy Sciences Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Jingyi Zhu
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Reinhard J Maurer
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Victor S Batista
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
- Yale Energy Sciences Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| |
Collapse
|
35
|
Coffman AJ, Subotnik JE. When is electronic friction reliable for dynamics at a molecule–metal interface? Phys Chem Chem Phys 2018; 20:9847-9854. [DOI: 10.1039/c7cp08249e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conditions under which electronic friction dynamics are applicable in the nonadiabatic limit are determined by examination of three model systems.
Collapse
Affiliation(s)
- Alec J. Coffman
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | | |
Collapse
|
36
|
Miao G, Dou W, Subotnik J. Vibrational relaxation at a metal surface: Electronic friction versus classical master equations. J Chem Phys 2017; 147:224105. [DOI: 10.1063/1.5000237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gaohan Miao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Wenjie Dou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
37
|
Dou W, Miao G, Subotnik JE. Born-Oppenheimer Dynamics, Electronic Friction, and the Inclusion of Electron-Electron Interactions. PHYSICAL REVIEW LETTERS 2017; 119:046001. [PMID: 29341745 DOI: 10.1103/physrevlett.119.046001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 06/07/2023]
Abstract
We present a universal expression for the electronic friction as felt by a set of classical nuclear degrees of freedom (DOFs) coupled to a manifold of quantum electronic DOFs; no assumptions are made regarding the nature of the electronic Hamiltonian and electron-electron repulsions are allowed. Our derivation is based on a quantum-classical Liouville equation for the coupled electronic-nuclear motion, followed by an adiabatic approximation whereby electronic transitions are assumed to equilibrate faster than nuclear movement. The resulting form of friction is completely general, but does reduce to previously published expressions for the quadratic Hamiltonian (i.e., Hamiltonians without electronic correlation). At equilibrium, the second fluctuation-dissipation theorem is satisfied and the frictional matrix is symmetric. To demonstrate the importance of electron-electron correlation, we study electronic friction within the Anderson-Holstein model, where a proper treatment of electron-electron interactions shows signatures of a Kondo resonance and a mean-field treatment is completely inadequate.
Collapse
Affiliation(s)
- Wenjie Dou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Gaohan Miao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
38
|
Maurer RJ, Jiang B, Guo H, Tully JC. Mode Specific Electronic Friction in Dissociative Chemisorption on Metal Surfaces: H_{2} on Ag(111). PHYSICAL REVIEW LETTERS 2017; 118:256001. [PMID: 28696728 DOI: 10.1103/physrevlett.118.256001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Indexed: 05/11/2023]
Abstract
Electronic friction and the ensuing nonadiabatic energy loss play an important role in chemical reaction dynamics at metal surfaces. Using molecular dynamics with electronic friction evaluated on the fly from density functional theory, we find strong mode dependence and a dominance of nonadiabatic energy loss along the bond stretch coordinate for scattering and dissociative chemisorption of H_{2} on the Ag(111) surface. Exemplary trajectories with varying initial conditions indicate that this mode specificity translates into modulated energy loss during a dissociative chemisorption event. Despite minor nonadiabatic energy loss of about 5%, the directionality of friction forces induces dynamical steering that affects individual reaction outcomes, specifically for low-incidence energies and vibrationally excited molecules. Mode-specific friction induces enhanced loss of rovibrational rather than translational energy and will be most visible in its effect on final energy distributions in molecular scattering experiments.
Collapse
Affiliation(s)
- Reinhard J Maurer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Bin Jiang
- Department of Chemical Physics, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - John C Tully
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
39
|
Ghalgaoui A, Ouvrard A, Wang J, Carrez S, Zheng W, Bourguignon B. Electron to Adsorbate Energy Transfer in Nanoparticles: Adsorption Site, Size, and Support Matter. J Phys Chem Lett 2017; 8:2666-2671. [PMID: 28558245 DOI: 10.1021/acs.jpclett.7b00698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Confinement of hot electrons in metal nanoparticles (NPs) is expected to lead to increased reactivity in heterogeneous catalysis. NP size as well as support may influence molecule-NP coupling. Here, we use ultrafast nonlinear vibrational spectroscopy to follow energy transfer from hot electrons generated in Pd NP/MgO/Ag(100) to chemisorbed CO. Photoexcitation and photodesorption occur on an ultrashort time scale and are selective according to adsorption site. When the MgO layer is thick enough, it becomes NP size-dependent. Hot electron confinement within NPs is unfavorable for photodesorption, presumably because its dominant effect is to increase relaxation to phonons. An avenue of research is open where NP size and support thickness, photon energy, and molecular electronic structure will be tuned to obtain either molecular stability or reactivity in response to photon excitation.
Collapse
Affiliation(s)
- Ahmed Ghalgaoui
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay , F-91405 Orsay, France
| | - Aimeric Ouvrard
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay , F-91405 Orsay, France
| | - Jijin Wang
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay , F-91405 Orsay, France
| | - Serge Carrez
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay , F-91405 Orsay, France
| | - Wanquan Zheng
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay , F-91405 Orsay, France
| | - Bernard Bourguignon
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay , F-91405 Orsay, France
| |
Collapse
|
40
|
Dou W, Subotnik JE. A Generalized Surface Hopping Algorithm To Model Nonadiabatic Dynamics near Metal Surfaces: The Case of Multiple Electronic Orbitals. J Chem Theory Comput 2017; 13:2430-2439. [DOI: 10.1021/acs.jctc.7b00094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenjie Dou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
41
|
Dou W, Subotnik JE. Electronic friction near metal surfaces: A case where molecule-metal couplings depend on nuclear coordinates. J Chem Phys 2017. [DOI: 10.1063/1.4965823] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wenjie Dou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
42
|
Rittmeyer SP, Ward DJ, Gütlein P, Ellis J, Allison W, Reuter K. Energy Dissipation during Diffusion at Metal Surfaces: Disentangling the Role of Phonons versus Electron-Hole Pairs. PHYSICAL REVIEW LETTERS 2016; 117:196001. [PMID: 27858423 DOI: 10.1103/physrevlett.117.196001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Indexed: 06/06/2023]
Abstract
Helium spin echo experiments combined with ab initio based Langevin molecular dynamics simulations are used to quantify the adsorbate-substrate coupling during the thermal diffusion of Na atoms on Cu(111). An analysis of trajectories within the local density friction approximation allows the contribution from electron-hole pair excitations to be separated from the total energy dissipation. Despite the minimal electronic friction coefficient of Na and the relatively small mass mismatch to Cu promoting efficient phononic dissipation, about (20±5)% of the total energy loss is attributable to electronic friction. The results suggest a significant role of electronic nonadiabaticity in the rapid thermalization generally relied upon in adiabatic diffusion theories.
Collapse
Affiliation(s)
- Simon P Rittmeyer
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - David J Ward
- Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
| | - Patrick Gütlein
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - John Ellis
- Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
| | - William Allison
- Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| |
Collapse
|
43
|
Askerka M, Maurer RJ, Batista VS, Tully JC. Role of Tensorial Electronic Friction in Energy Transfer at Metal Surfaces. PHYSICAL REVIEW LETTERS 2016; 116:217601. [PMID: 27284673 DOI: 10.1103/physrevlett.116.217601] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 05/11/2023]
Abstract
An accurate description of nonadiabatic energy relaxation is crucial for modeling atomistic dynamics at metal surfaces. Interfacial energy transfer due to electron-hole pair excitations coupled to motion of molecular adsorbates is often simulated by Langevin molecular dynamics with electronic friction. Here, we present calculations of the full electronic friction tensor by using first order time-dependent perturbation theory at the density functional theory level. We show that the friction tensor is generally anisotropic and nondiagonal, as found for hydrogen atom on Pd(100) and CO on Cu(100) surfaces. This implies that electron-hole pair induced nonadiabatic coupling at metal surfaces leads to friction-induced mode coupling, therefore, opening an additional channel for energy redistribution. We demonstrate the robustness and accuracy of our results by direct comparison to established methods and experimental data.
Collapse
Affiliation(s)
- Mikhail Askerka
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Reinhard J Maurer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - John C Tully
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
44
|
Yonehara T, Takatsuka K. Nonadiabtic electron dynamics in densely quasidegenerate states in highly excited boron cluster. J Chem Phys 2016; 144:164304. [DOI: 10.1063/1.4947302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Takehiro Yonehara
- Department of Basic Science, The University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| | - Kazuo Takatsuka
- Department of Basic Science, The University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| |
Collapse
|
45
|
Two distinctive energy migration pathways of monolayer molecules on metal nanoparticle surfaces. Nat Commun 2016; 7:10749. [PMID: 26883665 PMCID: PMC4757789 DOI: 10.1038/ncomms10749] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/15/2016] [Indexed: 11/25/2022] Open
Abstract
Energy migrations at metal nanomaterial surfaces are fundamentally important to heterogeneous reactions. Here we report two distinctive energy migration pathways of monolayer adsorbate molecules on differently sized metal nanoparticle surfaces investigated with ultrafast vibrational spectroscopy. On a 5 nm platinum particle, within a few picoseconds the vibrational energy of a carbon monoxide adsorbate rapidly dissipates into the particle through electron/hole pair excitations, generating heat that quickly migrates on surface. In contrast, the lack of vibration-electron coupling on approximately 1 nm particles results in vibrational energy migration among adsorbates that occurs on a twenty times slower timescale. Further investigations reveal that the rapid carbon monoxide energy relaxation is also affected by the adsorption sites and the nature of the metal but to a lesser extent. These findings reflect the dependence of electron/vibration coupling on the metallic nature, size and surface site of nanoparticles and its significance in mediating energy relaxations and migrations on nanoparticle surfaces. Energy migrations at metal nanomaterial surfaces are fundamentally important to heterogeneous reactions. Here, the authors employ ultrafast vibrational spectroscopy to show two distinctive energy migration pathways of monolayer adsorbate molecules on differently sized metal nanoparticle surfaces.
Collapse
|
46
|
Diesing D, Hasselbrink E. Chemical energy dissipation at surfaces under UHV and high pressure conditions studied using metal–insulator–metal and similar devices. Chem Soc Rev 2016; 45:3747-55. [DOI: 10.1039/c5cs00932d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thin film metal heterostructures have allowed new light to be shed on the dissipation of chemical energy into electric excitations on metal surfaces.
Collapse
Affiliation(s)
- Detlef Diesing
- Fakultät f. Chemie
- Universität Duisburg-Essen
- 45141 Essen
- Germany
| | | |
Collapse
|
47
|
Rittmeyer SP, Meyer J, Juaristi JI, Reuter K. Electronic Friction-Based Vibrational Lifetimes of Molecular Adsorbates: Beyond the Independent-Atom Approximation. PHYSICAL REVIEW LETTERS 2015; 115:046102. [PMID: 26252696 DOI: 10.1103/physrevlett.115.046102] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Indexed: 05/11/2023]
Abstract
We assess the accuracy of vibrational damping rates of diatomic adsorbates on metal surfaces as calculated within the local-density friction approximation (LDFA). An atoms-in-molecules (AIM) type charge partitioning scheme accounts for intramolecular contributions and overcomes the systematic underestimation of the nonadiabatic losses obtained within the prevalent independent-atom approximation. The quantitative agreement obtained with theoretical and experimental benchmark data suggests the LDFA-AIM scheme as an efficient and reliable approach to account for electronic dissipation in ab initio molecular dynamics simulations of surface chemical reactions.
Collapse
Affiliation(s)
- Simon P Rittmeyer
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Jörg Meyer
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| | - J Iñaki Juaristi
- Departamento de Física de Materiales, Facultad de Químicas, UPV/EHU, Apartado 1072, 20080 San Sebastián, Spain
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
48
|
Engelhart DP, Grätz F, Wagner RJV, Haak H, Meijer G, Wodtke AM, Schäfer T. A new Stark decelerator based surface scattering instrument for studying energy transfer at the gas-surface interface. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:043306. [PMID: 25933854 DOI: 10.1063/1.4918797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report on the design and characterization of a new apparatus for performing quantum-state resolved surface scattering experiments. The apparatus combines optical state-specific molecule preparation with a compact hexapole and a Stark decelerator to prepare carrier gas-free pulses of quantum-state pure CO molecules with velocities controllable between 33 and 1000 m/s with extremely narrow velocity distributions. The ultrahigh vacuum surface scattering chamber includes homebuilt ion and electron detectors, a closed-cycle helium cooled single crystal sample mount capable of tuning surface temperature between 19 and 1337 K, a Kelvin probe for non-destructive work function measurements, a precision leak valve manifold for targeted adsorbate deposition, an inexpensive quadrupole mass spectrometer modified to perform high resolution temperature programmed desorption experiments and facilities to clean and characterize the surface.
Collapse
Affiliation(s)
- Daniel P Engelhart
- Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Fabian Grätz
- Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Roman J V Wagner
- Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Henrik Haak
- Fritz Haber Insitute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Gerard Meijer
- Radboud University, 6500 HC Nijmegen, The Netherlands
| | - Alec M Wodtke
- Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Tim Schäfer
- Institute for Physical Chemistry, Georg-August University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| |
Collapse
|
49
|
Park JY, Baker LR, Somorjai GA. Role of hot electrons and metal-oxide interfaces in surface chemistry and catalytic reactions. Chem Rev 2015; 115:2781-817. [PMID: 25791926 DOI: 10.1021/cr400311p] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jeong Young Park
- †Center for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 305-701, South Korea.,‡Graduate School of EEWS, KAIST, Daejeon 305-701, South Korea
| | - L Robert Baker
- §Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Gabor A Somorjai
- ∥Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,⊥Materials Sciences and Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
50
|
Reimers JR, McKemmish LK, McKenzie RH, Hush NS. Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born–Oppenheimer breakdown corrections. Phys Chem Chem Phys 2015. [DOI: 10.1039/c5cp02238j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Analytical and numerical solutions describing Born–Oppenheimer breakdown in a simple, widely applicable, model depict shortcomings in modern computational methods.
Collapse
Affiliation(s)
- Jeffrey R. Reimers
- International Centre for Quantum and Molecular Structure
- College of Sciences, Shanghai University
- Shanghai 200444
- China
- School of Mathematical and Physical Sciences
| | - Laura K. McKemmish
- Department of Physics and Astronomy
- University College London
- London
- UK
- School of Chemistry
| | - Ross H. McKenzie
- School of Mathematics and Physics
- The University of Queensland
- Australia
| | - Noel S. Hush
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
- School of Molecular Biosciences
| |
Collapse
|