1
|
Mikolaj P, Zamora Yusti B, Nyulászi L, Bakker JM, Höltzl T, Lang SM. CO 2 activation by copper oxide clusters: size, composition, and charge state dependence. Phys Chem Chem Phys 2024; 26:24126-24134. [PMID: 39253781 PMCID: PMC11385096 DOI: 10.1039/d4cp02651a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The interaction of CO2 with copper oxide clusters of different size, composition, and charge is investigated via infrared multiple-photon dissociation (IR-MPD) spectroscopy and density functional theory (DFT) calculations. Laser ablation of a copper target in the presence of an O2/He mixture leads to the preferred formation of oxygen-rich copper oxide cluster cations, CuxOy+ (y > x; x ≤ 8), while the anionic cluster distribution is dominated by stoichiometric (x = y) and oxygen-deficient (y < x; x ≤ 8) species. Subsequent reaction of the clusters with CO2 in a flow tube reactor results in the preferred formation of near-stoichiometric CuxOy(CO2)+/- complexes. IR-MPD spectroscopy of the formed complexes reveals the non-activated binding of CO2 to all cations while CO2 is activated by all anions. The great resemblance of spectra for all sizes investigated demonstrates that CO2 activation is largely independent of cluster size and Cu/O ratio but mainly determined by the cluster charge state. Comparison of the IR-MPD spectra with DFT calculations of the model systems Cu2O4(CO2)- and Cu3O4(CO2)- shows that CO2 activation exclusively results in the formation of a CO3 unit. Subsequent CO2 dissociation to CO appears to be unfavorable due to the instability of CO on the copper oxide clusters indicating that potential hydrogenation reactions will most likely proceed via formate or bicarbonate intermediates.
Collapse
Affiliation(s)
- Pavol Mikolaj
- Institute of Surface Chemistry and Catalysis, University of Ulm, Ulm 89069, Germany.
| | - Barbara Zamora Yusti
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegytem rkp. 3, Budapest-1111, Hungary
| | - László Nyulászi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegytem rkp. 3, Budapest-1111, Hungary
- HUN-REN-BME Computation Driven Chemistry research group, Műegytem rkp. 3, Budapest-1111, Hungary
| | - Joost M Bakker
- Radboud University, Institute of Molecules and Materials, FELIX Laboratory, 6525 ED, Nijmegen, The Netherlands
| | - Tibor Höltzl
- HUN-REN-BME Computation Driven Chemistry research group, Műegytem rkp. 3, Budapest-1111, Hungary
- Furukawa Electric Institute of Technology, Nanomaterials Science Group, Késmárk utca 28/A, Budapest 1158, Hungary.
| | - Sandra M Lang
- Institute of Surface Chemistry and Catalysis, University of Ulm, Ulm 89069, Germany.
| |
Collapse
|
2
|
Aktary M, Alghamdi HS, Ajeebi AM, AlZahrani AS, Sanhoob MA, Aziz MA, Nasiruzzaman Shaikh M. Hydrogenation of CO 2 into Value-added Chemicals Using Solid-Supported Catalysts. Chem Asian J 2024; 19:e202301007. [PMID: 38311592 DOI: 10.1002/asia.202301007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
Reducing CO2 emissions is an urgent global priority. In this context, several mitigation strategies, including CO2 tax and stringent legislation, have been adopted to halt the deterioration of the natural environment. Also, carbon recycling procedures undoubtedly help reduce net emissions into the atmosphere, enhancing sustainability. Utilizing Earth's abundant CO2 to produce high-potential green chemicals and light fuels opens new avenues for the chemical industry. In this context, many attempts have been devoted to converting CO2 as a feedstock into various value-added chemicals, such as CH4, lower methanol, light olefins, gasoline, and higher hydrocarbons, for numerous applications involving various catalytic reactions. Although several CO2-conversion methods have been used, including electrochemical, photochemical, and biological approaches, the hydrogenation method allows the reaction to be tuned to produce the targeted compound without significantly altering infrastructure. This review discusses the numerous hydrogenation routes and their challenges, such as catalyst design, operation, and the combined art of structure-activity relationships for the various product formations.
Collapse
Affiliation(s)
- Mahbuba Aktary
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Huda S Alghamdi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Afnan M Ajeebi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Atif S AlZahrani
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Mohammed A Sanhoob
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
3
|
Reider AM, Szalay M, Reichegger J, Barabás J, Schmidt M, Kappe M, Höltzl T, Scheier P, Lushchikova OV. Spectroscopic investigation of size-dependent CO 2 binding on cationic copper clusters: analysis of the CO 2 asymmetric stretch. Phys Chem Chem Phys 2024; 26:20355-20364. [PMID: 39015096 PMCID: PMC11290062 DOI: 10.1039/d4cp01797h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Photofragmentation spectroscopy, combined with quantum chemical computations, was employed to investigate the position of the asymmetric CO2 stretch in cold, He-tagged Cun[CO2]+ (n = 1-10) and Cun[CO2][H2O]+ (n = 1-7) complexes. A blue shift in the band position was observed compared to the free CO2 molecule for Cun[CO2]+ complexes. Furthermore, this shift was found to exhibit a notable dependence on cluster size, progressively redshifting with increasing cluster size. The computations revealed that the CO2 binding energy is the highest for Cu+ and continuously decreases with increasing cluster size. This dependency could be explained by highlighting the role of polarization in electronic structure, according to energy decomposition analysis. The introduction of water to this complex amplified the redshift of the asymmetric stretch, showing a similar dependency on the cluster size as observed for Cun[CO2]+ complexes.
Collapse
Affiliation(s)
- A M Reider
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| | - M Szalay
- HUN-REN-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest 1111, Hungary
- Furukawa Electric Institute of Technology, Késmárk Utca 28/A, Budapest 1158, Hungary
| | - J Reichegger
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| | - J Barabás
- HUN-REN-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest 1111, Hungary
| | - M Schmidt
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| | - M Kappe
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| | - T Höltzl
- HUN-REN-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest 1111, Hungary
- Furukawa Electric Institute of Technology, Késmárk Utca 28/A, Budapest 1158, Hungary
| | - P Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| | - O V Lushchikova
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.
| |
Collapse
|
4
|
Zhang Z, Ling Z, Ju B, Li G, Yuan Q, Cheng L, Xie H, Jiang L. Observation of the Transition from Triple Bonds to Single Bonds between Ru-Ge Bonding in RuGeO(CO) n- ( n = 3-5). J Phys Chem Lett 2024; 15:6952-6957. [PMID: 38940497 DOI: 10.1021/acs.jpclett.4c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
This work reports the observation and characterization of heterobinuclear transition-metal main-group metal oxide carbonyl complex anions, RuGeO(CO)n- (n = 3-5), by combining mass-selected photoelectron velocity map imaging spectroscopy and quantum chemistry calculations. The experimentally determined vertical electron detachment energy of RuGeO(CO)3- surpasses those of RuGeO(CO)4- and RuGeO(CO)5-, which is attributed to distinctive bonding features. RuGeO(CO)3- manifests one covalent σ and two Ru-to-Ge dative π bonds, contrasting with the sole covalent σ bond present in RuGeO(CO)4- and RuGeO(CO)5-. Unpaired spin density distribution analysis reveals a 17-electron configuration at the Ru center in RuGeO(CO)3- and an 18-electron configuration in RuGeO(CO)4- and RuGeO(CO)5-. This work closes a gap in the quantitative physicochemical characterization of heteronuclear oxide carbonyl complexes, enhancing our insights into catalytic processes of CO/GeO on the metal surface at the molecular level.
Collapse
Affiliation(s)
- Ziheng Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230601, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zicheng Ling
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230601, China
| | - Bangmin Ju
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qinqin Yuan
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230601, China
| | - Longjiu Cheng
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230601, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
5
|
Liu P, Han J, Chen Y, Yu H, Zhou X, Zhang W. Binding Strengths and Orientations in CO 2 Adsorption on Cationic Scandium Oxides: Governing Factor Revealed by a Combined Infrared Spectroscopy and Theoretical Study. J Phys Chem A 2024; 128:3007-3014. [PMID: 38581407 DOI: 10.1021/acs.jpca.4c01562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Carbon dioxide (CO2) adsorption is a critical step to curbing carbon emissions from fossil fuel combustion. Among various options, transition metal oxides have received extensive attention as promising CO2 adsorbents due to their affordability and sustainability for large-scale use. Here, the nature of binding interactions between CO2 molecules and cationic scandium oxides of different sizes, i.e., ScO+, Sc2O2+, and Sc3O4+, is investigated by mass-selective infrared photodissociation spectroscopy combined with quantum chemical calculations. The well-accepted electrostatic considerations failed to provide explanations for the trend in the binding strengths and variations in the binding orientations between CO2 and metal sites of cationic scandium oxides. The importance of orbital interactions in the driving forces for CO2 adsorption on cationic scandium oxides was revealed by energy decomposition analyses. A molecular surface property, known as the local electron attachment energy, is introduced to elucidate the binding affinity and orientation-specific reactivity of cationic scandium oxides upon the CO2 attachment. This study not only reveals the governing factor in the binding behaviors of CO2 adsorption on cationic scandium oxides but also serves as an archetype for predicting and rationalizing favorable binding sites and orientations in extended surface-adsorbate systems.
Collapse
Affiliation(s)
- Pengcheng Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Jia Han
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yan Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Haili Yu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoguo Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Weijun Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
6
|
Yang Y, Wang G, Zhou M. Infrared Spectroscopy of [M(CO 2) n] + (M = Ca, Sr, and Ba; n = 1-4) in the Gas Phase: Solvation-Induced Electron Transfer and Activation of CO 2. J Phys Chem A 2024; 128:618-625. [PMID: 38198125 DOI: 10.1021/acs.jpca.3c08034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Cationic complexes of heavy alkaline earth metal and carbon dioxide [M(CO2)n]+ (M = Ca, Sr, and Ba) are produced by a laser vaporization-supersonic expansion ion source in the gas phase and are studied by infrared photodissociation spectroscopy in conjunction with quantum chemistry calculations. For the n = 1 complexes, the metal-ligand binding arises primarily from the electrostatic interaction with the CO2 ligand bound to the metal (+I) center in an end-on η1-O fashion. The more highly coordinated complexes [M(CO2)n]+ with n ≥ 2 are characterized to involve a [M2+(CO2-)] core ion with the CO2- ligand bound to the metal (+II) center in a bidentate η2-O, O manner. The activation of CO2 in forming a bent CO2- moiety occurs via solvation-induced metal cation-ligand electron transfer reactions. Bonding analyses reveal that the attractive forces between M2+ and CO2- in the core cation come mainly from electrostatic attraction, but the contribution of covalent orbital interactions should not be underestimated. The atomic orbitals of metal dications that are engaged in the orbital interactions are ns and (n - 1)d orbitals.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Songhu Rd. 2005, 200438 Shanghai, China
| | - Guanjun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Songhu Rd. 2005, 200438 Shanghai, China
| | - Mingfei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Songhu Rd. 2005, 200438 Shanghai, China
| |
Collapse
|
7
|
Han J, Liu P, Qiu B, Wang G, Liu S, Zhou X. Observation of inserted oxocarbonyl species in the tantalum cation-mediated activation of carbon dioxide dictated by two-state reactivity. Dalton Trans 2023; 53:171-179. [PMID: 38018569 DOI: 10.1039/d3dt03593j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Reductive activation of carbon dioxide (CO2) has drawn increasing attention as an effective and convenient method to unlock this stable molecule, especially via transition metal-catalyzed reactions. Taking the [TaC4O8]+ ion-molecule complex formed in the laser ablation source as a representative, the reactivity of the tantalum metal cation towards CO2 molecules is explored using infrared photodissociation spectroscopy combined with quantum chemical calculations. The strong absorption in the carbonyl stretching region provides solid evidence for the insertion reactions into CO bonds by the tantalum cation. Two inserted oxocarbonyl products are identified based on the great agreement between the experimental results and simulated infrared spectra of energetically low-lying structures in the singlet and triplet states. The pivotal role of two-state reactivity in driving CO2 activation among three different spin states is rationalized by potential energy surface analysis. Our conclusion provides valuable insight into the intrinsic mechanisms of CO2 activation by the tantalum metal cation, highlighting the affinity of tantalum for CO bond insertion in addition to typical "end-on" binding configurations.
Collapse
Affiliation(s)
- Jia Han
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Pengcheng Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Binglin Qiu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Guanjun Wang
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Shilin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
8
|
Fielicke A. Probing the binding and activation of small molecules by gas-phase transition metal clusters via IR spectroscopy. Chem Soc Rev 2023. [PMID: 37162518 DOI: 10.1039/d2cs00104g] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Isolated transition metal clusters have been established as useful models for extended metal surfaces or deposited metal particles, to improve the understanding of their surface chemistry and of catalytic reactions. For this objective, an important milestone has been the development of experimental methods for the size-specific structural characterization of clusters and cluster complexes in the gas phase. This review focusses on the characterization of molecular ligands, their binding and activation by small transition metal clusters, using cluster-size specific infrared action spectroscopy. A comprehensive overview and a critical discussion of the experimental data available to date is provided, reaching from the initial results obtained using line-tuneable CO2 lasers to present-day studies applying infrared free electron lasers as well as other intense and broadly tuneable IR laser sources.
Collapse
Affiliation(s)
- André Fielicke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany.
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
9
|
Salzburger M, Saragi RT, Wensink FJ, Cunningham EM, Beyer MK, Bakker JM, Ončák M, van der Linde C. Carbon Dioxide and Water Activation by Niobium Trioxide Anions in the Gas Phase. J Phys Chem A 2023; 127:3402-3411. [PMID: 37040467 PMCID: PMC10123662 DOI: 10.1021/acs.jpca.3c01394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Transition metals are important in various industrial applications including catalysis. Due to the current concentration of CO2 in the atmosphere, various ways for its capture and utilization are investigated. Here, we study the activation of CO2 and H2O at [NbO3]- in the gas phase using a combination of infrared multiple photon dissociation spectroscopy and density functional theory calculations. In the experiments, Fourier-transform ion cyclotron resonance mass spectrometry is combined with tunable IR laser light provided by the intracavity free-electron laser FELICE or optical parametric oscillator-based table-top laser systems. We present spectra of [NbO3]-, [NbO2(OH)2]-, [NbO2(OH)2]-(H2O) and [NbO(OH)2(CO3)]- in the 240-4000 cm-1 range. The measured spectra and observed dissociation channels together with quantum chemical calculations confirm that upon interaction with a water molecule, [NbO3]- is transformed to [NbO2(OH)2]- via a barrierless reaction. Reaction of this product with CO2 leads to [NbO(OH)2(CO3)]- with the formation of a [CO3] moiety.
Collapse
Affiliation(s)
- Magdalena Salzburger
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Rizalina T Saragi
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Frank J Wensink
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Ethan M Cunningham
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Joost M Bakker
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
10
|
van der Linde C, Ončák M, Cunningham EM, Tang WK, Siu CK, Beyer MK. Surface or Internal Hydration - Does It Really Matter? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:337-354. [PMID: 36744598 PMCID: PMC9983018 DOI: 10.1021/jasms.2c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The precise location of an ion or electron, whether it is internally solvated or residing on the surface of a water cluster, remains an intriguing question. Subtle differences in the hydrogen bonding network may lead to a preference for one or the other. Here we discuss spectroscopic probes of the structure of gas-phase hydrated ions in combination with quantum chemistry, as well as H/D exchange as a means of structure elucidation. With the help of nanocalorimetry, we look for thermochemical signatures of surface vs internal solvation. Examples of strongly size-dependent reactivity are reviewed which illustrate the influence of surface vs internal solvation on unimolecular rearrangements of the cluster, as well as on the rate and product distribution of ion-molecule reactions.
Collapse
Affiliation(s)
- Christian van der Linde
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020Innsbruck, Austria
| | - Milan Ončák
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020Innsbruck, Austria
| | - Ethan M. Cunningham
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020Innsbruck, Austria
| | - Wai Kit Tang
- Institute
of Research Management and Services (IPPP), Research and Innovation
Management Complex, University of Malaya, Kuala Lumpur50603, Malaysia
| | - Chi-Kit Siu
- Department
of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, PR China
| | - Martin K. Beyer
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020Innsbruck, Austria
| |
Collapse
|
11
|
Lushchikova OV, Szalay M, Höltzl T, Bakker JM. Tuning the degree of CO 2 activation by carbon doping Cu n- ( n = 3-10) clusters: an IR spectroscopic study. Faraday Discuss 2023; 242:252-268. [PMID: 36325973 PMCID: PMC9890493 DOI: 10.1039/d2fd00128d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Copper clusters on carbide surfaces have shown a high catalytic activity towards methanol formation. To understand the interaction between CO2 and the catalytically active sites during this process and the role that carbon atoms could play in this, they are modeled by copper clusters, with carbon atoms incorporated. The formed clusters CunCm- (n = 3-10, m = 1-2) are reacted with CO2 and investigated by IR multiple-photon dissociation (IR-MPD) spectroscopy to probe the degree of CO2 activation. IR spectra for the reaction products [CunC·CO2]-, (n = 6-10), and [CunC2·CO2]-, (n = 3-8) are compared to reference spectra recorded for products formed when reacting the same cluster sizes with CO, and with density functional theory (DFT) calculated spectra. The results reveal a size- and carbon load-dependent activation and dissociation of CO2. The complexes [CunC·CO2]- with n = 6 and 10 show predominantly molecular activation of CO2, while those with n = 7-9 show only dissociative adsorption. The addition of the second carbon to the cluster leads to the exclusive molecular activation of the CO2 on all measured cluster sizes, except for Cu5C2- where CO2 dissociates. Combining these findings with DFT calculations leads us to speculate that at lower carbon-to-metal ratios (CMRs), the C can act as an oxygen anchor facilitating the OCO bond rupture, whereas at higher CMRs the carbon atoms increasingly attract negative charge, reducing the Cu cluster's ability to donate electron density to CO2, and consequently its ability to activate CO2.
Collapse
Affiliation(s)
- Olga V. Lushchikova
- Radboud University, Institute for Molecules and Materials, FELIX LaboratoryToernooiveld 76525 ED NijmegenThe Netherlands,Institut für Ionenphysik und Angewandte Physik, Universität InnsbruckTechnikerstraße 256020 InnsbruckAustria
| | - Máté Szalay
- Furukawa Electric Institute of TechnologyKésmárk Utca 28/A1158 BudapestHungary
| | - Tibor Höltzl
- MTA-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University ofTechnology and EconomicsMuegyetem rkp. 3Budapest 1111Hungary,Furukawa Electric Institute of TechnologyKésmárk Utca 28/A1158 BudapestHungary
| | - Joost M. Bakker
- Radboud University, Institute for Molecules and Materials, FELIX LaboratoryToernooiveld 76525 ED NijmegenThe Netherlands
| |
Collapse
|
12
|
Jarrold CC. Probing Anion-Molecule Complexes of Atmospheric Relevance Using Anion Photoelectron Detachment Spectroscopy. ACS PHYSICAL CHEMISTRY AU 2023; 3:17-29. [PMID: 36718261 PMCID: PMC9881448 DOI: 10.1021/acsphyschemau.2c00060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/01/2023]
Abstract
Bimolecular reaction and collision complexes that drive atmospheric chemistry and contribute to the absorption of solar radiation are fleeting and therefore inherently challenging to study experimentally. Furthermore, primary anions in the troposphere are short lived because of a complicated web of reactions and complex formation they undergo, making details of their early fate elusive. In this perspective, the experimental approach of photodetaching mass-selected anion-molecule complexes or complex anions, which prepares neutrals in various vibronic states, is surveyed. Specifically, the application of anion photoelectron spectroscopy along with photoelectron-photofragment coincidence spectroscopy toward the study of collision complexes, complex anions in which a partial covalent bond is formed, and radical bimolecular reaction complexes, with relevance in tropospheric chemistry, will be highlighted.
Collapse
Affiliation(s)
- Caroline Chick Jarrold
- Department of Chemistry, Indiana
University, 800 East Kirkwood, Avenue
Bloomington, Indiana47405, United States
| |
Collapse
|
13
|
Wei K, Guan H, Luo Q, He J, Sun S. Recent advances in CO 2 capture and reduction. NANOSCALE 2022; 14:11869-11891. [PMID: 35943283 DOI: 10.1039/d2nr02894h] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Given the continuous and excessive CO2 emission into the atmosphere from anthropomorphic activities, there is now a growing demand for negative carbon emission technologies, which requires efficient capture and conversion of CO2 to value-added chemicals. This review highlights recent advances in CO2 capture and conversion chemistry and processes. It first summarizes various adsorbent materials that have been developed for CO2 capture, including hydroxide-, amine-, and metal organic framework-based adsorbents. It then reviews recent efforts devoted to two types of CO2 conversion reaction: thermochemical CO2 hydrogenation and electrochemical CO2 reduction. While thermal hydrogenation reactions are often accomplished in the presence of H2, electrochemical reactions are realized by direct use of electricity that can be renewably generated from solar and wind power. The key to the success of these reactions is to develop efficient catalysts and to rationally engineer the catalyst-electrolyte interfaces. The review further covers recent studies in integrating CO2 capture and conversion processes so that energy efficiency for the overall CO2 capture and conversion can be optimized. Lastly, the review briefs some new approaches and future directions of coupling direct air capture and CO2 conversion technologies as solutions to negative carbon emission and energy sustainability.
Collapse
Affiliation(s)
- Kecheng Wei
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Huanqin Guan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Qiang Luo
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| |
Collapse
|
14
|
Yang Y, Zhao Y, He S. Conversion of CH
4
Catalyzed by Gas Phase Ions Containing Metals. Chemistry 2022; 28:e202200062. [DOI: 10.1002/chem.202200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yuan Yang
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yan‐Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Sheng‐Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
15
|
Iwamoto M, Koyasu K, Konuma T, Tsuruoka K, Muramatsu S, Tsukuda T. Temperature effect on photoelectron spectra of AuCO2–:Relative stability between physisorbed and chemisorbed isomers. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Etim UJ, Zhang C, Zhong Z. Impacts of the Catalyst Structures on CO 2 Activation on Catalyst Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3265. [PMID: 34947613 PMCID: PMC8707475 DOI: 10.3390/nano11123265] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/14/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022]
Abstract
Utilizing CO2 as a sustainable carbon source to form valuable products requires activating it by active sites on catalyst surfaces. These active sites are usually in or below the nanometer scale. Some metals and metal oxides can catalyze the CO2 transformation reactions. On metal oxide-based catalysts, CO2 transformations are promoted significantly in the presence of surface oxygen vacancies or surface defect sites. Electrons transferable to the neutral CO2 molecule can be enriched on oxygen vacancies, which can also act as CO2 adsorption sites. CO2 activation is also possible without necessarily transferring electrons by tailoring catalytic sites that promote interactions at an appropriate energy level alignment of the catalyst and CO2 molecule. This review discusses CO2 activation on various catalysts, particularly the impacts of various structural factors, such as oxygen vacancies, on CO2 activation.
Collapse
Affiliation(s)
- Ubong J. Etim
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, China; (U.J.E.); (C.Z.)
| | - Chenchen Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, China; (U.J.E.); (C.Z.)
- Wolfson Faculty of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel
| | - Ziyi Zhong
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, China; (U.J.E.); (C.Z.)
| |
Collapse
|
17
|
On-the-Fly Ring-Polymer Molecular Dynamics Calculations of the Dissociative Photodetachment Process of the Oxalate Anion. Molecules 2021; 26:molecules26237250. [PMID: 34885831 PMCID: PMC8658898 DOI: 10.3390/molecules26237250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
The dissociative photodetachment dynamics of the oxalate anion, C2O4H- + hν → CO2 + HOCO + e-, were theoretically studied using the on-the-fly path-integral and ring-polymer molecular dynamics methods, which can account for nuclear quantum effects at the density-functional theory level in order to compare with the recent experimental study using photoelectron-photofragment coincidence spectroscopy. To reduce computational time, the force acting on each bead of ring-polymer was approximately calculated from the first and second derivatives of the potential energy at the centroid position of the nuclei beads. We find that the calculated photoelectron spectrum qualitatively reproduces the experimental spectrum and that nuclear quantum effects are playing a role in determining spectral widths. The calculated coincidence spectrum is found to reasonably reproduce the experimental spectrum, indicating that a relatively large energy is partitioned into the relative kinetic energy between the CO2 and HOCO fragments. This is because photodetachment of the parent anion leads to Franck-Condon transition to the repulsive region of the neutral potential energy surface. We also find that the dissociation dynamics are slightly different between the two isomers of the C2O4H- anion with closed- and open-form structures.
Collapse
|
18
|
Dong X, Ding C, Zhang Q, Chen M, Zhao L, Zhou M, Frenking G. Covalent Bonding Between Be + and CO 2 in BeOCO + with a Surprisingly High Antisymmetric OCO Stretching Vibration. J Am Chem Soc 2021; 143:14300-14305. [PMID: 34449204 DOI: 10.1021/jacs.1c06407] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cationic complex BeOCO+ is produced in a solid neon matrix. Infrared absorption spectroscopic study shows that it has a very high antisymmetric OCO stretching vibration of 2418.9 cm-1, which is about 71 cm-1 blue-shifted from that of free CO2. The quantum chemical calculations are in very good agreement with the experimental observation. Depending on the theoretical method, a linear or quasi-linear structure is predicted for the cation. The analysis of the electronic structure shows that the bonding of Be+ to one oxygen atom induces very little charge migration between the two moieties, but it causes a significant change in the σ-charge distribution that strengthens the terminal C-O bond, leading to the observed blue shift. The bonding analysis reveals that the Be+ ← OCO donation results in strong binding due to the interference of the wave function and a charge polarization within the CO2 fragment and hybridization to Be+ but only negligible charge donation.
Collapse
Affiliation(s)
- Xuelin Dong
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Chengxiang Ding
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Qingnan Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Mohua Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Mingfei Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Gernot Frenking
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.,Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35043 Marburg, Germany
| |
Collapse
|
19
|
Green AE, Brown RH, Meizyte G, Mackenzie SR. Spectroscopy and Infrared Photofragmentation Dynamics of Mixed Ligand Ion-Molecule Complexes: Au(CO) x(N 2O) y. J Phys Chem A 2021; 125:7266-7277. [PMID: 34433267 DOI: 10.1021/acs.jpca.1c05800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a combined experimental and computational study of the structure and fragmentation dynamics of mixed ligand gas-phase ion-molecule complexes. Specifically, we have studied the infrared spectroscopy and vibrationally induced photofragmentation dynamics of mass-selected Au(CO)x(N2O)y+ complexes. The structures can be understood on the basis of local CO and N2O chromophores in different solvation shells with CO found preferentially in the core. Rich fragmentation dynamics are observed as a function of complex composition and the vibrational mode excited. The dynamics are characterized in terms of branching ratios for different ligand loss channels in light of calculated internal energy distributions. Intramolecular vibrational redistribution appears to be rapid, and dissociation is observed into all energetically accessible channels with little or no evidence for preferential breaking of the weakest intermolecular interactions.
Collapse
Affiliation(s)
- Alice E Green
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, United Kingdom OX1 3QZ
| | - Rachael H Brown
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, United Kingdom OX1 3QZ
| | - Gabriele Meizyte
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, United Kingdom OX1 3QZ
| | - Stuart R Mackenzie
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, United Kingdom OX1 3QZ
| |
Collapse
|
20
|
Yang Y, Li YK, Zhao YX, Wei GP, Ren Y, Asmis KR, He SG. Catalytic Co-Conversion of CH 4 and CO 2 Mediated by Rhodium-Titanium Oxide Anions RhTiO 2. Angew Chem Int Ed Engl 2021; 60:13788-13792. [PMID: 33890352 PMCID: PMC8251526 DOI: 10.1002/anie.202103808] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 01/26/2023]
Abstract
Catalytic co‐conversion of methane with carbon dioxide to produce syngas (2 H2+2 CO) involves complicated elementary steps and almost all the elementary reactions are performed at the same high temperature conditions in practical thermocatalysis. Here, we demonstrate by mass spectrometric experiments that RhTiO2− promotes the co‐conversion of CH4 and CO2 to free 2 H2+CO and an adsorbed CO (COads) at room temperature; the only elementary step that requires the input of external energy is desorption of COads from the RhTiO2CO− to reform RhTiO2−. This study not only identifies a promising active species for dry (CO2) reforming of methane to syngas, but also emphasizes the importance of temperature control over elementary steps in practical catalysis, which may significantly alleviate the carbon deposition originating from the pyrolysis of methane.
Collapse
Affiliation(s)
- Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P.R. China
| | - Ya-Ke Li
- Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P.R. China
| | - Gong-Ping Wei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P.R. China
| | - Yi Ren
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Knut R Asmis
- Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P.R. China
| |
Collapse
|
21
|
Yang Y, Li Y, Zhao Y, Wei G, Ren Y, Asmis KR, He S. Gemeinsame katalytische Umsetzung von CH
4
und CO
2
durch Rhodium‐Titanoxid‐Anionen RhTiO
2
−. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 V.R. China
- University of Chinese Academy of Sciences Beijing 100049 V.R. China
- Beijing National Laboratory for Molecular Sciences and CASResearch/Education Centre of Excellence in Molecular Sciences Beijing 100190 V.R. China
| | - Ya‐Ke Li
- Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie Universität Leipzig Linnéstraße 2 04103 Leipzig Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Yan‐Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 V.R. China
- Beijing National Laboratory for Molecular Sciences and CASResearch/Education Centre of Excellence in Molecular Sciences Beijing 100190 V.R. China
| | - Gong‐Ping Wei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 V.R. China
- University of Chinese Academy of Sciences Beijing 100049 V.R. China
- Beijing National Laboratory for Molecular Sciences and CASResearch/Education Centre of Excellence in Molecular Sciences Beijing 100190 V.R. China
| | - Yi Ren
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 V.R. China
| | - Knut R. Asmis
- Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie Universität Leipzig Linnéstraße 2 04103 Leipzig Deutschland
| | - Sheng‐Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 V.R. China
- University of Chinese Academy of Sciences Beijing 100049 V.R. China
- Beijing National Laboratory for Molecular Sciences and CASResearch/Education Centre of Excellence in Molecular Sciences Beijing 100190 V.R. China
| |
Collapse
|
22
|
Pascher TF, Ončák M, van der Linde C, Beyer MK. Spectroscopy and photochemistry of copper nitrate clusters. Phys Chem Chem Phys 2021; 23:9911-9920. [PMID: 33908510 DOI: 10.1039/d1cp00629k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The investigation of copper nitrate cluster anions Cu(ii)n(NO3)2n+1-, n ≤ 4, in the gas phase using ultraviolet/visible/near-infrared (UV/vis/NIR) spectroscopy provides detailed insight into the electronic structure of the copper salt and its intriguing photochemistry. In the experimentally studied region up to 5.5 eV, the spectra of copper(ii) nitrate exhibit a 3d-3d band in the vis/NIR and well-separated bands in the UV. The latter bands originate from Ligand-to-Metal Charge Transfer (LMCT) as well as n-π* transitions in the nitrate ligands. The clusters predominantly decompose by loss of neutral copper nitrate in the electronic ground state after internal conversion or via the photochemical loss of a neutral NO3 ligand after a LMCT. These two decomposition channels are in direct competition on the ground state potential energy surface for the smallest copper nitrate cluster, Cu(ii)(NO3)3-. Here, copper nitrate evaporation is thermochemically less favorable. Population of π* orbitals in the nitrate ligands may lead to N-O bond photolysis. This is observed in the UV region with a small quantum efficiency, with photochemical loss of either nitrogen dioxide or an oxygen atom.
Collapse
Affiliation(s)
- Tobias F Pascher
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
23
|
Zheng H, Kong X, Wang C, Wang T, Yang D, Li G, Xie H, Zhao Z, Shi R, Han H, Fan H, Yang X, Jiang L. Spectroscopic Identification of Transition-Metal M[η 2-(O,O)C] Species for Highly-Efficient CO 2 Activation. J Phys Chem Lett 2021; 12:472-477. [PMID: 33370117 DOI: 10.1021/acs.jpclett.0c03379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The CO2 activation by transition metals is important in CO2 utilization but has proven to be challenging for experimental targets. Here we report first synthesis and spectroscopic characterization of transition-metal M[η2-(O,O)C] species with bidentate double oxygen metal-CO2 coordination in the [ZrO(CO2)n≥4]+ complexes. The Zr[η2-(O,O)C] species yields a CO2- radical ligand, showing a high efficiency in CO2 activation. We find that two important prerequisites are demanded for certain metals to form this intriguing M[η2-(O,O)C] species. One is that the metal center has high reduction capability, and the other is that the oxidation state of the metal center is lower than its highest one by 1. This study highlights the pivotal roles played by the M[η2-(O,O)C] species in CO2 activation and also open new avenues toward the development of related single-atom catalysts with isolated transition-metal atoms dispersed on supports.
Collapse
Affiliation(s)
- Huijun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiangtao Kong
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Chong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tiantong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Dong Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhi Zhao
- School of Mathematics and Physics, Hebei University of Engineering, Handan 056038, China
| | - Ruili Shi
- School of Mathematics and Physics, Hebei University of Engineering, Handan 056038, China
| | - Haiyan Han
- School of Mathematics and Physics, Hebei University of Engineering, Handan 056038, China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
24
|
Pascher TF, Ončák M, van der Linde C, Beyer MK. Infrared multiple photon dissociation spectroscopy of anionic copper formate clusters. J Chem Phys 2020; 153:184301. [DOI: 10.1063/5.0030034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tobias F. Pascher
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin K. Beyer
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
25
|
Pascher TF, Barwa E, van der Linde C, Beyer MK, Ončák M. Photochemical activation of carbon dioxide in Mg +(CO 2)(H 2O) 0,1. Theor Chem Acc 2020; 139:127. [PMID: 32655309 PMCID: PMC7335376 DOI: 10.1007/s00214-020-02640-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/20/2020] [Indexed: 11/25/2022]
Abstract
We combine multi-reference ab initio calculations with UV-VIS action spectroscopy to study photochemical activation of CO2 on a singly charged magnesium ion, [MgCO2(H2O)0,1]+, as a model system for the metal/ligand interactions relevant in CO2 photochemistry. For the non-hydrated species, two separated Mg+ 3s-3p bands are observed within 5.0 eV. The low-energy band splits upon hydration with one water molecule. [Mg(CO2)]+ decomposes highly state-selectively, predominantly via multiphoton processes. Within the low-energy band, CO2 is exclusively lost within the excited state manifold. For the high-energy band, an additional pathway becomes accessible: the CO2 ligand is activated via a charge transfer, with photochemistry taking place on the CO2 - moiety eventually leading to a loss of CO after absorption of a second photon. Upon hydration, already excitation into the first and second excited state leads to CO2 activation in the excited state minimum; however, CO2 predominantly evaporates upon fluorescence or absorption of another photon.
Collapse
Affiliation(s)
- Tobias F. Pascher
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Erik Barwa
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
26
|
Green AE, Schaller S, Meizyte G, Rhodes BJ, Kealy SP, Gentleman AS, Schöllkopf W, Fielicke A, Mackenzie SR. Infrared Study of OCS Binding and Size-Selective Reactivity with Gold Clusters, Aun+ (n = 1–10). J Phys Chem A 2020; 124:5389-5401. [DOI: 10.1021/acs.jpca.0c03813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alice E. Green
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, United Kingdom
| | - Sascha Schaller
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Gabriele Meizyte
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, United Kingdom
| | - Benjamin J. Rhodes
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, United Kingdom
| | - Sean P. Kealy
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, United Kingdom
| | - Alexander S. Gentleman
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, United Kingdom
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - André Fielicke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Stuart R. Mackenzie
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, United Kingdom
| |
Collapse
|
27
|
Barwa E, Pascher TF, Ončák M, Linde C, Beyer MK. Aktivierung von Kohlenstoffdioxid an Metallzentren: Entwicklung des Ladungstransfers von Mg
.+
auf CO
2
in [MgCO
2
(H
2
O)
n
]
.+
,
n=
0–8. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Erik Barwa
- Institut für Ionenphysik und Angewandte PhysikUniversität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Tobias F. Pascher
- Institut für Ionenphysik und Angewandte PhysikUniversität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikUniversität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Christian Linde
- Institut für Ionenphysik und Angewandte PhysikUniversität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikUniversität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| |
Collapse
|
28
|
Med J, Sršeň Š, Slavíček P, Domaracka A, Indrajith S, Rousseau P, Fárník M, Fedor J, Kočišek J. Vibrationally Mediated Stabilization of Electrons in Nonpolar Matter. J Phys Chem Lett 2020; 11:2482-2489. [PMID: 32154726 DOI: 10.1021/acs.jpclett.0c00278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We explore solvation of electrons in nonpolar matter, here represented by butadiene clusters. Isolated butadiene supports only the existence of transient anions (resonances). Two-dimensional electron energy loss spectroscopy shows that the resonances lead to an efficient vibrational excitation of butadiene, which can result into the almost complete loss of energy of the interacting electron. Cluster-beam experiments show that molecular clusters of butadiene form stable anions, however only at sizes of more than 9 molecular units. We have calculated the distribution of electron affinities of clusters using classical and path integral molecular dynamics simulations. There is almost a continuous transition from the resonant to the bound anions with an increase in cluster size. The comparison of the classical and quantum dynamics reveals that the electron binding is strongly supported by molecular vibrations, brought about by nuclear zero-point motion and thermal agitation. We also inspected the structure of the solvated electron, finding it well localized.
Collapse
Affiliation(s)
- Jakub Med
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Štěpán Sršeň
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - A Domaracka
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - S Indrajith
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - P Rousseau
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - M Fárník
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - J Fedor
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - J Kočišek
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| |
Collapse
|
29
|
Yang D, Su MZ, Zheng HJ, Zhao Z, Kong XT, Li G, Xie H, Zhang WQ, Fan HJ, Jiang L. Infrared spectroscopy of CO 2 transformation by group III metal monoxide cations. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp1910175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Dong Yang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-zhi Su
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-jun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiang-tao Kong
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei-qing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hong-jun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
30
|
Barwa E, Pascher TF, Ončák M, van der Linde C, Beyer MK. Carbon Dioxide Activation at Metal Centers: Evolution of Charge Transfer from Mg .+ to CO 2 in [MgCO 2 (H 2 O) n ] .+ , n=0-8. Angew Chem Int Ed Engl 2020; 59:7467-7471. [PMID: 32100953 PMCID: PMC7217156 DOI: 10.1002/anie.202001292] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Indexed: 11/06/2022]
Abstract
We investigate activation of carbon dioxide by singly charged hydrated magnesium cations Mg .+(H2O)n, through infrared multiple photon dissociation (IRMPD) spectroscopy combined with quantum chemical calculations. The spectra of [MgCO2(H2O)n].+ in the 1250–4000 cm−1 region show a sharp transition from n=2 to n=3 for the position of the CO2 antisymmetric stretching mode. This is evidence for the activation of CO2 via charge transfer from Mg .+ to CO2 for n≥3, while smaller clusters feature linear CO2 coordinated end‐on to the metal center. Starting with n=5, we see a further conformational change, with CO2.− coordination to Mg2+ gradually shifting from bidentate to monodentate, consistent with preferential hexa‐coordination of Mg2+. Our results reveal in detail how hydration promotes CO2 activation by charge transfer at metal centers.
Collapse
Affiliation(s)
- Erik Barwa
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Tobias F Pascher
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| |
Collapse
|
31
|
Zimmermann N, Bernhardt TM, Bakker JM, Barnett RN, Landman U, Lang SM. Infrared Spectroscopy of Gas-Phase Mn xO y(CO 2) z+ Complexes. J Phys Chem A 2020; 124:1561-1566. [PMID: 31994885 DOI: 10.1021/acs.jpca.9b11258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction of manganese oxide clusters MnxOy+ (x = 2-5, y ≥ x) with CO2 is studied via infrared multiple-photon dissociation spectroscopy (IR-MPD) in the spectral region of 630-1860 cm-1. Along with vibrational modes of the manganese oxide cluster core, two bands are observed around 1200-1450 cm-1 and they are assigned to the characteristic Fermi resonance of CO2 arising from anharmonic coupling between the symmetric stretch vibration and the overtone of the bending mode. The spectral position of the lower frequency band depends on the cluster size and the number of adsorbed CO2 molecules, whereas the higher frequency band is largely unaffected. Despite these effects, the observation of the Fermi dyad indicates only a small perturbation of the CO2 molecule. This finding is confirmed by the theoretical investigation of Mn2O2(CO2)+ revealing only small orbital mixing between the dimanganese oxide cluster and CO2, indicative of mainly electrostatic interaction.
Collapse
Affiliation(s)
- Nina Zimmermann
- Institute of Surface Chemistry and Catalysis , University of Ulm , 89069 Ulm , Germany
| | - Thorsten M Bernhardt
- Institute of Surface Chemistry and Catalysis , University of Ulm , 89069 Ulm , Germany
| | - Joost M Bakker
- Radboud University , Institute of Molecules and Materials, FELIX Laboratory , Toernooiveld 7 , 6525 ED Nijmegen , The Netherlands
| | - Robert N Barnett
- School of Physics , Georgia Institute of Technology , Atlanta , Georgia 30332-0430 , United States
| | - Uzi Landman
- School of Physics , Georgia Institute of Technology , Atlanta , Georgia 30332-0430 , United States
| | - Sandra M Lang
- Institute of Surface Chemistry and Catalysis , University of Ulm , 89069 Ulm , Germany
| |
Collapse
|
32
|
Barwa E, Ončák M, Pascher TF, Herburger A, van der Linde C, Beyer MK. Infrared Multiple Photon Dissociation Spectroscopy of Hydrated Cobalt Anions Doped with Carbon Dioxide CoCO 2 (H 2 O) n - , n=1-10, in the C-O Stretch Region. Chemistry 2020; 26:1074-1081. [PMID: 31617628 PMCID: PMC7051846 DOI: 10.1002/chem.201904182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 11/05/2022]
Abstract
We investigate anionic [Co,CO2 ,nH2 O]- clusters as model systems for the electrochemical activation of CO2 by infrared multiple photon dissociation (IRMPD) spectroscopy in the range of 1250-2234 cm-1 using an FT-ICR mass spectrometer. We show that both CO2 and H2 O are activated in a significant fraction of the [Co,CO2 ,H2 O]- clusters since it dissociates by CO loss, and the IR spectrum exhibits the characteristic C-O stretching frequency. About 25 % of the ion population can be dissociated by pumping the C-O stretching mode. With the help of quantum chemical calculations, we assign the structure of this ion as Co(CO)(OH)2 - . However, calculations find Co(HCOO)(OH)- as the global minimum, which is stable against IRMPD under the conditions of our experiment. Weak features around 1590-1730 cm-1 are most likely due to higher lying isomers of the composition Co(HOCO)(OH)- . Upon additional hydration, all species [Co,CO2 ,nH2 O]- , n≥2, undergo IRMPD through loss of H2 O molecules as a relatively weakly bound messenger. The main spectral features are the C-O stretching mode of the CO ligand around 1900 cm-1 , the water bending mode mixed with the antisymmetric C-O stretching mode of the HCOO- ligand around 1580-1730 cm-1 , and the symmetric C-O stretching mode of the HCOO- ligand around 1300 cm-1 . A weak feature above 2000 cm-1 is assigned to water combination bands. The spectral assignment clearly indicates the presence of at least two distinct isomers for n ≥2.
Collapse
Affiliation(s)
- Erik Barwa
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Tobias F. Pascher
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Andreas Herburger
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|
33
|
Shirman E, Shahi A, Continetti RE, Strasser D. Dissociative detachment of the fluoroformate anion. Phys Chem Chem Phys 2020; 22:27666-27672. [DOI: 10.1039/d0cp04283h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3D fragment imaging of the fluoroformate anion (FCO2−) dissociative photodetachment products shows reductive fragmentation, forming FCO + O, as well as a dominant cleavage of the CF bond.
Collapse
Affiliation(s)
- Eugene Shirman
- Institute of Chemistry
- The Hebrew University of Jerusalem
- 91904 Jerusalem
- Israel
| | - Abhishek Shahi
- Institute of Chemistry
- The Hebrew University of Jerusalem
- 91904 Jerusalem
- Israel
| | - Robert E. Continetti
- Department of Chemistry and Biochemistry
- University of California San Diego
- La Jolla
- USA
| | - Daniel Strasser
- Institute of Chemistry
- The Hebrew University of Jerusalem
- 91904 Jerusalem
- Israel
| |
Collapse
|
34
|
Pascher TF, Ončák M, van der Linde C, Beyer MK. Decomposition of Copper Formate Clusters: Insight into Elementary Steps of Calcination and Carbon Dioxide Activation. ChemistryOpen 2019; 8:1453-1459. [PMID: 31871848 PMCID: PMC6916659 DOI: 10.1002/open.201900282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/13/2019] [Indexed: 11/29/2022] Open
Abstract
The decomposition of copper formate clusters is investigated in the gas phase by infrared multiple photon dissociation of Cu(II) n (HCO2)2n+1 -, n≤8. In combination with quantum chemical calculations and reactivity measurements using oxygen, elementary steps of the decomposition of copper formate are characterized, which play a key role during calcination as well as for the function of copper hydride based catalysts. The decomposition of larger clusters (n >2) takes place exclusively by the sequential loss of neutral copper formate units Cu(II)(HCO2)2 or Cu(II)2(HCO2)4, leading to clusters with n=1 or n=2. Only for these small clusters, redox reactions are observed as discussed in detail previously, including the formation of formic acid or loss of hydrogen atoms, leading to a variety of Cu(I) complexes. The stoichiometric monovalent copper formate clusters Cu(I) m (HCO2) m+1 -, (m=1,2) decompose exclusively by decarboxylation, leading towards copper hydrides in oxidation state +I. Copper oxide centers are obtained via reactions of molecular oxygen with copper hydride centers, species containing carbon dioxide radical anions as ligands or a Cu(0) center. However, stoichiometric copper(I) and copper(II) formate Cu(I)(HCO2)2 - and Cu(II)(HCO2)3 -, respectively, is unreactive towards oxygen.
Collapse
Affiliation(s)
- Tobias F. Pascher
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|
35
|
Yang Y, Yang B, Zhao Y, Jiang L, Li Z, Ren Y, Xu H, Zheng W, He S. Direct Conversion of Methane with Carbon Dioxide Mediated by RhVO
3
−
Cluster Anions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction DynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Yan‐Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Li‐Xue Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Zi‐Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Yi Ren
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Hong‐Guang Xu
- State Key Laboratory of Molecular Reaction DynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Wei‐Jun Zheng
- State Key Laboratory of Molecular Reaction DynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Sheng‐Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
36
|
Muramatsu S, Tsukuda T. Reductive Activation of Small Molecules by Anionic Coinage Metal Atoms and Clusters in the Gas Phase. Chem Asian J 2019; 14:3763-3772. [PMID: 31553821 DOI: 10.1002/asia.201901156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Indexed: 11/08/2022]
Abstract
Metal atoms and clusters exhibit chemical properties that are significantly different or totally absent in comparison to their bulk counterparts. Such peculiarity makes them potential building units for the generation of novel catalysts. Investigations of the gas-phase reactions between size- and charge-selected atoms/clusters and small molecules have provided fundamental insights into their intrinsic reactivity, thus leading to a guiding principle for the rational design of the single-atom and cluster-based catalysts. Especially, recent gas-phase studies have elucidated that small molecules such as O2 , CO2 , and CH3 I can be catalytically activated by negatively-charged atoms/clusters via donation of a partial electronic charge. This Minireview showcases typical examples of such "reductive activation" processes promoted by anions of metal atoms and clusters. Here, we focus on anionic atoms/clusters of coinage metals (Cu, Ag, and Au) owing to the simplicity of their electronic structures. The determination of a correlation between their activation modes and the electronic structures might be helpful for the future development of innovative coinage metal catalysts.
Collapse
Affiliation(s)
- Satoru Muramatsu
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima-shi, Hiroshima, 739-8526, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
37
|
Yang Y, Yang B, Zhao YX, Jiang LX, Li ZY, Ren Y, Xu HG, Zheng WJ, He SG. Direct Conversion of Methane with Carbon Dioxide Mediated by RhVO 3 - Cluster Anions. Angew Chem Int Ed Engl 2019; 58:17287-17292. [PMID: 31553114 DOI: 10.1002/anie.201911195] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Indexed: 11/09/2022]
Abstract
Direct conversion of methane with carbon dioxide to value-added chemicals is attractive but extremely challenging because of the thermodynamic stability and kinetic inertness of both molecules. Herein, the first dinuclear cluster species, RhVO3 - , has been designed to mediate the co-conversion of CH4 and CO2 to oxygenated products, CH3 OH and CH2 O, in the temperature range of 393-600 K. The resulting cluster ions RhVO3 CO- after CH3 OH formation can further desorb the [CO] unit to regenerate the RhVO3 - cluster, leading to the successful establishment of a catalytic cycle for methanol production from CH4 and CO2 (CH4 +CO2 →CH3 OH+CO). The exceptional activity of Rh-V dinuclear oxide cluster (RhVO3 - ) identified herein provides a new mechanism for co-conversion of two very stable molecules CH4 and CO2 .
Collapse
Affiliation(s)
- Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Li-Xue Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Yi Ren
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Hong-Guang Xu
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Wei-Jun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
38
|
Herburger A, Ončák M, Siu C, Demissie EG, Heller J, Tang WK, Beyer MK. Infrared Spectroscopy of Size-Selected Hydrated Carbon Dioxide Radical Anions CO 2 .- (H 2 O) n (n=2-61) in the C-O Stretch Region. Chemistry 2019; 25:10165-10171. [PMID: 31132183 PMCID: PMC6771497 DOI: 10.1002/chem.201901650] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Indexed: 11/08/2022]
Abstract
Understanding the intrinsic properties of the hydrated carbon dioxide radical anions CO2 .- (H2 O)n is relevant for electrochemical carbon dioxide functionalization. CO2 .- (H2 O)n (n=2-61) is investigated by using infrared action spectroscopy in the 1150-2220 cm-1 region in an ICR (ion cyclotron resonance) cell cooled to T=80 K. The spectra show an absorption band around 1280 cm-1 , which is assigned to the symmetric C-O stretching vibration νs . It blueshifts with increasing cluster size, reaching the bulk value, within the experimental linewidth, for n=20. The antisymmetric C-O vibration νas is strongly coupled with the water bending mode ν2 , causing a broad feature at approximately 1650 cm-1 . For larger clusters, an additional broad and weak band appears above 1900 cm-1 similar to bulk water, which is assigned to a combination band of water bending and libration modes. Quantum chemical calculations provide insight into the interaction of CO2 .- with the hydrogen-bonding network.
Collapse
Affiliation(s)
- Andreas Herburger
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Chi‐Kit Siu
- Department of ChemistryCity University of Hong Kong83 Tat Chee AvenueKowloon Tong, Hong Kong SARP. R. China
| | - Ephrem G. Demissie
- Department of ChemistryCity University of Hong Kong83 Tat Chee AvenueKowloon Tong, Hong Kong SARP. R. China
| | - Jakob Heller
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Wai Kit Tang
- Department of ChemistryCity University of Hong Kong83 Tat Chee AvenueKowloon Tong, Hong Kong SARP. R. China
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|
39
|
Yang D, Kong X, Zheng H, Su M, Zhao Z, Xie H, Fan H, Zhang W, Jiang L. Structures and Infrared Spectra of [M(CO 2) 7] + (M = V, Cr, and Mn) Complexes. J Phys Chem A 2019; 123:3703-3708. [PMID: 30957997 DOI: 10.1021/acs.jpca.9b00041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gas-phase infrared photodissociation spectra of [V(CO2) n]+ complexes revealed three new vibrational bands at 1140, 1800, and 3008 cm-1 at n = 7, the features of which are retained in the larger clusters (Ricks, A. M.; Brathwaite, A. D.; Duncan, M. A. J. Phys. Chem. A 2013, 117, 11490-11498). However, structural assignment of this intriguing feature remains open. Herein, quantum chemical calculations on [V(CO2)7]+ were carried out to identify the structure of the low-lying isomers and to assign the observed spectral features. The comparison of calculated infrared spectra of [V(CO2)7]+ with experimental infrared spectra identified the formation of a bent CO2- species, suggesting the ligand-induced activation of CO2 by the vanadium cation. The structures and infrared spectra of [Cr(CO2)7]+ and [Mn(CO2)7]+ were also predicted and discussed.
Collapse
Affiliation(s)
- Dong Yang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China.,University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Xiangtao Kong
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Huijun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China.,University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Mingzhi Su
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China.,University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Zhi Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| |
Collapse
|
40
|
Ferreira da Silva F, do N Varella MT, Jones NC, Vrønning Hoffmann S, Denifl S, Bald I, Kopyra J. Electron-Induced Reactions in 3-Bromopyruvic Acid. Chemistry 2019; 25:5498-5506. [PMID: 30706547 DOI: 10.1002/chem.201806132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/22/2019] [Indexed: 01/20/2023]
Abstract
3-Bromopyruvic acid (3BP) is a potential anti-cancer drug, the action of which on cellular metabolism is not yet entirely clear. The presence of a bromine atom suggests that it is also reactive towards low-energy electrons, which are produced in large quantities during tumour radiation therapy. Detailed knowledge of the interaction of 3BP with secondary electrons is a prerequisite to gain a complete picture of the effects of 3BP in different forms of cancer therapy. Herein, dissociative electron attachment (DEA) to 3BP in the gas phase has been studied both experimentally by using a crossed-beam setup and theoretically through scattering and quantum chemical calculations. These results are complemented by a vacuum ultraviolet absorption spectrum. The main fragmentation channel is the formation of Br- close to 0 eV and within several resonant features at 1.9 and 3-8 eV. At low electron energies, Br- formation proceeds through σ* and π* shape resonances, and at higher energies through core-excited resonances. It is found that the electron-capture cross-section is clearly increased compared with that of non-brominated pyruvic acid, but, at the same time, fragmentation reactions through DEA are significantly altered as well. The 3BP transient negative ion is subject to a lower number of fragmentation reactions than those of pyruvic acid, which indicates that 3BP could indeed act by modifying the electron-transport chains within oxidative phosphorylation. It could also act as a radio-sensitiser.
Collapse
Affiliation(s)
- Filipe Ferreira da Silva
- Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Márcio T do N Varella
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, 05508-090, São Paulo, Brazil
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000, Aarhus, Denmark
| | - Søren Vrønning Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000, Aarhus, Denmark
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences (CMBI), Leopold-Franzens Universität Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Ilko Bald
- Department of Chemistry-Physical Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam-Golm, Germany
- Department 1-Analytical Chemistry and Reference Materials, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter Strasse 11, 12489, Berlin, Germany
| | - Janina Kopyra
- Faculty of Sciences, Siedlce University, 3 Maja 54, 08-110, Siedlce, Poland
| |
Collapse
|
41
|
Yang D, Su MZ, Zheng HJ, Zhao Z, Li G, Kong XT, Xie H, Fan HJ, Zhang WQ, Jiang L. Infrared photodissociation spectroscopic and theoretical study of [Co(CO2)n]+ clusters. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1902032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Dong Yang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-zhi Su
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-jun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiang-tao Kong
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hong-jun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei-qing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
42
|
Barwa E, Ončák M, Pascher TF, Taxer T, van der Linde C, Beyer MK. CO 2/O 2 Exchange in Magnesium-Water Clusters Mg +(H 2O) n. J Phys Chem A 2019; 123:73-81. [PMID: 30516989 PMCID: PMC6331139 DOI: 10.1021/acs.jpca.8b10530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/03/2018] [Indexed: 11/30/2022]
Abstract
Hydrated singly charged metal ions doped with carbon dioxide, Mg2+(CO2)-(H2O) n, in the gas phase are valuable model systems for the electrochemical activation of CO2. Here, we study these systems by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry combined with ab initio calculations. We show that the exchange reaction of CO2 with O2 proceeds fast with bare Mg+(CO2), with a rate coefficient kabs = 1.2 × 10-10 cm3 s-1, while hydrated species exhibit a lower rate in the range of kabs = (1.2-2.4) × 10-11 cm3 s-1 for this strongly exothermic reaction. Water makes the exchange reaction more exothermic but, at the same time, considerably slower. The results are rationalized with a need for proper orientation of the reactants in the hydrated system, with formation of a Mg2+(CO4)-(H2O) n intermediate while the activation energy is negligible. According to our nanocalorimetric analysis, the exchange reaction of the hydrated ion is exothermic by -1.7 ± 0.5 eV, in agreement with quantum chemical calculations.
Collapse
Affiliation(s)
- Erik Barwa
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Tobias F. Pascher
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Thomas Taxer
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin K. Beyer
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
43
|
Liu G, Ciborowski SM, Zhu Z, Chen Y, Zhang X, Bowen KH. The metallo-formate anions, M(CO2)−, M = Ni, Pd, Pt, formed by electron-induced CO2 activation. Phys Chem Chem Phys 2019; 21:10955-10960. [DOI: 10.1039/c9cp01915d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The metallo-formate anions, M(CO2)−, M = Ni, Pd, and Pt, were formed by electron-induced CO2 activation.
Collapse
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University
- Baltimore
- USA
| | | | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University
- Baltimore
- USA
| | - Yinlin Chen
- Department of Chemistry, Johns Hopkins University
- Baltimore
- USA
| | - Xinxing Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University
- Tianjin 300071
- China
| | - Kit H. Bowen
- Department of Chemistry, Johns Hopkins University
- Baltimore
- USA
| |
Collapse
|
44
|
Habib M, Sarkar R, Biswas S, Pramanik A, Sarkar P, Pal S. Unambiguous hydrogenation of CO2 by coinage-metal hydride anions: an intuitive idea based on in silico experiments. Phys Chem Chem Phys 2019; 21:7483-7490. [DOI: 10.1039/c9cp00133f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coinage metal hydride anions, especially AgH−, can effectively and deterministically hydrogenate CO2 to HCO2−.
Collapse
Affiliation(s)
- Md Habib
- Department of Chemistry
- University of Gour Banga
- Malda – 732103
- India
| | - Ritabrata Sarkar
- Department of Chemistry
- University of Gour Banga
- Malda – 732103
- India
| | - Santu Biswas
- Department of Chemistry
- Visva-Bharati University
- Santiniketan – 731235
- India
| | - Anup Pramanik
- Department of Chemistry
- Visva-Bharati University
- Santiniketan – 731235
- India
| | - Pranab Sarkar
- Department of Chemistry
- Visva-Bharati University
- Santiniketan – 731235
- India
| | - Sougata Pal
- Department of Chemistry
- University of Gour Banga
- Malda – 732103
- India
| |
Collapse
|
45
|
Anila S, Suresh CH. Formation of large clusters of CO2 around anions: DFT study reveals cooperative CO2 adsorption. Phys Chem Chem Phys 2019; 21:23143-23153. [DOI: 10.1039/c9cp03348c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cooperative O⋯C secondary interactions compensate for the diminishing effect of primary anion⋯C interactions in anionic clusters of CO2 molecules.
Collapse
Affiliation(s)
- Sebastian Anila
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Cherumuttathu H. Suresh
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
46
|
Herburger A, Ončák M, Barwa E, van der Linde C, Beyer MK. Carbon-carbon bond formation in the reaction of hydrated carbon dioxide radical anions with 3-butyn-1-ol. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2019; 435:101-106. [PMID: 33209089 PMCID: PMC7116384 DOI: 10.1016/j.ijms.2018.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrochemical activation of carbon dioxide in aqueous solution is a promising way to use carbon dioxide as a C1 building block. Mechanistic studies in the gas phase play an important role to understand the inherent chemical reactivity of the carbon dioxide radical anion. Here, the reactivity of CO2 •-(H2O)n with 3-butyn-1-ol is investigated by Fourier transform ion cyclotron (FT-ICR) mass spectrometry and quantum chemical calculations. Carbon-carbon bond formation takes places, but is associated with a barrier. Therefore, bond formation may require uptake of several butynol molecules. The water molecules slowly evaporate from the cluster due to the absorption of room temperature black-body radiation. When all water molecules are lost, butynol evaporation sets in. In this late stage of the reaction, side reactions occur including H• atom transfer and elimination of HOCO•.
Collapse
Affiliation(s)
| | | | | | | | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
47
|
Green AE, Justen J, Schöllkopf W, Gentleman AS, Fielicke A, Mackenzie SR. IR Signature of Size-Selective CO2
Activation on Small Platinum Cluster Anions, Pt
n
−
(n
=4-7). Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alice E. Green
- Department of Chemistry; University of Oxford; Physical and Theoretical Chemistry Laboratory; South Parks Road Oxford OX1 3QZ UK
| | - Jasmin Justen
- Institute for Optics and Atomic Physics; Technische Universität Berlin; Hardenbergstrasse 36 10623 Berlin Germany
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg, 4-6 14195 Berlin Germany
| | - Alexander S. Gentleman
- Department of Chemistry; University of Oxford; Physical and Theoretical Chemistry Laboratory; South Parks Road Oxford OX1 3QZ UK
| | - André Fielicke
- Institute for Optics and Atomic Physics; Technische Universität Berlin; Hardenbergstrasse 36 10623 Berlin Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg, 4-6 14195 Berlin Germany
| | - Stuart R. Mackenzie
- Department of Chemistry; University of Oxford; Physical and Theoretical Chemistry Laboratory; South Parks Road Oxford OX1 3QZ UK
| |
Collapse
|
48
|
Green AE, Justen J, Schöllkopf W, Gentleman AS, Fielicke A, Mackenzie SR. IR Signature of Size-Selective CO 2 Activation on Small Platinum Cluster Anions, Pt n - (n=4-7). Angew Chem Int Ed Engl 2018; 57:14822-14826. [PMID: 30207020 DOI: 10.1002/anie.201809099] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Indexed: 11/09/2022]
Abstract
Infrared multiple photon dissociation spectroscopy (IR-MPD) has been employed to determine the nature of CO2 binding to size-selected platinum cluster anions, Ptn - (n=4-7). Interpreted in conjunction with density functional theory simulations, the results illustrate that the degree of CO2 activation can be controlled by the size of the metal cluster, with dissociative activation observed on all clusters n≥5. Of potential practical significance, in terms of the use of CO2 as a useful C1 feedstock, CO2 is observed molecularly-bound, but highly activated, on the Pt4 - cluster. It is trapped behind a barrier on the reactive potential energy surface which prevents dissociation.
Collapse
Affiliation(s)
- Alice E Green
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK
| | - Jasmin Justen
- Institute for Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg, 4-6, 14195, Berlin, Germany
| | - Alexander S Gentleman
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK
| | - André Fielicke
- Institute for Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg, 4-6, 14195, Berlin, Germany
| | - Stuart R Mackenzie
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK
| |
Collapse
|
49
|
Chen Q, Zhao YX, Jiang LX, Chen JJ, He SG. Coupling of Methane and Carbon Dioxide Mediated by Diatomic Copper Boride Cations. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiang Chen
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 P. R. China
| | - Li-Xue Jiang
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
50
|
Chen Q, Zhao YX, Jiang LX, Chen JJ, He SG. Coupling of Methane and Carbon Dioxide Mediated by Diatomic Copper Boride Cations. Angew Chem Int Ed Engl 2018; 57:14134-14138. [PMID: 30203446 DOI: 10.1002/anie.201808780] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 11/11/2022]
Abstract
The use of CH4 and CO2 to produce value-added chemicals via direct C-C coupling is a challenging chemistry problem because of the inertness of these two molecules. Herein, mass spectrometric experiments and high-level quantum-chemical calculations have identified the first diatomic species (CuB+ ) that can couple CH4 with CO2 under thermal collision conditions to produce ketene (H2 C=C=O), an important intermediate in synthetic chemistry. The order to feed the reactants (CH4 and CO2 ) is important and CH4 should be firstly fed to produce the C2 product. Molecular-level mechanisms including control of product selectivity have been revealed for coupling of CH4 with CO2 under mild conditions.
Collapse
Affiliation(s)
- Qiang Chen
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Li-Xue Jiang
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|