1
|
Slimak S, Lietard A, Jordan KD, Verlet JRR. Effect of N Atom Substitution on Electronic Resonances: A 2D Photoelectron Spectroscopic and Computational Study of Anthracene, Acridine, and Phenazine Anions. J Phys Chem A 2024; 128:5321-5330. [PMID: 38935624 PMCID: PMC11247488 DOI: 10.1021/acs.jpca.4c02756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The accommodation of an excess electron by polycyclic aromatic hydrocarbons (PAHs) has important chemical and technological implications ranging from molecular electronics to charge balance in interstellar molecular clouds. Here, we use two-dimensional photoelectron spectroscopy and equation-of-motion coupled-cluster calculations of the radical anions of acridine (C13H9N-) and phenazine (C12H8N2-) and compare our results for these species to those for the anthracene anion (C14H10-). The calculations predict the observed resonances and additionally find low-energy two-particle-one-hole states, which are not immediately apparent in the spectra, and offer a slightly revised interpretation of the resonances in anthracene. The study of acridine and phenazine allows us to understand how N atom substitution affects electron accommodation. While the electron affinity associated with the ground state anion undergoes a sizable increase with the successive substitution of N atoms, the two lowest energy excited anion states are not affected significantly by the substitution. The net result is that there is an increase in the energy gap between the two lowest energy resonances and the bound ground electronic state of the radical anion from anthracene to acridine to phenazine. Based on an energy gap law for the rate of internal conversion, this increased gap makes ground state formation progressively less likely, as evidenced by the photoelectron spectra.
Collapse
Affiliation(s)
- Stephen Slimak
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Aude Lietard
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| | - Kenneth D. Jordan
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jan R. R. Verlet
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of
Sciences, Dolejškova
3, Prague 8 18223, Czech Republic
| |
Collapse
|
2
|
Ashworth EK, Ashworth SH, Bull JN. Spectroscopy and dynamics of isolated anions: Versatile instrumentation for photodetachment and photoelectron spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:075103. [PMID: 38984887 DOI: 10.1063/5.0207759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Molecular anions are appealing targets for study because, compared with their neutral and cationic counterparts, they can be probed with conventional laboratory lasers without the need for multiphoton ionization schemes, and they provide spectroscopic details on the corresponding neutral molecules. Here, we describe a section of a modular instrument designed to perform high-throughput photoelectron and photodetachment spectroscopy of gas-phase anions, with future provision for time-resolved and isomer-selective spectroscopy. The instrument framework allows for the incorporation and adaptation of several ion sources, as demonstrated here with plasma (electric) discharge sources providing variable hard to soft ion generation conditions. The generated anions are separated according to their mass-to-charge ratio through time-of-flight mass spectrometry (m/zΔm/z = 500-600) and are focused into a set of perpendicular velocity-map imaging electrodes (ΔEE≈4%), where mass-selected anions are probed using laser light and the ejected electrons are velocity-map imaged. Instrument performance is demonstrated through the acquisition of photodetachment and photoelectron spectra for CH2CN-, showing sharp resonances in the vicinity of the detachment threshold assigned to rovibrational states of a dipole-bound anion and broader lifetime-limited spectral features at photon energies well above the threshold assigned to prompt autodetachment from a temporary anion resonance. Similar measurements could be performed on any molecular anions generated in the sources.
Collapse
Affiliation(s)
- Eleanor K Ashworth
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Stephen H Ashworth
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - James N Bull
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
3
|
Clarke CJ, Verlet JRR. Dynamics of Anions: From Bound to Unbound States and Everything In Between. Annu Rev Phys Chem 2024; 75:89-110. [PMID: 38277700 DOI: 10.1146/annurev-physchem-090722-125031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Gas-phase anions present an ideal playground for the exploration of excited-state dynamics. They offer control in terms of the mass, extent of solvation, internal temperature, and conformation. The application of a range of ion sources has opened the field to a vast array of anionic systems whose dynamics are important in areas ranging from biology to star formation. Here, we review recent experimental developments in the field of anion photodynamics, demonstrating the detailed insight into photodynamical and electron-capture processes that can be uncovered. We consider the electronic and nuclear ultrafast dynamics of electronically bound excited states along entire reaction coordinates; electronically unbound states showing that photochemical concepts, such as chromophores and Kasha's rule, are transferable to electron-driven chemistry; and nonvalence states that straddle the interface between bound and unbound states. Finally, we consider likely developments that are sure to keep the field of anion dynamics buoyant and impactful.
Collapse
Affiliation(s)
- Connor J Clarke
- Department of Chemistry, Durham University, Durham, United Kingdom;
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham, United Kingdom;
| |
Collapse
|
4
|
Uleanya KO, Anstöter CS, Dessent CEH. Photodissociative decay pathways of the flavin mononucleotide anion and its complexes with tryptophan and glutamic acid. Phys Chem Chem Phys 2023; 25:30697-30707. [PMID: 37934009 DOI: 10.1039/d3cp04359b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Flavin mononucleotide (FMN) is a highly versatile biological chromophore involved in a range of biochemical pathways including blue-light sensing proteins and the control of circadian rhythms. Questions exist about the effect of local amino acids on the electronic properties and photophysics of the chromophore. Using gas-phase anion laser photodissociation spectroscopy, we have measured the intrinsic electronic spectroscopy (3.1-5.7 eV) and accompanying photodissociative decay pathways of the native deprotonated form of FMN, i.e. [FMN-H]- complexed with the amino acids tryptophan (TRP) and glutamic acid (GLU), i.e. [FMN-H]-·TRP and [FMN-H]-·GLU, to investigate the extent to which these amino acids perturb the electronic properties and photodynamics of the [FMN-H]- chromophore. The overall photodepletion profiles of [FMN-H]-·TRP and [FMN-H]-·GLU are similar to that of the monomer, revealing that amino acid complexation occurs without significant spectral shifting of the [FMN-H]- electronic excitations over this region. Both [FMN-H]-·TRP and [FMN-H]-·GLU are observed to decay by non-statistical photodecay pathways, although the behaviour of [FMN-H]-·TRP is closer to statistical fragmentation. Long-lived FMN excited states (triplet) are therefore relatively quenched when TRP binds to [FMN-H]-. Importantly, we find that [FMN-H]-, [FMN-H]-·TRP and [FMN-H]-·GLU all decay predominantly via electron detachment following photoexcitation of the flavin chromophore, with amino acid complexation appearing not to inhibit this decay channel. The strong propensity for electron detachment is attributed to excited-state proton transfer within FMN, with proton transfer from a ribose alcohol to the phosphate preceding electron detachment.
Collapse
Affiliation(s)
- Kelechi O Uleanya
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Cate S Anstöter
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | | |
Collapse
|
5
|
Zhang YR, Yuan DF, Qian CH, Zhu GZ, Wang LS. Role of Polarization Interactions in the Formation of Dipole-Bound States. J Am Chem Soc 2023. [PMID: 37368495 DOI: 10.1021/jacs.3c04740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Even though there is a critical dipole moment required to support a dipole-bound state (DBS), how molecular polarizability may influence the formation of DBSs is not well understood. Pyrrolide, indolide, and carbazolide provide an ideal set of anions to systematically examine the role of polarization interactions in the formation of DBSs. Here, we report an investigation of carbazolide using cryogenic photodetachment spectroscopy and high-resolution photoelectron spectroscopy (PES). A polarization-assisted DBS is observed at 20 cm-1 below the detachment threshold for carbazolide, even though the carbazolyl neutral core has a dipole moment (2.2 D) smaller than the empirical critical value (2.5 D) to support a dipole-bound state. Photodetachment spectroscopy reveals nine vibrational Feshbach resonances of the DBS, as well as three intense and broad shape resonances. The electron affinity of carbazolyl is measured accurately to be 2.5653 ± 0.0004 eV (20,691 ± 3 cm-1). The combination of photodetachment spectroscopy and resonant PES allows fundamental frequencies for 14 vibrational modes of carbazolyl to be measured. The three shape resonances are due to above-threshold excitation to the three low-lying electronic states (S1-S3) of carbazolide. Resonant PES of the shape resonances is dominated by autodetachment processes. Ultrafast relaxation from the S2 and S3 states to S1 is observed, resulting in constant kinetic energy features in the resonant PES. The current study provides decisive information about the role that polarization plays in the formation of DBSs, as well as rich spectroscopic information about the carbazolide anion and the carbazolyl radical.
Collapse
Affiliation(s)
- Yue-Rou Zhang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Dao-Fu Yuan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chen-Hui Qian
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Guo-Zhu Zhu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
6
|
Cooper G, Clarke CJ, Verlet JRR. Low-Energy Shape Resonances of a Nucleobase in Water. J Am Chem Soc 2022; 145:1319-1326. [PMID: 36584340 PMCID: PMC9853861 DOI: 10.1021/jacs.2c11440] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When high-energy radiation passes through aqueous material, low-energy electrons are produced which cause DNA damage. Electronic states of anionic nucleobases have been suggested as an entrance channel to capture the electron. However, identifying these electronic resonances have been restricted to gas-phase electron-nucleobase studies and offer limited insight into the resonances available within the aqueous environment of DNA. Here, resonance and detachment energies of the micro-hydrated uracil pyrimidine nucleobase anion are determined by two-dimensional photoelectron spectroscopy and are shown to extrapolate linearly with cluster size. This extrapolation allows the corresponding resonance and detachment energies to be determined for uracil in aqueous solution as well as the reorganization energy associated with electron capture. Two shape resonances are clearly identified that can capture low-energy electrons and subsequently form the radical anion by solvent stabilization and internal conversion to the ground electronic state. The resonances and their dynamics probed here are the nucleobase-centered doorway states for low-energy electron capture and damage in DNA.
Collapse
|
7
|
Sagan CR, Anstöter CS, Thodika M, Wilson KD, Matsika S, Garand E. Spectroscopy and Theoretical Modeling of Tetracene Anion Resonances. J Phys Chem Lett 2022; 13:10245-10252. [PMID: 36301005 DOI: 10.1021/acs.jpclett.2c02931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The positions and widths of the optically allowed electronic states of the tetracene radical anion located above the detachment threshold energy (i.e anion resonances) are mapped out using total photodetachment yield spectroscopy of cryogenically cooled ions. The presence of these states is detected via the sharp increase in the photodetachment yield compared to that of the monotonic nonresonant direct photodetachment background. The resolution of the resulting spectrum is limited by the ∼5 cm-1 line width of the tunable laser and thus provides a stringent benchmark for computations of the energies and autodetachment lifetimes of these resonance states. The experimental results are compared to high-level electronic structure computations and line width modeling using the orbital stabilization method. These theoretical results are found to be in near quantitative agreement with the experimental data, highlighting their capability to accurately describe the energies and lifetimes of anion resonances for relatively large molecules.
Collapse
Affiliation(s)
- Cole R Sagan
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| | - Cate S Anstöter
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
- Department of Chemistry, University of York, Heslington YO10 5DD, U.K
| | - Mushir Thodika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Kenneth D Wilson
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Etienne Garand
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Gibbard JA, Verlet JRR. Kasha's Rule and Koopmans' Correlations for Electron Tunnelling through Repulsive Coulomb Barriers in a Polyanion. J Phys Chem Lett 2022; 13:7797-7801. [PMID: 35973214 PMCID: PMC9421885 DOI: 10.1021/acs.jpclett.2c02145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/11/2022] [Indexed: 05/17/2023]
Abstract
The long-range electronic structure of polyanions is defined by the repulsive Coulomb barrier (RCB). Excited states can decay by resonant electron tunnelling through RCBs, but such decay has not been observed for electronically excited states other than the first excited state, suggesting a Kasha-type rule for resonant electron tunnelling. Using action spectroscopy, photoelectron imaging, and computational chemistry, we show that the fluorescein dianion, Fl2-, partially decays through electron tunnelling from the S2 excited state, thus demonstrating anti-Kasha behavior, and that resonant electron tunnelling adheres to Koopmans' correlations, thus disentangling different channels.
Collapse
Affiliation(s)
- Jemma A. Gibbard
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jan R. R. Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
9
|
Ranković M, Nag P, Anstöter CS, Mensa-Bonsu G, Kumar T P R, Verlet JRR, Fedor J. Resonances in nitrobenzene probed by the electron attachment to neutral and by the photodetachment from anion. J Chem Phys 2022; 157:064302. [PMID: 35963718 DOI: 10.1063/5.0101358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We probe resonances (transient anions) in nitrobenzene with the focus on the electron emission from these. Experimentally, we populate resonances in two ways: either by the impact of free electrons on the neutral molecule or by the photoexcitation of the bound molecular anion. These two excitation means lead to transient anions in different initial geometries. In both cases, the anions decay by electron emission and we record the electron spectra. Several types of emission are recognized, differing by the way in which the resulting molecule is vibrationally excited. In the excitation of specific vibrational modes, distinctly different modes are visible in electron collision and photodetachment experiments. The unspecific vibrational excitation, which leads to the emission of thermal electrons following the internal vibrational redistribution, shows similar features in both experiments. A model for the thermal emission based on a detailed balance principle agrees with the experimental findings very well. Finally, a similar behavior in the two experiments is also observed for a third type of electron emission, the vibrational autodetachment, which yields electrons with constant final energies over a broad range of excitation energies. The entrance channels for the vibrational autodetachment are examined in detail, and they point to a new mechanism involving a reverse valence to non-valence internal conversion.
Collapse
Affiliation(s)
- Miloš Ranković
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Pamir Nag
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Cate S Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Golda Mensa-Bonsu
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Ragesh Kumar T P
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Juraj Fedor
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| |
Collapse
|
10
|
Wong NGK, Rankine CD, Anstöter CS, Dessent CEH. Photostability of the deprotonated forms of the UV filters homosalate and octyl salicylate: molecular dissociation versus electron detachment following UV excitation. Phys Chem Chem Phys 2022; 24:17068-17076. [PMID: 35791920 PMCID: PMC9301628 DOI: 10.1039/d2cp01612e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While common molecular anions show a strong propensity to undergo electron detachment upon UV excitation, this process often occurs in competition with molecular ion dissociation. The factors that affect the balance between these two major possible decay pathways have not been well understood to date. Laser photodissociation spectroscopy of the deprotonated forms of the UV filter molecules, Homosalate (HS) and Octyl Salicylate (OS), i.e. [HS - H]- and [OS - H]-, was used to acquire gas-phase UV absorption spectra for [HS - H]- and [OS - H]-via photodepletion from 3.0-5.8 eV. No photofragmentation (i.e. dissociation of the ionic molecular framework) was observed for either [HS - H]- and [OS - H]- following photoexcitation, revealing that electron loss entirely dominates the electronic decay pathways for these systems. High-level quantum chemical calculations were used to map out the excited states associated with [HS - H]- and [OS - H]-, revealing that the minimum-energy crossing points (MECPs) between the S1 and S0 states are located in elevated regions of the potential energy surface, making internal conversion unlikely. These results are consistent with our experimental observation that electron detachment out-competes hot ground state molecular fragmentation. More generally, our results reveal that the competition between molecular dissociation and electron detachment following anion photoexcitation can be determined by the magnitude of the energy gap between the excitation energy and the MECPs, rather than being a simple function of whether the excitation energy lies above the anion's vertical detachment energy.
Collapse
Affiliation(s)
- Natalie G K Wong
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| | - Conor D Rankine
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle, upon Tyne, UK
| | - Cate S Anstöter
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| | | |
Collapse
|
11
|
Stockett MH, Bull JN, Schmidt HT, Zettergren H. Statistical vibrational autodetachment and radiative cooling rates of para-benzoquinone. Phys Chem Chem Phys 2022; 24:12002-12010. [PMID: 35535575 DOI: 10.1039/d2cp00490a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report measurements of the statistical vibrational autodetachment (VAD, also called thermionic emission) and radiative cooling rates of isolated para-benzoquinone (pBQ, C6H4O2) radical anions using the cryogenic electrostatic ion storage ring facility DESIREE. The results are interpreted using master equation simulations with rate coefficients calculated using statistical detailed balance theory. The VAD rate is determined by measuring the time-dependent yield of neutral pBQ due to spontaneous electron emission from a highly-excited ensemble of anions formed in an electron-attachment ion source. Competition with radiative cooling quenches the VAD rate after a critical time of τc = 11.00(5) ms. Master equation simulations which reproduce the VAD yield provide an estimate of the initial effective vibrational temperature of the ions of 1100(20) K, and provide insight into the anion formation scenario. A second measurement of the radiative cooling rate of pBQ- stored for up to 0.5 s was achieved using time-dependent photodetachment action spectroscopy across the 2Au ← 2B2g and 2B2u ← 2B2g transitions. The rate at which hot-band contributions fade from the action spectrum is quantified by non-negative matrix factorisation. This is found to be commensurate with the average vibrational energy extracted from the simulations, with 1/e lifetimes of 0.16(3) s and 0.1602(7) s, respectively. Implications for astrochemistry are discussed.
Collapse
Affiliation(s)
- Mark H Stockett
- Department of Physics, Stockholm University, Stockholm, Sweden.
| | - James N Bull
- School of Chemistry, University of East Anglia, Norwich, UK
| | | | | |
Collapse
|
12
|
Anstöter CS, Verlet JRR. A Hückel Model for the Excited-State Dynamics of a Protein Chromophore Developed Using Photoelectron Imaging. Acc Chem Res 2022; 55:1205-1213. [PMID: 35172580 PMCID: PMC9084545 DOI: 10.1021/acs.accounts.1c00780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chemistry can be described as the movement of nuclei within molecules and the concomitant instantaneous change in electronic structure. This idea underpins the central chemical concepts of potential energy surfaces and reaction coordinates. To experimentally capture such chemical change therefore requires methods that can probe both the nuclear and electronic structure simultaneously and on the time scale of atomic motion. In this Account, we show how time-resolved photoelectron imaging can do exactly this and how it can be used to build a detailed and intuitive understanding of the electronic structure and excited-state dynamics of chromophores. The chromophore of the photoactive yellow protein (PYP) is used as a case study. This chromophore contains a para-substituted phenolate anion, where the substituent, R, can be viewed as an acrolein derivative. It is shown that the measured photoelectron angular distribution can be directly related to the electronic structure of the para-substituted phenolate anion. By incrementally considering differing R groups, it is also shown that these photoelectron angular distributions are exquisitely sensitive to the conformational flexibility of R and that when R contains a π-system the excited states of the chromophore can be viewed as a linear combination of the π* molecular orbitals on the phenolate (πPh*) and the R substituent (πR*). Such Hückel treatment shows that the S1 state of the PYP chromophore has predominantly πR* character and that it is essentially the same as the chromophore of the green fluorescent protein (GFP). The S1 excited-state dynamics of the PYP chromophore probed by time-resolved photoelectron imaging clearly reveals both structural (nuclear) dynamics through the energy spectrum and electronic dynamics through the photoelectron angular distributions. Both motions can be accurately assigned using quantum chemical calculations, and these are consistent with the intuitive Hückel treatment presented. The photoactive protein chromophores considered here are examples of where a chemists' intuitive Hückel view for ground-state chemistry appears to be transferable to the prediction of photochemical excited-state reactivity. While elegant and insightful, such models have limitations, including nonadiabatic dynamics, which is present in a related PYP chromophore, where a fraction of the S1 state population forms a nonvalence (dipole-bound) state of the anion.
Collapse
Affiliation(s)
- Cate S. Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jan R. R. Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
13
|
Lietard A, Verlet JRR. Effect of Microhydration on the Temporary Anion States of Pyrene. J Phys Chem Lett 2022; 13:3529-3533. [PMID: 35420036 PMCID: PMC9084602 DOI: 10.1021/acs.jpclett.2c00523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The influence of incremental hydration (≤4) on the electronic resonances of the pyrene anion is studied using two-dimensional photoelectron spectroscopy. The photoexcitation energies of the resonances do not change; therefore, from the anion's perspective, the resonances remain the same, but from the neutral's perspective of the electron-molecule reaction, the resonances decrease in energy by the binding energy of the water molecules. The autodetachment of the resonances shows that hydration has very little effect, showing that even the dynamics of most of the resonances are not impacted by hydration. Two specific resonances do show changes that are explained by the closing of specific autodetachment channels. The lowest-energy resonance leads to efficient electron capture as observed through thermionic emission and evaporation of water molecules (dissociative electron attachment). The implications of low-energy electron capture in dense molecular interstellar clouds are discussed.
Collapse
|
14
|
Asfandiarov NL, Muftakhov MV, Pshenichnyuk SA, Rakhmeev RG, Safronov AM, Markova AV, Vorob'ev AS, Luxford TFM, Kočišek J, Fedor J. Non-covalent anion structures in dissociative electron attachment to some brominated biphenyls. J Chem Phys 2021; 155:244302. [PMID: 34972364 DOI: 10.1063/5.0074013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The present work combines experiment and theory to reveal the behavior of bromo-substituted-biphenyls after an electron attachment. We experimentally determine anion lifetimes using an electron attachment-magnetic sector mass spectrometer instrument. Branching ratios of dissociative electron attachment fragments on longer timescales are determined using the electron attachment-quadrupole mass spectrometer instrument. In all cases, fragmentation is low: Only the Br- and [M-Br]- ions are detected, and [M-H]- is observed only in the case of 4-Br-biphenyl and parent anion lifetimes as long as 165 µs are observed. Such lifetimes are contradictory to the dissociation rates of 2- and 4-bromobiphenyl, as measured by the pulse radiolysis method to be 3.2 × 1010 and >5 × 1010 s-1, respectively. The discrepancy is plausibly explained by our calculation of the potential energy surface of the dissociating anion. Isolated in vacuum, the bromide anion can orbit the polarized aromatic radical at a long distance. A series of local minima on the potential energy surface allows for a roaming mechanism prolonging the detection time of such weakly bound complex anions. The present results illuminate the behavior recently observed in a series of bromo-substituted compounds of biological as well as technological relevance.
Collapse
Affiliation(s)
- N L Asfandiarov
- Institute of Molecule and Crystal Physics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Prospekt Oktyabrya 151, Ufa 450075, Russia
| | - M V Muftakhov
- Institute of Molecule and Crystal Physics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Prospekt Oktyabrya 151, Ufa 450075, Russia
| | - S A Pshenichnyuk
- Institute of Molecule and Crystal Physics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Prospekt Oktyabrya 151, Ufa 450075, Russia
| | - R G Rakhmeev
- Institute of Molecule and Crystal Physics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Prospekt Oktyabrya 151, Ufa 450075, Russia
| | - A M Safronov
- Institute of Molecule and Crystal Physics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Prospekt Oktyabrya 151, Ufa 450075, Russia
| | - A V Markova
- Institute of Molecule and Crystal Physics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Prospekt Oktyabrya 151, Ufa 450075, Russia
| | - A S Vorob'ev
- Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, 141700 Dolgoprudny, Moscow Region, Russia
| | - T F M Luxford
- Department of Dynamics of Molecules and Clusters, J. Heyrovský Institute of Physical Chemistry of Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - J Kočišek
- Department of Dynamics of Molecules and Clusters, J. Heyrovský Institute of Physical Chemistry of Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - J Fedor
- Department of Dynamics of Molecules and Clusters, J. Heyrovský Institute of Physical Chemistry of Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
15
|
Gibbard JA, Clarke CJ, Verlet JRR. Photoelectron spectroscopy of the protoporphyrin IX dianion. Phys Chem Chem Phys 2021; 23:18425-18431. [PMID: 34612383 DOI: 10.1039/d1cp03075b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional photoelectron spectroscopy using nanosecond and femtosecond lasers has been used to study the protopophyrin IX dianion at photon energies between 1.8-4.1 eV. The photoelectron spectra indicated the presence of two direct detachment channels, tunnelling through the repulsive Coulomb barrier (RCB) and thermionic emission from monoanions. A direct detachment feature suggested a near 0 eV electron affinity, which may be attributable to the repulsive through space interaction of the unshielded carboxylate groups. The minimum height of the repulsive Coulomb barrier (RCB) was found to be between 1.4-1.9 eV. Adiabatic tunnelling through the RCB was seen to occur on a timescale faster than rotational dephasing of the molecule. The observation of thermionic emission below the RCB in the nanosecond spectra originated from monoanions, which were produced via photon-cycling of the dianion.
Collapse
Affiliation(s)
- Jemma A Gibbard
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| | | | | |
Collapse
|
16
|
Lietard A, Verlet JRR, Slimak S, Jordan KD. Temporary Anion Resonances of Pyrene: A 2D Photoelectron Imaging and Computational Study. J Phys Chem A 2021; 125:7004-7013. [PMID: 34369146 DOI: 10.1021/acs.jpca.1c05586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The low-energy electron-scattering resonances of pyrene were characterized using experimental and computational methods. Experimentally, a two-dimensional photoelectron imaging of the pyrene anion was used to probe the dynamics of resonances over the first 4 eV of the continuum. Computationally, the energies and character of the anion states were determined using equation-of-motion coupled cluster calculations, while taking specific care to avoid the collapse onto discretized continuum levels, and an application of the pairing theorem. Our results are in good agreement with the predictions of electron-scattering calculations that include an offset and with the pyrene anion absorption spectrum in a glass matrix. Taken together, we offer an assignment of the first five electronic resonances of pyrene. Some of the population in the lowest-energy 2B1u resonance was observed to decay to the ground electronic state of the anion, while all other resonances decay by a direct autodetachment. The astronomical relevance of a ground-state electron capture proceeding via a low-energy resonance in pyrene is discussed.
Collapse
Affiliation(s)
- Aude Lietard
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Stephen Slimak
- Department of Chemistry, University of Pittsburgh, Pittsburgh 15260, Pennsylvania, United States
| | - Kenneth D Jordan
- Department of Chemistry, University of Pittsburgh, Pittsburgh 15260, Pennsylvania, United States
| |
Collapse
|
17
|
Sagan CR, Garand E. Anion Resonances and Photoelectron Spectroscopy of the Tetracenyl Anion. J Phys Chem A 2021; 125:7014-7022. [PMID: 34370462 DOI: 10.1021/acs.jpca.1c05938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photoelectron spectroscopy of the tetracenyl anion using slow electron velocity-map imaging (SEVI) of cryogenically cooled ions is presented. The total photodetachment yield as a function of photon energy is used to reveal a rich manifold of anion excited states above the detachment threshold. The lowest energy anionic resonance has a sufficiently long lifetime to yield a vibrationally resolved absorption spectrum that can be directly compared with theoretical predictions. Excitation of this state mostly results in electron detachment via thermionic emission. The total photodetachment yield spectrum is used to select photon wavelengths that minimize the indirect detachment signal to allow acquisition of vibrationally resolved photoelectron spectra that can inform on the neutral tetracenyl radical. Assignment of spectral features corresponding to the ground and first excited state of the neutral 12-tetracenyl isomer is made with the aid of Franck-Condon simulations. This yields adiabatic electron affinity and term energies that differ significantly from the previously reported values. Weak features corresponding to the ground state of the minor 2-teracenyl and 1-tetracenyl isomers are also identified, which allows for the experimental determination of their electron affinities for the first time.
Collapse
Affiliation(s)
- Cole R Sagan
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Etienne Garand
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
18
|
Lietard A, Mensa-Bonsu G, Verlet JRR. The effect of solvation on electron capture revealed using anion two-dimensional photoelectron spectroscopy. Nat Chem 2021; 13:737-742. [PMID: 33941903 DOI: 10.1038/s41557-021-00687-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
The reaction of low-energy electrons with neutral molecules to form anions plays an important role in chemistry, being involved in, for example, various biological and astrochemical processes. However, key aspects of electron-molecule interactions, such as the effect of incremental solvation on the initially excited electronic resonances, remain poorly understood. Here two-dimensional photoelectron spectroscopy of anionic anthracene and nitrogen-substituted derivatives-solvated by up to five water molecules-reveals that for an incoming electron, resonances red-shift with increasing hydration; but for the anion, the excitation energies of the resonances remain essentially the same. These complementary points of view show that the observed onset of enhanced anion formation for a specific cluster size is mediated by a bound excited state of the anion. Our findings suggest that polycyclic aromatic hydrocarbons may be more efficient at electron capture than previously predicted with important consequences for the ionization fraction in dense molecular clouds.
Collapse
Affiliation(s)
- Aude Lietard
- Department of Chemistry, Durham University, Durham, UK
| | | | | |
Collapse
|
19
|
Kang DH, Kim J, Kim SK. Recapture of the Nonvalence Excess Electron into the Excited Valence Orbital Leads to the Chemical Bond Cleavage in the Anion. J Phys Chem Lett 2021; 12:6383-6388. [PMID: 34232669 DOI: 10.1021/acs.jpclett.1c01789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The excess electron in the dipole-bound state (DBS) of the anion is found to be recaptured into the excited valence orbital localized at the positive end of the dipole, leading to the chemical bond cleavage of the anion. In the DBS of the 4-iodophenoxide anion, the extremely loosely bound electron (binding energy of 53 cm-1) is recaptured into the πσ* valence orbital, which is repulsive along the C-I bond extension coordinate, leading to the iodide (I-) and phenoxyl diradical (·C6H4O·) channel at the asymptotic limit. This is the first real-time observation of the state-specific relaxation (other than autodetachment) dynamics of the DBS and subsequent chemical reaction. The lifetime of the 4-iodophenoxide DBS at its zero-point energy (ZPE), which is measured for the cryogenically cooled trapped anion using the picosecond laser pump-probe scheme, has been estimated to be ∼9.5 ± 0.3 ps. Quantum mechanical calculations support the efficient transition from the DBS (below the detachment threshold) to the low-lying πσ* valence orbital of the first excited state of the anion. Similar experiments on 4-chlorophenoxide and 4-bromophenoxide anions indicate that the electron recaptures into excited valence orbitals hardly occur in the DBS of those anions, giving the long lifetimes (≫ns) at ZPE, suggesting that the internal conversion to S0 may be the major relaxation pathway for those anions.
Collapse
Affiliation(s)
- Do Hyung Kang
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Jinwoo Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
20
|
Anstöter CS, Verlet JRR. Modeling the Photoelectron Angular Distributions of Molecular Anions: Roles of the Basis Set, Orbital Choice, and Geometry. J Phys Chem A 2021; 125:4888-4895. [PMID: 34042462 DOI: 10.1021/acs.jpca.1c03379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A study investigating the effect of the basis set, orbital choice, and geometry on the modeling of photoelectron angular distributions (PADs) of molecular anions is presented. Experimental and modeled PADs for a number of molecular anions, including both closed- and open-shell systems, are considered. Guidelines are suggested for chemists who wish to design calculations to capture the correct chemical physics of the anisotropy of photodetachment, while balancing the computational cost associated with larger molecular anions.
Collapse
Affiliation(s)
- Cate S Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
21
|
Castellani ME, Avagliano D, Verlet JRR. Ultrafast Dynamics of the Isolated Adenosine-5'-triphosphate Dianion Probed by Time-Resolved Photoelectron Imaging. J Phys Chem A 2021; 125:3646-3652. [PMID: 33882670 DOI: 10.1021/acs.jpca.1c01646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The excited state dynamics of the doubly deprotonated dianion of adenosine-5'-triphosphate, [ATP-H2]2-, has been spectroscopically explored by time-resolved photoelectron spectroscopy following excitation at 4.66 eV. Time-resolved photoelectron spectra show that two competing processes occur for the initially populated 1ππ* state. The first is rapid electron emission by tunneling through a repulsive Coulomb barrier as the 1ππ* state is a resonance. The second is nuclear motion on the 1ππ* state surface leading to an intermediate that no longer tunnels and subsequently decays by internal conversion to the ground electronic state. The spectral signatures of the features are similar to those observed for other adenine-derivatives, suggesting that this nucleobase is quite insensitive to the nearby negative charges localized on the phosphates, except of course for the appearance of the additional electron tunneling channel, which is open in the dianion.
Collapse
Affiliation(s)
| | - Davide Avagliano
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17 1090 Vienna, Austria
| | - Jan R R Verlet
- Department of Chemistry, Durham University, DH1 3LE Durham, U.K
| |
Collapse
|
22
|
Uleanya KO, Dessent CEH. Investigating the mapping of chromophore excitations onto the electron detachment spectrum: photodissociation spectroscopy of iodide ion-thiouracil clusters. Phys Chem Chem Phys 2021; 23:1021-1030. [PMID: 33428696 DOI: 10.1039/d0cp05920j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Laser photodissociation spectroscopy (3.1-5.7 eV) has been applied to iodide complexes of the non-native nucleobases, 2-thiouracil (2-TU), 4-thiouracil (4-TU) and 2,4-thiouracil (2,4-TU), to probe the excited states and intracluster electron transfer as a function of sulphur atom substitution. Photodepletion is strong for all clusters (I-·2-TU, I-·4-TU and I-·2,4-TU) and is dominated by electron detachment processes. For I-·4-TU and I-·2,4-TU, photodecay is accompanied by formation of the respective molecular anions, 4-TU- and 2,4-TU-, behaviour that is not found for other nucleobases. Notably, the I-·2TU complex does not fragment with formation of its molecular anion. We attribute the novel formation of 4-TU- and 2,4-TU- to the fact that these valence anions are significantly more stable than 2-TU-. We observe further similar behaviour for I-·4-TU and I-·2,4-TU relating to the general profile of their photodepletion spectra, since both strongly resemble the intrinsic absorption spectra of the respective uncomplexed thiouracil molecule. This indicates that the nucleobase chromophore excitations are determining the clusters' spectral profile. In contrast, the I-·2-TU photodepletion spectrum is dominated by the electron detachment profile, with the near-threshold dipole-bound excited state being the only distinct spectral feature. We discuss these observations in the context of differences in the dipole moments of the thionucleobases, and their impact on the coupling of nucleobase-centred transitions onto the electron detachment spectrum.
Collapse
Affiliation(s)
- Kelechi O Uleanya
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | | |
Collapse
|
23
|
Anstöter CS, Verlet JRR. Photoelectron imaging of the SO 3 anion: vibrational resolution in photoelectron angular distributions*. Mol Phys 2021. [DOI: 10.1080/00268976.2020.1821921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Ashworth EK, Anstöter CS, Verlet JRR, Bull JN. Autodetachment dynamics of 2-naphthoxide and implications for astrophysical anion abundance. Phys Chem Chem Phys 2021; 23:5817-5823. [PMID: 33686387 DOI: 10.1039/d1cp00261a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Astrochemical modelling has proposed that 10% or more of interstellar carbon could be tied up as polycyclic aromatic hydrocarbon (PAH) molecules. Developing reliable models of the interstellar carbon lifecycle requires calibration data obtained through laboratory studies on relevant chemical and physical processes, including on the photo-induced and electron-induced dynamics of potential interstellar PAHs. Here, the excited state dynamics of the S1(ππ*) state of 2-naphthoxide are investigated using frequency-, angle-, and time-resolved photoelectron imaging. Frequency-resolved photoelectron spectra taken over the S1(ππ*) band reveal low electron kinetic energy structure consistent with an indirect, vibrational mode-specific electron detachment mechanism. Time-resolved photoelectron imaging using a pump photon energy tuned to the 0-0 transition of the S1(ππ*) band (hν = 2.70 eV) and a non-resonant probe photon provides the excited state autodetachment lifetime at τ = 130 ± 10 fs. There is no evidence for internal conversion to the ground electronic state or a dipole-bound state. These results imply that 2-naphthoxide has no resilience to photodestruction through the absorption of visible radiation resonant with the S1(ππ*) band, and that electron capture by the S1(ππ*) state, which is formally a shape resonance, is not a doorway state to a stable interstellar anion.
Collapse
Affiliation(s)
- Eleanor K Ashworth
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Cate S Anstöter
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| | - James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
25
|
Zagorec-Marks W, Foreman MM, Weber JM. Tag-Free, Temperature Dependent Infrared Spectra of the GFP Chromophore: Revisiting the Question of Isomerism. J Phys Chem A 2020; 124:7827-7831. [PMID: 32866387 DOI: 10.1021/acs.jpca.0c07172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report infrared spectra of a model chromophore of green fluorescent protein, prepared in an ion trap at temperatures ranging from 30 K to room temperature. We compare the changes in the infrared spectrum with predicted infrared spectra for the Z and E isomers of this molecule, and we confirm that the molecule exists as the Z isomer at low temperatures. We revisit the question whether or not it can thermally isomerize in the temperature range of this experiment, and we find no evidence for isomerization.
Collapse
Affiliation(s)
- Wyatt Zagorec-Marks
- JILA and Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| | - Madison M Foreman
- JILA and Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| | - J Mathias Weber
- JILA and Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
26
|
Kossoski F, Barbatti M. Nonadiabatic dynamics in multidimensional complex potential energy surfaces. Chem Sci 2020; 11:9827-9835. [PMID: 34094243 PMCID: PMC8162122 DOI: 10.1039/d0sc04197a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Despite the continuous development of theoretical methodologies for describing nonadiabatic dynamics of molecular systems, there is a lack of approaches for processes where the norm of the wave function is not conserved, i.e., when an imaginary potential accounts for some irreversible decaying mechanism. Current approaches rely on building potential energy surfaces of reduced dimensionality, which is not optimal for more involving and realistic multidimensional problems. Here, we present a novel methodology for describing the dynamics of complex-valued molecular Hamiltonians, which is a generalisation of the trajectory surface hopping method. As a first application, the complex surface fewest switches surface hopping (CS-FSSH) method was employed to survey the relaxation mechanisms of the shape resonant anions of iodoethene. We have provided the first detailed and dynamical picture of the π*/σ* mechanism of dissociative electron attachment in halogenated unsaturated compounds, which is believed to underlie electron-induced reactions of several molecules of interest. Electron capture into the π* orbital promotes C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C stretching and out-of-plane vibrations, followed by charge transfer from the double bond into the σ* orbital at the C–I bond, and, finally, release of the iodine ion, all within only 15 fs. On-the-fly dynamics simulations of a vast class of processes can be envisioned with the CS-FSSH methodology, including autoionisation from transient anions, core-ionised and superexcited states, Auger and interatomic coulombic decay, and time-dependent luminescence. Despite the continuous development of methods for describing nonadiabatic dynamics, there is a lack of multidimensional approaches for processes where the wave function norm is not conserved. A new surface hopping variant closes this knowledge gap.![]()
Collapse
|
27
|
Anstöter CS, Mensa-Bonsu G, Nag P, Ranković M, Kumar T P R, Boichenko AN, Bochenkova AV, Fedor J, Verlet JRR. Mode-Specific Vibrational Autodetachment Following Excitation of Electronic Resonances by Electrons and Photons. PHYSICAL REVIEW LETTERS 2020; 124:203401. [PMID: 32501066 DOI: 10.1103/physrevlett.124.203401] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Electronic resonances commonly decay via internal conversion to vibrationally hot anions and subsequent statistical electron emission. We observed vibrational structure in such an emission from the nitrobenzene anion, in both the 2D electron energy loss and 2D photoelectron spectroscopy of the neutral and anion, respectively. The emission peaks could be correlated with calculated nonadiabatic coupling elements for vibrational modes to the electronic continuum from a nonvalence dipole-bound state. This autodetachment mechanism via a dipole-bound state is likely to be a common feature in both electron and photoelectron spectroscopies.
Collapse
Affiliation(s)
- Cate S Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Golda Mensa-Bonsu
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Pamir Nag
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Miloš Ranković
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Ragesh Kumar T P
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Anton N Boichenko
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | - Juraj Fedor
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
28
|
Mensa-Bonsu G, Lietard A, Tozer DJ, Verlet JRR. Low energy electron impact resonances of anthracene probed by 2D photoelectron imaging of its radical anion. J Chem Phys 2020; 152:174303. [PMID: 32384861 DOI: 10.1063/5.0007470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Electron-molecule resonances of anthracene were probed by 2D photoelectron imaging of the corresponding radical anion up to 3.7 eV in the continuum. A number of resonances were observed in both the photoelectron spectra and angular distributions, and most resonances showed clear autodetachment dynamics. The resonances were assigned using density functional theory calculations and are consistent with the available literature. Competition between direct and autodetachment, as well as signatures of internal conversion between resonances, was observed for some resonances. For the 12B2g resonance, a small fraction of population recovers the ground electronic state as evidenced by thermionic emission. Recovery of the ground electronic state offers a route of producing anions in an electron-molecule reaction; however, the energy at which this occurs suggests that anthracene anions cannot be formed in the interstellar medium by electron capture through this resonance.
Collapse
Affiliation(s)
- Golda Mensa-Bonsu
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Aude Lietard
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - David J Tozer
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
29
|
Verlet JRR, Anstöter CS, Bull JN, Rogers JP. Role of Nonvalence States in the Ultrafast Dynamics of Isolated Anions. J Phys Chem A 2020; 124:3507-3519. [PMID: 32233436 PMCID: PMC7212518 DOI: 10.1021/acs.jpca.0c01260] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Nonvalence states
of neutral molecules (Rydberg states) play important
roles in nonadiabatic dynamics of excited states. In anions, such
nonadiabatic transitions between nonvalence and valence states have
been much less explored even though they are believed to play important
roles in electron capture and excited state dynamics of anions. The
aim of this Feature Article is to provide an overview of recent experimental
observations, based on time-resolved photoelectron imaging, of valence
to nonvalence and nonvalence to valence transitions in anions and
to demonstrate that such dynamics may be commonplace in the excited
state dynamics of molecular anions and cluster anions.
Collapse
Affiliation(s)
- Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Cate S Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Joshua P Rogers
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
30
|
Bull JN, Anstöter CS, Verlet JRR. Fingerprinting the Excited-State Dynamics in Methyl Ester and Methyl Ether Anions of Deprotonated para-Coumaric Acid. J Phys Chem A 2020; 124:2140-2151. [PMID: 32105474 DOI: 10.1021/acs.jpca.9b11993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chromophores based on the para-hydroxycinnamate moiety are widespread in the natural world, including as the photoswitching unit in photoactive yellow protein and as a sunscreen in the leaves of plants. Here, photodetachment action spectroscopy combined with frequency- and angle-resolved photoelectron imaging is used to fingerprint the excited-state dynamics over the first three bright action-absorption bands in the methyl ester anions (pCEs-) of deprotonated para-coumaric acid at a temperature of ∼300 K. The excited states associated with the action-absorption bands are classified as resonances because they are situated in the detachment continuum and are open to autodetachment. The frequency-resolved photoelectron spectrum for pCEs- indicates that all photon energies over the S1(ππ*) band lead to similar vibrational autodetachment dynamics. The S2(nπ*) band is Herzberg-Teller active and has comparable brightness to the higher lying 21(ππ*) band. The frequency-resolved photoelectron spectrum over the S2(nπ*) band indicates more efficient internal conversion to the S1(ππ*) state for photon energies resonant with the Franck-Condon modes (∼80%) compared with the Herzberg-Teller modes (∼60%). The third action-absorption band, which corresponds to excitation of the 21(ππ*) state, shows complex and photon energy-dependent dynamics, with 20-40% of photoexcited population internally converting to the S1(ππ*) state. There is also evidence for a mode-specific competition between prompt autodetachment and internal conversion on the red edge of the 21(ππ*) band. There is no evidence for recovery of the ground electronic state and statistical electron ejection (thermionic emission) following photoexcitation over any of the three action-absorption bands. The photoelectron spectra for the deprotonated methyl ether derivative (pCEt-) at photon energies over the S1(ππ*) and S2(nπ*) bands indicate diametrically opposed dynamics compared with pCEs-, namely, intense thermionic emission due to efficient recovery of the ground electronic state.
Collapse
Affiliation(s)
- James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Cate S Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, U.K
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, U.K
| |
Collapse
|
31
|
Khatymov RV, Shchukin PV, Muftakhov MV, Yakushchenko IK, Yarmolenko OV, Pankratyev EY. A unified statistical RRKM approach to the fragmentation and autoneutralization of metastable molecular negative ions of hexaazatrinaphthylenes. Phys Chem Chem Phys 2020; 22:3073-3088. [PMID: 31965122 DOI: 10.1039/c9cp05397b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the compounds promising for use as n-type semiconductors in organic electronics and energy storage devices, hexaazatrinaphthylene (HATNA) and its derivative hexamethoxy-hexaazatrinaphthylene (HMHATA), the monomolecular processes occurring under the exposure of molecules to low-energy (0-15 eV) free electrons were studied by means of resonant electron capture negative ion mass spectrometry. Resonant electron attachment results in the formation of eminently long-lived molecular negative ions (MNIs) in an abnormally wide range of incident electron energy (Ee) from 0 to 5-7 eV. For both compounds, this observation serves as an indication of the strong electron-accepting properties and high stability of MNIs against electron autodetachment. A weak yield of the only fragment NIs, dehydrogenated anions, was detected for HATNA at Ee > 6 eV. MNIs of HMHATA are less stable to dissociative decay because of the presence of weakly bound terminal substituents. This is evidenced by the mass spectral observation of intense fragmentation occurring above Ee≈ 1 eV and leading to a loss of up to 3 methyl groups as the Ee increases. A series of metastable NI peaks observed in the mass spectra testify to the delayed and sequential nature of fragmentation. Based on the principles of statistical Rice-Ramsperger-Kassel-Marcus (RRKM) theory, the theoretical model of dissociative decay of NIs was developed and then adopted to quantify the rates of ground-state anion decay via electron autodetachment. The experimentally measured electron autodetachment lifetimes and fragmentation rates were best reproduced by the model at molecular adiabatic electron affinities preset to 2.15 eV for HATNA and 1.88 eV for HMHATA, in reasonable agreement with the quantum chemical DFT PBE/3ζ predictions.
Collapse
Affiliation(s)
- Rustem V Khatymov
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450075, Russia.
| | - Pavel V Shchukin
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450075, Russia.
| | - Mars V Muftakhov
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450075, Russia.
| | - Igor K Yakushchenko
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russia
| | - Ol'ga V Yarmolenko
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russia
| | - Evgeniy Yu Pankratyev
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450075, Russia.
| |
Collapse
|
32
|
Zagorec-Marks W, Foreman MM, Verlet JRR, Weber JM. Cryogenic Ion Spectroscopy of the Green Fluorescent Protein Chromophore in Vacuo. J Phys Chem Lett 2019; 10:7817-7822. [PMID: 31682445 DOI: 10.1021/acs.jpclett.9b02916] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present the spectrum of the S1 ← S0 transition of an anionic model for the chromophore of the green fluorescent protein in vacuo at cryogenic temperatures, showing previously unresolved vibrational features, and resolving the band origin at 20 930 cm-1 (477.8 nm) with unprecedented accuracy. The vibrational spectrum establishes that the molecule is in the Z isomer at low temperature. At increased temperature, the S1 ← S0 band shifts to the red, which we tentatively attribute to emergent population of the E isomer.
Collapse
Affiliation(s)
- Wyatt Zagorec-Marks
- JILA and Department of Chemistry , University of Colorado , Boulder , Colorado 80309-0440 , United States
| | - Madison M Foreman
- JILA and Department of Chemistry , University of Colorado , Boulder , Colorado 80309-0440 , United States
| | - Jan R R Verlet
- Department of Chemistry , Durham University , Durham , DH1 3LE , U.K
| | - J Mathias Weber
- JILA and Department of Chemistry , University of Colorado , Boulder , Colorado 80309-0440 , United States
| |
Collapse
|
33
|
Mensa-Bonsu G, Wilson MR, Tozer DJ, Verlet JRR. Photoelectron spectroscopy of para-benzoquinone cluster anions. J Chem Phys 2019; 151:204302. [PMID: 31779316 DOI: 10.1063/1.5132391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The photoelectron spectra of para-benzoquinone radical cluster anions, (pBQ)n - (n = 2-4), taken at hv = 4.00 eV are presented and compared with the photoelectron spectrum of the monomer (n = 1). For all clusters, a direct detachment peak can be identified, and the incremental increase in the vertical detachment energy of ∼0.4 eV n-1 predominantly reflects the increase in cohesion energy as the cluster size increases. For all clusters, excitation also leads to low energy electrons that are produced by thermionic emission from ground electronic state anionic species, indicating that resonances are excited at this photon energy. For n = 3 and 4, photoelectron features at lower binding energy are observed which can be assigned to photodetachment from pBQ- for n = 3 and both pBQ- and (pBQ)2 - for n = 4. These observations indicate that the cluster dissociates on the time scale of the laser pulse (∼5 ns). The present results are discussed in the context of related quinone cluster anions.
Collapse
Affiliation(s)
- Golda Mensa-Bonsu
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Mark R Wilson
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - David J Tozer
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
34
|
Mensa-Bonsu G, Lietard A, Verlet JRR. Enhancement of electron accepting ability of para-benzoquinone by a single water molecule. Phys Chem Chem Phys 2019; 21:21689-21692. [PMID: 31552961 DOI: 10.1039/c9cp04559g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Electron acceptors built upon the para-benzoquinone (pBQ) electrophore are ubiquitous in nature. Here, we present a frequency-resolved photoelectron spectroscopic study of the cold pBQ radical anion, pBQ-, solvated by a single water molecule, as commonly encountered in nature. Our results show that the electron accepting ability is enhanced by the single water molecule and by elevated temperatures.
Collapse
|
35
|
Mensa-Bonsu G, Tozer DJ, Verlet JRR. Photoelectron spectroscopic study of I -·ICF 3: a frontside attack S N2 pre-reaction complex. Phys Chem Chem Phys 2019; 21:13977-13985. [PMID: 30534728 DOI: 10.1039/c8cp06593d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodetachment and 2D photoelectron spectra of the mass-selected I-·CF3I complex are presented together with electronic structure calculations. Calculations show that the I- is located at the iodine side of CF3I. Vertical and adiabatic detachment energies were measured at 4.03 and approximately 3.8 eV, respectively. The photoelectron spectra and molecular orbitals show a significant covalent bonding character in the cluster. The presence of electronic excited states is observed. Below threshold, iodide is generated which can be assigned to the photoexcitation of degenerate charge-transfer bands from the off-axis p-orbitals localised on iodide. Near the onset of two spin-orbit thresholds, bright excited states are seen in the experiment and calculations. Excitation of these leads to the formation of slow electrons. The spectroscopy of I-·CF3I is compared to the well-studied I-·CH3I cluster, a pre-reaction complex in the text-book I- + CH3I SN2 reaction. Despite the reversed stereodynamics (i.e. inversion of the CX3 between X = H and F) of the SN2 reaction, striking similarities are seen. Both complexes possess charge transfer excited states near their respective vertical detachment energies and exhibit vibrational structure in their photoelectron spectra. The strong binding is consistent with observations in crossed molecular beam studies and molecular dynamics simulations that suggest that iodine as a leaving group in an SN2 reaction affects the reaction dynamics.
Collapse
|
36
|
Kunin A, Neumark DM. Time-resolved radiation chemistry: femtosecond photoelectron spectroscopy of electron attachment and photodissociation dynamics in iodide-nucleobase clusters. Phys Chem Chem Phys 2019; 21:7239-7255. [PMID: 30855623 DOI: 10.1039/c8cp07831a] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Iodide-nucleobase (I-·N) clusters studied by time-resolved photoelectron spectroscopy (TRPES) are an opportune model system for examining radiative damage of DNA induced by low-energy electrons. By initiating charge transfer from iodide to the nucleobase and following the dynamics of the resulting transient negative ions (TNIs) with femtosecond time resolution, TRPES provides a novel window into the chemistry triggered by the attachment of low-energy electrons to nucleobases. In this Perspective, we examine and compare the dynamics of electron attachment, autodetachment, and photodissociation in a variety of I-·N clusters, including iodide-uracil (I-·U), iodide-thymine (I-·T), iodide-uracil-water (I-·U·H2O), and iodide-adenine (I-·A), to develop a more unified representation of our understanding of nucleobase TNIs. The experiments probe whether dipole-bound or valence-bound TNIs are formed initially and the subsequent time evolution of these species. We also provide an outlook for forthcoming applications of TRPES to larger iodide-containing complexes to enable the further investigation of microhydration dynamics in nucleobases, as well as electron attachment and photodissociation in more complex nucleic acid constituents.
Collapse
Affiliation(s)
- Alice Kunin
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
37
|
Khatymov RV, Muftakhov MV, Tuktarov RF, Raitman OA, Shokurov AV, Pankratyev EY. Fragmentation and slow autoneutralization of isolated negative molecular ions of phthalocyanine and tetraphenylporphyrin. J Chem Phys 2019; 150:134301. [PMID: 30954040 DOI: 10.1063/1.5087182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Macrocyclic tetrapyrrolic compounds, such as naturally occurring or artificial porphyrins and phthalocyanines, have unique and highly attractive properties for applications in medicine and technology. The interaction of free-base phthalocyanine (H2Pc) and tetraphenylporphyrin (H2TPP) molecules with low-energy (0-15 eV) electrons was studied in vacuo by means of negative ion resonant electron capture mass spectrometry. Close similarities in formation and decay of negative ions of these compounds were revealed. Efficient formation of long-lived molecular negative ions (MNIs) was observed in the incident electron energy range of 0-8 eV, unprecedentedly wide for organic compounds and comparable to the range characteristic to carbon atomic clusters, fullerenes. Experiments testify to the strong persistence of MNIs of both compounds to dissociative decay, isomerization, and electron autodetachment. Lifetimes of MNIs as a function of incident electron energy were measured and it was concluded that the isolated anions may retain additional electrons in a time scale of up to hundreds of seconds at standard temperature due to the high adiabatic electron affinity of these large molecules. For the representatives of dyes and photochromic compounds comprehensively studied in terms of interaction with light, the present work highlights yet another unique property of these molecules, namely the capability to attach and durably retain an additional electron of low, pre-ionization energy.
Collapse
Affiliation(s)
- Rustem V Khatymov
- Institute of Molecule and Crystal Physics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences (IMCP UFRC RAS), Prospekt Oktyabrya 151, Ufa 450075, Russia
| | - Mars V Muftakhov
- Institute of Molecule and Crystal Physics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences (IMCP UFRC RAS), Prospekt Oktyabrya 151, Ufa 450075, Russia
| | - Renat F Tuktarov
- Institute of Molecule and Crystal Physics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences (IMCP UFRC RAS), Prospekt Oktyabrya 151, Ufa 450075, Russia
| | - Oleg A Raitman
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences (IPCE RAS), Leninsky prospect, 31k4, Moscow 199071, Russia
| | - Alexander V Shokurov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences (IPCE RAS), Leninsky prospect, 31k4, Moscow 199071, Russia
| | - Evgeniy Yu Pankratyev
- Institute of Molecule and Crystal Physics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences (IMCP UFRC RAS), Prospekt Oktyabrya 151, Ufa 450075, Russia
| |
Collapse
|
38
|
Muftakhov MV, Shchukin PV. Resonant electron capture by uridine and deoxyuridine molecules: Fragmentation with charge transfer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:482-490. [PMID: 30430683 DOI: 10.1002/rcm.8354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
RATIONALE Charge transfer via DNA plays an important role in physical and chemical processes in biological systems, and is used in biomolecular electronics. The present study considers the resonant interaction of free electrons with nucleosides, which is important for an understanding of the processes of electron transport in DNA. METHODS Resonant electron capture negative ion mass spectrometry was used to study the processes of low-energy electron attachment to two uracil nucleosides, uridine and deoxyuridine, while density functional theory (DFT) calculations were used to analyze the energy aspects of ion formation and decay. RESULTS Short-lived molecular ions, formed via mechanisms of π* shape resonances, were found in the energy region below 5 eV. The fragmentation channels of these resonances and the structures of the charged and neutral products formed were determined. CONCLUSIONS These results suggest that the formation of some fragment negative ions occurs through intramolecular charge transfer.
Collapse
Affiliation(s)
- Mars V Muftakhov
- Institute of Molecule and Crystal Physics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, IMCP UFRC RAS, Prospekt Oktyabrya 151, 450075, Ufa, Russia
| | - Pavel V Shchukin
- Institute of Molecule and Crystal Physics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, IMCP UFRC RAS, Prospekt Oktyabrya 151, 450075, Ufa, Russia
| |
Collapse
|
39
|
Lim JS, You HS, Kim SY, Kim SK. Experimental observation of nonadiabatic bifurcation dynamics at resonances in the continuum. Chem Sci 2019; 10:2404-2412. [PMID: 30881669 PMCID: PMC6385646 DOI: 10.1039/c8sc04859b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/04/2019] [Indexed: 11/23/2022] Open
Abstract
The surface crossing of bound and unbound electronic states in multidimensional space often gives rise to resonances in the continuum. This situation happens in the πσ*-mediated photodissociation reaction of 2-fluorothioanisole; optically-bright bound S1 (ππ*) vibrational states of 2-fluorothioanisole are strongly coupled to the optically-dark S2 (πσ*) state, which is repulsive along the S-CH3 elongation coordinate. It is revealed here that the reactive flux prepared at such resonances in the continuum bifurcates into two distinct reaction pathways with totally different dynamics in terms of energy disposal and nonadiabatic transition probability. This indicates that the reactive flux in the Franck-Condon region may either undergo nonadiabatic transition funneling through the conical intersection from the upper adiabat, or follow a low-lying adiabatic path, along which multiple dynamic saddle points may be located. Since 2-fluorothioanisole adopts a nonplanar geometry in the S1 minimum energy, the quasi-degenerate S1/S2 crossing seam in the nonplanar geometry, which lies well below the planar S1/S2 conical intersection, is likely responsible for the efficient vibronic coupling, especially in the low S1 internal energy region. As the excitation energy increases, bound-to-continuum coupling is facilitated with the aid of intramolecular vibrational redistribution, along many degrees of freedom spanning the large structural volume. This leads to the rapid domination of the continuum character of the reactive flux. This work reports direct and robust experimental observations of the nonadiabatic bifurcation dynamics of the reactive flux occurring at resonances in the continuum of polyatomic molecules.
Collapse
Affiliation(s)
- Jean Sun Lim
- Department of Chemistry , KAIST , Daejeon 34141 , Republic of Korea .
| | - Hyun Sik You
- Department of Chemistry , KAIST , Daejeon 34141 , Republic of Korea .
| | - So-Yeon Kim
- Department of Chemistry , KAIST , Daejeon 34141 , Republic of Korea .
| | - Sang Kyu Kim
- Department of Chemistry , KAIST , Daejeon 34141 , Republic of Korea .
| |
Collapse
|
40
|
Rogers JP, Anstöter CS, Bull JN, Curchod BFE, Verlet JRR. Photoelectron Spectroscopy of the Hexafluorobenzene Cluster Anions: (C 6F 6) n- ( n = 1-5) and I -(C 6F 6). J Phys Chem A 2019; 123:1602-1612. [PMID: 30694676 DOI: 10.1021/acs.jpca.8b11627] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Frequency-resolved (2D) photoelectron (PE) spectra of the anionic clusters (C6F6) n-, for n = 1-5, and time-resolved PE spectra of I-C6F6 are presented using a newly built instrument and supported by electronic structure calculations. From the 2D PE spectra, the vertical detachment energy (VDE) of C6F6- was measured to be 1.60 ± 0.01 eV, and the adiabatic detachment energy (ADE) was ≤0.70 eV. The PE spectra also contain fingerprints of resonance dynamics over certain photon energy ranges, in agreement with the calculations. An action spectrum over the lowest resonance is also presented. The 2D spectra of (C6F6) n- show that the cluster can be described as C6F6-(C6F6) n-1. The VDE increases linearly (200 ± 20 meV n-1) due to the stabilizing influence on the anion of the solvating C6F6 molecules. For I-C6F6, action spectra of the absorption just below both detachment channels are presented. Time-resolved PE spectra of I-C6F6 excited at 3.10 eV and probed at 1.55 eV reveal a short-lived nonvalence state of C6F6- that coherently evolves into the valence ground state of the anion and induces vibrational motion along a specific buckling coordinate. Electronic structure calculations along the displacement of this mode show that at the extreme buckling angle the probe can access an excited state of the anion that is bound at that geometry but adiabatically unbound. Hence, slow electrons are emitted and show dynamics that predominantly probe the outer-turning point of the motion. A PE spectrum taken at t = 0 contains a vibrational structure assigned to a specific Raman- or IR-active mode of C6F6.
Collapse
Affiliation(s)
- Joshua P Rogers
- Department of Chemistry , Durham University , Durham DH1 3LE , United Kingdom
| | - Cate S Anstöter
- Department of Chemistry , Durham University , Durham DH1 3LE , United Kingdom
| | - James N Bull
- Department of Chemistry , Durham University , Durham DH1 3LE , United Kingdom
| | - Basile F E Curchod
- Department of Chemistry , Durham University , Durham DH1 3LE , United Kingdom
| | - Jan R R Verlet
- Department of Chemistry , Durham University , Durham DH1 3LE , United Kingdom
| |
Collapse
|
41
|
Affiliation(s)
- Alice Henley
- Department of Chemistry, University College London, London, UK
| | | |
Collapse
|
42
|
Rogers JP, Anstöter CS, Verlet JRR. Evidence of Electron Capture of an Outgoing Photoelectron Wave by a Nonvalence State in (C 6F 6) n. J Phys Chem Lett 2018; 9:2504-2509. [PMID: 29694047 DOI: 10.1021/acs.jpclett.8b00739] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Frequency-resolved photoelectron spectra are presented for (C6F6) n- with n = 1-5 that show that C6F6- is solvated by neutral C6F6 molecules. Direct photodetachment channels of C6F6- are observed for all n, leaving the neutral in the S0 ground state or triplet states, T1 and T2. For n ≥ 2, an additional indirect electron loss channel is observed when the triplet-state channels open. This indirect emission appears to arise from the electron capture of the outgoing photoelectron s-wave by a neutral solvent molecule through an anion nonvalence state. The same process is not observed for the S0 detachment channel because the outgoing electron wave is predominantly a p-wave. Our results show that anion nonvalence states can act as electron-accepting states in cluster environments and can be viewed as precursor states for diffuse states of liquid C6F6.
Collapse
Affiliation(s)
- Joshua P Rogers
- Department of Chemistry , Durham University , Durham DH1 3LE , United Kingdom
| | - Cate S Anstöter
- Department of Chemistry , Durham University , Durham DH1 3LE , United Kingdom
| | - Jan R R Verlet
- Department of Chemistry , Durham University , Durham DH1 3LE , United Kingdom
| |
Collapse
|
43
|
Anstöter CS, Gartmann TE, Stanley LH, Bochenkova AV, Verlet JRR. Electronic structure of the para-dinitrobenzene radical anion: a combined 2D photoelectron imaging and computational study. Phys Chem Chem Phys 2018; 20:24019-24026. [DOI: 10.1039/c8cp04877k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2D photoelectron spectroscopy combined with high-level ab initio calculations provides insights into the dissociative electron attachment of para-dinitrobenzene.
Collapse
Affiliation(s)
- Cate S. Anstöter
- Department of Chemistry
- Durham University
- Durham DH1 3LE
- UK
- Department of Chemistry
| | | | | | | | | |
Collapse
|
44
|
Cercola R, Matthews E, Dessent CEH. Photoexcitation of Adenosine 5'-Triphosphate Anions in Vacuo: Probing the Influence of Charge State on the UV Photophysics of Adenine. J Phys Chem B 2017; 121:5553-5561. [PMID: 28521097 DOI: 10.1021/acs.jpcb.7b03435] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the first UV laser photodissociation spectra (4.0-5.8 eV) of gas-phase deprotonated adenosine 5'-triphosphate, diphosphate and monophosphate anions. The photodepletion spectra of these anions display strong absorption bands across the region of 4.6-5.2 eV, consistent with excitation of a primarily adenine-centered π-π* transition. The spectra appear insensitive to the charge of the species (i.e., the spectrum of [ATP-2H]2- closely resembles that of [ATP-H]-), while the spectral profile is affected to a greater extent by the variation of the molecular structure, i.e. the [AMP-H]- and [ADP-H]- photodepletion spectra display similar profiles while the [ATP-H]- spectrum is distinctive. The photodepletion cross-section also decreases for the ATP anions compared to both the AMP and ADP anions, reflecting a high intrinsic photostability of ATP versus both AMP and ADP. A range of photofragments are produced across the 4.0-5.8 eV spectral range for all of the ATP analogues studied. These fragments are primarily associated with fragmentation on the ground-state electronic surface, indicative of a statistical decay process where ultrafast decay is followed by ergodic dissociation. However, while the photofragments observed following photoexcitation of the monoanionic species, [AMP-H]- to [ADP-H]- to [ATP-H]- are entirely consistent with statistical decay, an additional group of photofragments are observed for the dianionic species, [ADP-2H]2- and [ATP-2H]2-, that we associate with electron detachment, and subsequent fragmentation of the resulting electron-detached photofragment. TDDFT calculations are presented to support the interpretation of the experimental data, and confirm that the electronic structure of the adenine moiety is relatively unperturbed by varying the overall charge.
Collapse
Affiliation(s)
- Rosaria Cercola
- Department of Chemistry, University of York , Heslington, York, YO10 5DD, U.K
| | - Edward Matthews
- Department of Chemistry, University of York , Heslington, York, YO10 5DD, U.K
| | | |
Collapse
|
45
|
Anstöter CS, Dean CR, Verlet JRR. Sensitivity of Photoelectron Angular Distributions to Molecular Conformations of Anions. J Phys Chem Lett 2017; 8:2268-2273. [PMID: 28471670 DOI: 10.1021/acs.jpclett.7b00726] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An anion photoelectron imaging study probing the sensitivity of the photoelectron angular distribution (PAD) to conformational changes is presented. The PADs of a series of para-substituted phenolate anions is compared with those calculated using the Dyson orbital formalization. Good agreement was attained for the two observed direct detachment channels of all anions, except for the lowest-energy detachment channel of para-ethyl phenolate for which two conformations exist that yield very different PADs. The conformational freedom leads to an observed PAD that is the incoherent sum of the PADs from all conformers populated under experimental conditions. In contrast, a second detachment channel shows no sensitivity to the conformational flexibility of para-ethyl phenolate. Our results show that PADs can provide detailed information about the electronic structure of the anion and its conformations.
Collapse
Affiliation(s)
- Cate S Anstöter
- Department of Chemistry, Durham University , Durham DH1 3LE, United Kingdom
| | - Charlie R Dean
- Department of Chemistry, Durham University , Durham DH1 3LE, United Kingdom
| | - Jan R R Verlet
- Department of Chemistry, Durham University , Durham DH1 3LE, United Kingdom
| |
Collapse
|
46
|
Stanley LH, Anstöter CS, Verlet JRR. Resonances of the anthracenyl anion probed by frequency-resolved photoelectron imaging of collision-induced dissociated anthracene carboxylic acid. Chem Sci 2017; 8:3054-3061. [PMID: 28451374 PMCID: PMC5380881 DOI: 10.1039/c6sc05405f] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/01/2017] [Indexed: 01/04/2023] Open
Abstract
The use of CID and photoelectron spectroscopy of organic carboxylic acid anions is discussed as a route to studying the dynamics of resonances in polyaromatic hydrocarbon (PAH) anions.
Resonances in polyaromatic hydrocarbon (PAH) anions are key intermediates in a number of processes such as electron transfer in organic electronics and electron attachment in the interstellar medium. Here we present a frequency- and angle-resolved photoelectron imaging study of the 9-anthracenyl anion generated through collision induced dissociation (CID) of its electrosprayed deprotonated anthracene carboxylic acid anion. We show that a number of π* resonances are active in the first 2.5 eV above the threshold. The photoelectron spectra and angular distributions revealed that nuclear dynamics compete with autodetachment for one of the resonances, while higher-lying resonances were dominated by prompt autodetachment. Based on electronic structure calculations, these observations were accounted for on the basis of the expected autodetachment rates of the resonances. Virtually no ground state recovery was observed, suggesting that the smallest deprotonated PAH that leads to ground state recovery is the tetracenyl anion, for which clear thermionic emission has been observed. The use of CID and photodissociation of organic carboxylic acid anions is discussed as a route to studying the dynamics of resonances in larger PAH anions.
Collapse
Affiliation(s)
| | - Cate S Anstöter
- Department of Chemistry , Durham University , Durham DH1 3LE , UK .
| | - Jan R R Verlet
- Department of Chemistry , Durham University , Durham DH1 3LE , UK .
| |
Collapse
|
47
|
Bull JN, Verlet JRR. Dynamics of π*-resonances in anionic clusters of para-toluquinone. Phys Chem Chem Phys 2017; 19:26589-26595. [DOI: 10.1039/c7cp03628k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Frequency-resolved photoelectron spectroscopy applied to mass-selected cluster anions is an insightful approach to characterise the dynamics of π*-resonances with microsolvation.
Collapse
Affiliation(s)
- James N. Bull
- Department of Chemistry
- Durham University
- Durham DH1 3LE
- UK
- School of Chemistry
| | | |
Collapse
|
48
|
Anstöter CS, Dean CR, Verlet JRR. Chromophores of chromophores: a bottom-up Hückel picture of the excited states of photoactive proteins. Phys Chem Chem Phys 2017; 19:29772-29779. [DOI: 10.1039/c7cp05766k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Many photoactive proteins contain chromophores based on para-substituted phenolate anions which are an essential component of their electronic structure.
Collapse
|
49
|
West CW, Bull JN, Verlet JRR. Charged Particle Imaging of the Deprotonated Octatrienoic Acid Anion: Evidence for a Photoinduced Cyclization Reaction. J Phys Chem Lett 2016; 7:4635-4640. [PMID: 27809535 DOI: 10.1021/acs.jpclett.6b02302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoelectron spectroscopy of the deprotonated octatrienoic acid anion, [C7H9-CO2]-, shows the formation of [C7H9]- and loss of H- at hν = 4.13 eV. Using velocity map imaging, the H- fragment was characterized to have a Boltzmann-like kinetic energy distribution consistent with dissociation on a ground electronic state. Similar dynamics were not observed at hν = 4.66 eV even though there is clear evidence for recovery of the ground electronic state of [C7H9-CO2]-. In accord with supporting electronic structure calculations, the production of H- at hν = 4.13 eV is explained by excited-state dissociation of CO2 to form [C7H9]-, which subsequently undergoes a ring-closure isomerization reaction to yield toluene and H-. These data represent the first evidence for a photoinduced ring-closing isomerization reaction in an anionic polyene and provides an interesting example of the rich anion dynamics that can occur in the detachment continuum and that can influence photochemistry.
Collapse
Affiliation(s)
- Christopher W West
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa Oiwake-cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - James N Bull
- School of Chemistry, University of Melbourne , Parkville, Melbourne, Victoria 3010, Australia
| | - Jan R R Verlet
- Department of Chemistry, University of Durham , Durham DH1 3LE, United Kingdom
| |
Collapse
|