1
|
Nong X, Zhong S, Huang L, Xiao J, Hu Y, Xie Y. Nontargeted metabonomics analysis of Scorias spongiosa fruiting bodies at different growth stages. Front Microbiol 2024; 15:1478887. [PMID: 39539701 PMCID: PMC11557477 DOI: 10.3389/fmicb.2024.1478887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Scorias spongiosa is an edible fungus. Methods In this study, a nontargeted metabonomic analysis was conducted on the fruiting bodies of this fungus at five growth stages, and the differences in metabolites and the related metabolic pathways during growth and development were analysed. Results This study revealed that the five growth stages of S. spongiosa fruiting bodies were associated with 15 pathways. These 15 metabolic pathways are speculated to play important roles in the growth of S. spongiosa fruiting bodies. Eleven bioactive substances were identified among the differentially expressed compounds. The content of six bioactive substances was highest at the S1 growth stage among all the growth stages. The metabolites related to sugar metabolism were enriched in three main pathways: pentose and gluconate interconversions, the pentose phosphate pathway, and the citrate cycle (TCA cycle). Discussion These results suggested that the S1 growth stage can be selected as the harvest period of S. spongiosa in fruiting bodies to retain most of the bioactive substances. Pentose and gluconate interconversions, the pentose phosphate pathway, and the TCA cycle are related to changes in polysaccharide content during the growth of S. spongiosa fruiting bodies.
Collapse
Affiliation(s)
- Xiang Nong
- Forestry and Bamboo Industry Science and Technology Innovation Research Institute, Leshan Normal University, Leshan, China
- Provincial Engineering and Technology Research Center for Innovative Development of Bamboo Fiber Nutrition, Leshan Normal University, Leshan, China
- Bamboo Diseases and Pest Control and Resources Development Key Laboratory of Sichuan Province, Leshan, China
- School of Life Science, Leshan Normal University, Leshan, China
| | - Shengnan Zhong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lanying Huang
- Forestry and Bamboo Industry Science and Technology Innovation Research Institute, Leshan Normal University, Leshan, China
- Provincial Engineering and Technology Research Center for Innovative Development of Bamboo Fiber Nutrition, Leshan Normal University, Leshan, China
- Bamboo Diseases and Pest Control and Resources Development Key Laboratory of Sichuan Province, Leshan, China
- School of Life Science, Leshan Normal University, Leshan, China
| | - Jie Xiao
- School of Life Science, Leshan Normal University, Leshan, China
| | - Ye Hu
- Forestry and Bamboo Industry Science and Technology Innovation Research Institute, Leshan Normal University, Leshan, China
- Provincial Engineering and Technology Research Center for Innovative Development of Bamboo Fiber Nutrition, Leshan Normal University, Leshan, China
- Bamboo Diseases and Pest Control and Resources Development Key Laboratory of Sichuan Province, Leshan, China
- School of Life Science, Leshan Normal University, Leshan, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Munteanu C, Schwartz B. Interactions between Dietary Antioxidants, Dietary Fiber and the Gut Microbiome: Their Putative Role in Inflammation and Cancer. Int J Mol Sci 2024; 25:8250. [PMID: 39125822 PMCID: PMC11311432 DOI: 10.3390/ijms25158250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The intricate relationship between the gastrointestinal (GI) microbiome and the progression of chronic non-communicable diseases underscores the significance of developing strategies to modulate the GI microbiota for promoting human health. The administration of probiotics and prebiotics represents a good strategy that enhances the population of beneficial bacteria in the intestinal lumen post-consumption, which has a positive impact on human health. In addition, dietary fibers serve as a significant energy source for bacteria inhabiting the cecum and colon. Research articles and reviews sourced from various global databases were systematically analyzed using specific phrases and keywords to investigate these relationships. There is a clear association between dietary fiber intake and improved colon function, gut motility, and reduced colorectal cancer (CRC) risk. Moreover, the state of health is reflected in the reciprocal and bidirectional relationships among food, dietary antioxidants, inflammation, and body composition. They are known for their antioxidant properties and their ability to inhibit angiogenesis, metastasis, and cell proliferation. Additionally, they promote cell survival, modulate immune and inflammatory responses, and inactivate pro-carcinogens. These actions collectively contribute to their role in cancer prevention. In different investigations, antioxidant supplements containing vitamins have been shown to lower the risk of specific cancer types. In contrast, some evidence suggests that taking antioxidant supplements can increase the risk of developing cancer. Ultimately, collaborative efforts among immunologists, clinicians, nutritionists, and dietitians are imperative for designing well-structured nutritional trials to corroborate the clinical efficacy of dietary therapy in managing inflammation and preventing carcinogenesis. This review seeks to explore the interrelationships among dietary antioxidants, dietary fiber, and the gut microbiome, with a particular focus on their potential implications in inflammation and cancer.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Radović Jakovljević M, Grujičić D, Stanković M, Milošević-Djordjević O. Artemisia vulgaris L., Artemisia alba Turra and their constituents reduce mitomycin C-induced genomic instability in human peripheral blood lymphocytes in vitro. Drug Chem Toxicol 2024; 47:156-165. [PMID: 36476306 DOI: 10.1080/01480545.2022.2154358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
This study aimed to evaluate the effect of aqueous and acetone extracts from Artemisia vulgaris L. (AV) and Artemisia alba Turra (AA), and two major polyphenols compounds (3,5-dihydroxybenzoic acid and quercetin-3-O-glucopyranoside) presented in both extracts of the plants against mitomycin C (MMC)-induced genomic instability. Genomic instability was measured using cytokinesis block micronucleus (MN) assay in human peripheral blood lymphocytes (PBLs) in vitro by analyzing two biomarkers - MN and nuclear division index (NDI). Extracts were tested in a concentration-dependent manner (10-250 µg/mL), while 3,5-dihydroxybenzoic acid and quercetin-3-O-glucopyranoside were tested in three different concentrations, in combination with 0.5 µg/mL of MMC. Aqueous and acetone extracts obtained from both plants significantly reduced MMC-induced MN frequency in PBLs, compared to positive control cells (p < 0.05). Extracts from AV did not affect NDI, whereas the concentrations of 10-100 μg/mL of aqueous and acetone AA extracts significantly elevated MMC-decreased NDI values in comparison to positive control cells (p < 0.05). Combined treatment of 3,5-dihydroxybenzoic acid and MMC showed a significant reduction of MMC-induced MN frequency, while quercetin-3-O-glucopyranoside increased MN frequency compared to positive control cells (p < 0.05). Both compounds decreased NDI values but only at the highest tested concentration of quercetin-3-O-glucopyranoside it was of greater significance. In conclusion, all extracts from AV and AA and 3,5-dihydroxybenzoic acid showed protective effect, whereby aqueous AA demonstrated the highest protective effect on MMC- induced genomic instability, while quercetin-3-O-glucopyranoside showed co-mutagen effect.
Collapse
Affiliation(s)
| | - Darko Grujičić
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Kragujevac, Serbia
| | - Milan Stanković
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Kragujevac, Serbia
| | - Olivera Milošević-Djordjević
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Kragujevac, Serbia
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
4
|
Cheng J, Zhang G, Liu L, Luo J, Peng X. Anti-inflammatory activity of β-glucans from different sources before and after fermentation by fecal bacteria in vitro. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1116-1131. [PMID: 37740718 DOI: 10.1002/jsfa.12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/17/2023] [Accepted: 09/23/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND β-Glucans are widely sourced and have various physiological effects, including anti-inflammatory effects. However, the strength of the anti-inflammatory activity of β-glucans from different sources remains unknown due to the lack of rapid and effective biomarkers. This study therefore aimed to screen out the β-glucans with strong anti-inflammatory activity from five different sources and to further screen out possible biomarkers in metabolites after fermenting the β-glucans with gut microorganisms. RESULTS The results showed that all five β-glucans inhibited the production of lipopolysaccharide (LPS)-induced pro-inflammatory mediators and suppressed the mRNA expression level of TLR4/MyD88. Their anti-inflammatory mechanisms involved the inhibition of intracellular reactive oxygen species (ROS) production and suppression of mRNA expression of the NF-κB pathway and JNK pathway. Among them, barley β-glucan exhibited the strongest anti-inflammatory effect, followed by Ganoderma lucidum β-glucan. Enhanced anti-inflammatory activity of β-glucan was found after fermentation and may be related to the increased abundance of metabolites such as vanillin, dihydroxyphenylacetic acid, caffeic acid, acetic acid, butyric acid, and lactic acid. They were strongly positively correlated to the abundance of beneficial bacteria such as Blautia, suggesting that the production of those metabolites may be responsible for the flourishing of the beneficial bacteria. CONCLUSION In conclusion, barley was a preferred raw material for the preparation of β-glucans with strong anti-inflammatory activity. Vanillin, dihydroxyphenylacetic acid, caffeic acid, acetic acid, butyric acid, and lactic acid were the possible biomarkers that could be utilized to evaluate the anti-inflammatory effect of β-glucans. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Guangwen Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Liu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Chen T, Liu H, Song S, Qiang S, An Y, Li J, Liu J, Chen B, Chen L, Liu F, Liu R, Jiang X, Liao X. Synthesis and its biological activity of carboxymethyl hemicellulose p-hydroxybenzoate (P-CMHC). Carbohydr Res 2023; 534:108972. [PMID: 37852129 DOI: 10.1016/j.carres.2023.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Hemicellulose extracted from ecalyptus APMP pulping waste liquor and undergoes etherification modification to produce carboxymethyl hemicellulose (CMHC). Subsequently, CMHC undergoes esterification reaction with p-hydroxybenzoic acid to synthesize a novel polysaccharide-based preservative known as carboxymethyl hemicellulose p-hydroxybenzoate (P-CMHC). The synthesis conditions of P-CMHC were optimized using the response surface methodology, resulting in an optimal esterification condition that achieved a degree of substitution of 0.232. P-CMHC exhibits excellent antioxidant activity, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical scavenging activities. Additionally, it demonstrates favorable hygroscopic and moisturizing properties. Thiazole blue (MTT) experiments evaluating cell proliferation rate indicate that P-CMHC possesses negligible cytotoxicity, making it a promising, safe, and healthy preservative. Consequently, it can be considered as a new material for applications in the fields of biomedicine, food, and cosmetics.
Collapse
Affiliation(s)
- Ting Chen
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Haitang Liu
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin, 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China.
| | - Shunxi Song
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Sheng Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China; Patent Examination Cooperation Jiangsu Center of the Patent Office, CNIPA, Suzhou, Jiangsu Province, 215163, China
| | - Yongzhen An
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jie Li
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jing Liu
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Beibei Chen
- School of Biological Engineering, Tianjin University of Science & Technology, China
| | - Lin Chen
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Fufeng Liu
- School of Biological Engineering, Tianjin University of Science & Technology, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Xue Jiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Xiaoyuan Liao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
6
|
Roney M, Issahaku AR, Huq AM, Soliman MES, Tajuddin SN, Aluwi MFFM. Exploring the potential of biologically active phenolic acids from marine natural products as anticancer agents targeting the epidermal growth factor receptor. J Biomol Struct Dyn 2023; 42:13564-13587. [PMID: 37909584 DOI: 10.1080/07391102.2023.2276879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
The epidermal growth factor receptor (EGFR) dimerizes upon ligand bindings to the extracellular domain that initiates the downstream signaling cascades and activates intracellular kinase domain. Thus, activation of autophosphorylation through kinase domain results in metastasis, cell proliferation, and angiogenesis. The main objective of this research is to discover more promising anti-cancer lead compound against EGRF from the phenolic acids of marine natural products using in-silico approaches. Phenolic compounds reported from marine sources are reviewed from previous literatures. Furthermore, molecular docking was carried out using the online tool CB-Dock. The molecules with good docking and binding energies scores were subjected to ADME, toxicity and drug-likeness analysis. Subsequently, molecules from the docking experiments were also evaluated using the acute toxicity and MD simulation studies. Fourteen phenolic compounds from the reported literatures were reviewed based on the findings, isolation, characterized and applications. Molecular docking studies proved that the phenolic acids have good binding fitting by forming hydrogen bonds with amino acid residues at the binding site of EGFR. Chlorogenic acid, Chicoric acid and Rosmarinic acid showed the best binding energies score and forming hydrogen bonds with amino acid residues compare to the reference drug Erlotinib. Among these compounds, Rosmarinic acid showed the good pharmacokinetics profiles as well as acute toxicity profile. The MD simulation study further revealed that the lead complex is stable and could be future drug to treat the cancer disease. Furthermore, in a wet lab environment, both in-vitro and in-vivo testing will be employed to validate the existing computational results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| | - Abdul Rashid Issahaku
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Akm Moyeenul Huq
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- School of Medicine, Department of Pharmacy, University of Asia Pacific, Bangladesh
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Saiful Nizam Tajuddin
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| |
Collapse
|
7
|
Rohatgi A, Gupta P. Benzoic acid derivatives as potent antibiofilm agents against Klebsiella pneumoniae biofilm. J Biosci Bioeng 2023; 136:190-197. [PMID: 37479559 DOI: 10.1016/j.jbiosc.2023.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/23/2023]
Abstract
Klebsiella pneumoniae is responsible for a significant proportion of human urinary tract infections, and its biofilm is a major virulence. One potential approach to controlling biofilm-associated infections is targeting the adhesin MrkD1P to disrupt biofilm formation. We employed Schrodinger's Maestro tool with the OPLS 2005 force field to dock compounds with the target protein. Two benzoic acid derivatives, 3-hydroxy benzoic acid and 2,5-dihydroxybenzoic acid, had strong binding free energies (-55.57 and -18.68 kcal/mol) and were the most potent compounds. The in-vitro experiments were conducted to validate the in-silico results. The results showed that both compounds effectively inhibited biofilm formation at low concentrations (4 and 8 mg/mL, respectively) and had antibiofilm activity, restricting cell attachment. Both compounds demonstrated a strong biofilm inhibitory effect, with 97% and 89% reduction in biofilm by 3-hydroxy benzoic acid and 2,5-dihydroxybenzoic acid, respectively. These findings suggest that natural compounds can be a potential source of new drugs to combat biofilm-associated infections. The study highlights the potential of targeting adhesin MrkD1P as an effective approach to controlling biofilm-associated infections caused by K. pneumoniae. The results may have implications for the development of new therapies for biofilm-associated infections and pave the way for future research in this area.
Collapse
Affiliation(s)
- Anuj Rohatgi
- Department of Biotechnology, National Institute of Technology, Raipur 492010, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, Raipur 492010, India.
| |
Collapse
|
8
|
Sousa AH, Pereira JPG, Malaquias AC, Sagica FDES, de Oliveira EHC. Intracellular accumulation and DNA damage caused by methylmercury in glial cells. J Biochem Mol Toxicol 2022; 36:e23170. [PMID: 35822649 DOI: 10.1002/jbt.23170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/14/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022]
Abstract
Mercury is widely used in industrial and extractive processes, and the improper disposal of waste or products containing this metal produces a significant impact on ecosystems, causing adverse effects on living organisms, including humans. Exposure to methylmercury, a highly toxic organic compound, causes important neurological and developmental impairments. Recently, the genotoxicity of mercurial compounds has gained prominence as one of the possible mechanisms associated with the neurological effects of mercury, mostly by disturbing the mitotic spindle and causing chromosome loss. In this sense, it is important to investigate if these compounds can also cause direct damage to DNA, such as single and double-strand breaks. Thus, the aim of this study was to investigate the cytotoxic and genotoxic potential of methylmercury in cell lines derived from neurons (B103) and glia (C6), exposed to methylmercury (MeHg) for 24 h, by analyzing cell viability, metabolic activity, and damage to DNA and chromosomes. We found that in comparison to the neuronal cell line, glial cells showed higher tolerance to MeHg, and therefore a higher LC50 and consequent higher intracellular accumulation of Hg, which led to the occurrence of several genotoxic effects, as evidenced by the presence of micronuclei, bridges, sprouts, and chromosomal aberrations.
Collapse
Affiliation(s)
- Aline H Sousa
- Programa de Pós Graduação em Epidemiologia e vigilância em Saúde, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Seção de Bacteriologia, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - João P G Pereira
- Programa de Pós Graduação em Epidemiologia e vigilância em Saúde, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Allan C Malaquias
- Faculdade de Medicina, Universidade Federal do Pará, Campus de Altamira, Pará, Brazil
| | | | - Edivaldo H C de Oliveira
- Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Faculdade de Ciências Naturais, ICEN, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
9
|
Jing-Wei Z, Yi-Yuan S, Xin L, Hua Z, Hui N, Luo-Yun F, Ben-Hai X, Jin-Jin T, Lin-Shu J. Microbiome and Metabolic Changes of Milk in Response to Dietary Supplementation With Bamboo Leaf Extract in Dairy Cows. Front Nutr 2021; 8:723446. [PMID: 34595199 PMCID: PMC8476867 DOI: 10.3389/fnut.2021.723446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/29/2021] [Indexed: 01/11/2023] Open
Abstract
Bamboo leaf extracts, with high content of flavonoids and diverse biological activities, are used in animal husbandry. Increasing evidence has suggested an association between the bovine physiology and the udder microbiome, yet whether the microbiota and the metabolites of milk affect the mammary gland health or the milk quality remains unknown. In this study, we provide a potential mechanism for the effects of bamboo leaf extracts on milk microbiota and metabolites of dairy cows. Twelve multiparous lactating Chinese Holstein dairy cows were randomly separated into two groups: basal diet as the control group (CON, n = 6) and a diet supplemented with 30 g/d bamboo leaf extract per head as antioxidants of bamboo leaf (AOB) group (AOB, n = 6) for 7 weeks (2-week adaptation, 5-week treatment). Milk samples were collected at the end of the trial (week 7) for microbiome and associated metabolic analysis by 16S ribosomal RNA (rRNA) gene sequencing and liquid chromatography-mass spectrometry (LC-MS). The results showed that the milk protein was increased (p < 0.0001) and somatic cell count (SCC) showed a tendency to decrease (p = 0.09) with AOB supplementation. The relative abundance of Firmicutes was significantly decreased (p = 0.04) while a higher relative abundance of Probacteria (p = 0.01) was seen in the group receiving AOB compared to the CON group. The AOB group had a significantly lower relative abundance of Corynebacterium_1 (p = 0.01), Aerococcus (p = 0.01), and Staphylococcus (p = 0.02). There were 64 different types of metabolites significantly upregulated, namely, glycerophospholipids and fatty acyls, and 15 significantly downregulated metabolites, such as moracetin, sphinganine, and lactulose in the AOB group. Metabolic pathway analysis of the different metabolites revealed that the sphingolipid signaling pathway was significantly enriched, together with glycerophospholipid metabolism, sphingolipid metabolism, and necroptosis in response to AOB supplementation. Several typical metabolites were highly correlated with specific ruminal bacteria, demonstrating a functional correlation between the milk microbiome and the associated metabolites. These insights into the complex mechanism and corresponding biological responses highlight the potential function of AOB, warranting further investigation into the regulatory role of specific pathways in the metabolism.
Collapse
Affiliation(s)
- Zhan Jing-Wei
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Shen Yi-Yuan
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Li Xin
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Zhang Hua
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Niu Hui
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Fang Luo-Yun
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Xiong Ben-Hai
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tong Jin-Jin
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Jiang Lin-Shu
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
10
|
Dongmo LM, Guenang LS, Jiokeng SLZ, Kamdem AT, Doungmo G, Victor BC, Jović M, Lesch A, Tonlé IK, Girault H. A new sensor based on an amino-montmorillonite-modified inkjet-printed graphene electrode for the voltammetric determination of gentisic acid. Mikrochim Acta 2021; 188:36. [PMID: 33420843 DOI: 10.1007/s00604-020-04651-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022]
Abstract
An amperometric sensor based on an inkjet-printed graphene electrode (IPGE) modified with amine-functionalized montmorillonite (Mt-NH2) for the electroanalysis and quantification of gentisic acid (GA) has been developed. The organoclay used as IPGE modifier was prepared and characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, CHN elemental analysis, and thermogravimetry. The electrochemical features of the Mt-NH2/IPGE sensor were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The sensor exhibited charge selectivity ability which was exploited for the electrochemical oxidation of GA. The GA amperometric response was high in acidic medium (Brinton-Robinson buffer, pH 2) due to favorable interactions between the protonated amine groups and the negatively charged GA. Kinetic studies were also performed by cyclic voltammetry, and the obtained electron transfer rate constant of 11.3 s-1 indicated a fast direct electron transfer rate of GA to the electrode. An approach using differential pulse voltammetry was then developed for the determination of GA (at + 0.233 V vs. a pseudo Ag/Ag+ reference electrode), and under optimized conditions, the sensor showed high sensitivity, a wide working linear range from 1 to 21 μM (R2 = 0.999), and a low detection limit of 0.33 μM (0.051 ± 0.01 mg L-1). The proposed sensor was applied to quantify GA in a commercial red wine sample. The simple and rapid method developed using a cheap clay material could be employed for the determination of various phenolic acids.
Collapse
Affiliation(s)
- Liliane M Dongmo
- Department of Chemistry, Electrochemistry and Chemistry of Materials, University of Dschang, Dschang, Cameroon
| | - Léopoldine S Guenang
- Department of Chemistry, Electrochemistry and Chemistry of Materials, University of Dschang, Dschang, Cameroon
- Department of chemistry, Inorganic Chemistry Laboratory, University of Buea, Buea, Cameroon
| | - Sherman L Z Jiokeng
- Department of Chemistry, Electrochemistry and Chemistry of Materials, University of Dschang, Dschang, Cameroon
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS - Université de Lorraine, 405, rue de Vandœuvre, 54600, Villers-lès-Nancy, France
| | - Arnaud T Kamdem
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110, Freiburg, Germany
| | - Giscard Doungmo
- Department of Chemistry, Electrochemistry and Chemistry of Materials, University of Dschang, Dschang, Cameroon
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straβe 2, 24118, Kiel, Germany
| | - Bassetto C Victor
- Laboratoire d'Electrochimie Physique et Analytique, EPFL, Rue de l'Industrie, CH-1951, Sion, Switzerland
| | - Milica Jović
- Laboratoire d'Electrochimie Physique et Analytique, EPFL, Rue de l'Industrie, CH-1951, Sion, Switzerland
| | - Andreas Lesch
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Ignas K Tonlé
- Department of Chemistry, Electrochemistry and Chemistry of Materials, University of Dschang, Dschang, Cameroon.
| | - Hubert Girault
- Laboratoire d'Electrochimie Physique et Analytique, EPFL, Rue de l'Industrie, CH-1951, Sion, Switzerland
| |
Collapse
|
11
|
Rakhmaeva A, Nikitin E, Terenzhev D, Sharonova N, Beybulatov M. Evaluation of the effectiveness of the fungicidal effect of drugs against pathogens of cultivated grapes ( Vitis vinifera L.). BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213904003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Vitis vinifera L. cultural grape includes many varieties that are highly valued in winemaking and viticulture, as raw materials for the production of fresh and dried berries, for the production of wines. The fruits of cultural grapes play an important role in medicine, where they are used as a source of substances with high antioxidant activity. Grapes are often affected by phytopathogenic fungal infections. In recent years, a large number of reports have appeared in the literature about the acquisition of resistance of microorganisms to industrial pesticide preparations, which in turn leads to an increase in drug doses, the multiplicity of treatments and the accumulation of harmful substances in the environment and in the plants themselves. In this study, we evaluate the effectiveness of the fungicidal action of industrial preparations and plant extracts in relation to two native species of fungi (V1 and V2) isolated from the leaves of cultivated Vitis vinifera L. grapes, as well as against the phytopathogen Alternaria solani K-100054. Minimal inhibitory (MIC) and fungicidal concentrations (MFC) were detected for each sample. Ethanol extracts of plants showed low antimycotic activity in relation to fungi cultures isolated from grapes. Activity started from 0.0625%. The best result among industrial fungicides was shown by the drug “Maxim”, whose MIC values was 0.097 μg/mL, and the MFC varies between 3.125-12.5 μg/mL for pathogens V1 and V2, respectively.
Collapse
|
12
|
Mardani-Ghahfarokhi A, Farhoosh R. Antioxidant activity and mechanism of inhibitory action of gentisic and α-resorcylic acids. Sci Rep 2020; 10:19487. [PMID: 33173139 PMCID: PMC7656251 DOI: 10.1038/s41598-020-76620-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 11/09/2022] Open
Abstract
The antioxidant activity of gentisic (GA) and α-resorcylic (α-RA) acids was investigated by considering their molecular structures in various oxidative environments, including DPPH· scavenging assay, stripped olive and soybean oils, and the corresponding oil-in-water emulsions. The mechanism of action in the oils was evaluated in the presence of different concentrations of the antioxidants at 60 °C, using the kinetic parameters the stabilization factor (F), the oxidation rate ratio (ORR), the activity (A), and the average rate of antioxidant consumption ([Formula: see text]). GA was significantly more potent antioxidant than α-RA in all the environments. Although the less polar α-RA showed better activity in the emulsions rather than in the bulk oils, GA with an ortho-hydroxy structure had higher capacity to scavenge DPPH·, and LOO· in the oils and emulsions. The lower performance of α-RA was attributed to its participation in side reactions of chain initiation (AH + LOOH → A· + L· + H2O) and propagation (A· + LH → AH + L·) as competed with the main chain termination reaction (LOO· + AH → LOOH + A·).
Collapse
Affiliation(s)
- Azadeh Mardani-Ghahfarokhi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box, 91775-1163, Mashhad, Iran
| | - Reza Farhoosh
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box, 91775-1163, Mashhad, Iran.
| |
Collapse
|
13
|
Therapeutic Potential of Plant Phenolic Acids in the Treatment of Cancer. Biomolecules 2020; 10:biom10020221. [PMID: 32028623 PMCID: PMC7072661 DOI: 10.3390/biom10020221] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
Globally, cancer is the second leading cause of death. Different conventional approaches to treat cancer include chemotherapy or radiotherapy. However, these are usually associated with various deleterious effects and numerous disadvantages in clinical practice. In addition, there are increasing concerns about drug resistance. In the continuous search for safer and more effective treatments, plant-derived natural compounds are of major interest. Plant phenolics are secondary metabolites that have gained importance as potential anti-cancer compounds. Phenolics display a great prospective as cytotoxic anti-cancer agents promoting apoptosis, reducing proliferation, and targeting various aspects of cancer (angiogenesis, growth and differentiation, and metastasis). Phenolic acids are a subclass of plant phenolics, furtherly divided into benzoic and cinnamic acids, that are associated with potent anticancer abilities in various in vitro and in vivo studies. Moreover, the therapeutic activities of phenolic acids are reinforced by their role as epigenetic regulators as well as supporters of adverse events or resistance associated with conventional anticancer therapy. Encapsulation of phyto-substances into nanocarrier systems is a challenging aspect concerning the efficiency of natural substances used in cancer treatment. A summary of phenolic acids and their effectiveness as well as phenolic-associated advances in cancer treatment will be discussed in this review.
Collapse
|
14
|
Abedi F, Razavi BM, Hosseinzadeh H. A review on gentisic acid as a plant derived phenolic acid and metabolite of aspirin: Comprehensive pharmacology, toxicology, and some pharmaceutical aspects. Phytother Res 2019; 34:729-741. [PMID: 31825145 DOI: 10.1002/ptr.6573] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 12/29/2022]
Abstract
Beneficial therapeutic effects of phenolic acids have been proven in various research projects including in vivo and in vitro studies. Gentisic acid (GA) is a phenolic acid that has been associated with useful effects on human health, such as antiinflammatory, antigenotoxic, hepatoprotective, neuroprotective, antimicrobial, and especially antioxidant activities. It is an important metabolite of aspirin and also widely distributed in plants as a secondary plant product such as Gentiana spp., Citrus spp., Vitis vinifera, Pterocarpus santalinus, Helianthus tuberosus, Hibiscus rosa-sinensis, Olea europaea, and Sesamum indicum and in fruits such as avocados, batoko plum, kiwi fruits, apple, bitter melon, black berries, pears, and some mushrooms. This study was undertaken to review the pharmacological effects, pharmacokinetic properties as well as toxicity and pharmaceutical applications of GA.
Collapse
Affiliation(s)
- Farshad Abedi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Sun S, Kee HJ, Jin L, Ryu Y, Choi SY, Kim GR, Jeong MH. Gentisic acid attenuates pressure overload-induced cardiac hypertrophy and fibrosis in mice through inhibition of the ERK1/2 pathway. J Cell Mol Med 2018; 22:5964-5977. [PMID: 30256522 PMCID: PMC6237595 DOI: 10.1111/jcmm.13869] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/09/2018] [Accepted: 07/30/2018] [Indexed: 01/06/2023] Open
Abstract
We previously reported that gentisic acid (2,5‐dihydroxybenzoic acid) is the third most abundant phenolic component of Dendropanax morbifera branch extracts. Here, we investigated its effects on cardiac hypertrophy and fibrosis in a mouse model of pressure overload and compared them to those of the beta blocker bisoprolol and calcium channel blocker diltiazem. Cardiac hypertrophy was induced in mice by transverse aortic constriction (TAC). Beginning 2 weeks after this procedure, the mice were given daily intraperitoneal injections of gentisic acid (100 mg/kg/d), bisoprolol (5 mg/kg/d) or diltiazem (10 mg/kg/d) for 3 weeks. Cardiac hypertrophy was evaluated by the heart weight‐to‐body weight ratio, the cardiomyocyte cross‐sectional area after haematoxylin and eosin staining, and echocardiography. Markers of cardiac hypertrophy and fibrosis were tested by reverse transcription‐quantitative real‐time polymerase chain reaction, western blotting and Masson's trichrome staining. The suppressive effects of gentisic acid treatment on TAC‐induced cardiac hypertrophy and fibrosis were comparable to those of bisoprolol administration. Cardiac hypertrophy was reversed and left ventricular septum and posterior wall thickness were restored by gentisic acid, bisoprolol and diltiazem treatment. Cardiac hypertrophic marker gene expression and atrial and brain natriuretic peptide levels were decreased by gentisic acid and bisoprolol, as were cardiac (interstitial and perivascular) fibrosis and fibrosis‐related gene expression. Cardiac hypertrophy‐associated upregulation of the transcription factors GATA4 and Sp1 and activation of extracellular signal‐regulated kinase 1/2 were also negated by these drugs. These results suggest that gentisic acid could serve as a therapeutic agent for cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Simei Sun
- Heart Research Center, Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea.,Molecular Medicine, Brain Korea 21 PLUS, Chonnam National University Graduate School, Gwangju, Korea
| | - Hae Jin Kee
- Heart Research Center, Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Li Jin
- The Second Affiliated Hospital & Yuying Children's Hospital Wenzhou Medical University, Wenzhou, China
| | - Yuhee Ryu
- Heart Research Center, Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Sin Young Choi
- Heart Research Center, Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Gwi Ran Kim
- Heart Research Center, Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Myung Ho Jeong
- Heart Research Center, Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|