1
|
El-Shoura EAM, Sharkawi SMZ, Abdelzaher LA, Abdel-Wahab BA, Ahmed YH, Abdel-Sattar AR. Reno-protective effect of fenofibrate and febuxostat against vancomycin-induced acute renal injury in rats: Targeting PPARγ/NF-κB/COX-II and AMPK/Nrf2/HO-1 signaling pathways. Immunopharmacol Immunotoxicol 2024; 46:509-520. [PMID: 38918173 DOI: 10.1080/08923973.2024.2373216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Vancomycin (VCM) is used clinically to treat serious infections caused by multi-resistant Gram-positive bacteria, although its use is severely constrained by nephrotoxicity. This study investigated the possible nephroprotective effect of febuxostat (FX) and/or fenofibrate (FENO) and their possible underlying mechanisms against VCM-induced nephrotoxicity in a rat model. METHODS Male Wistar rats were randomly allocated into five groups; Control, VCM, FX, FENO, and combination groups. Nephrotoxicity was evaluated histopathologically and biochemically. The oxidative stress biomarkers (SOD, MDA, GSH, total nitrite, GPx, MPO), the apoptotic marker, renal Bcl-2 associated X protein (Bax), and inflammatory and kidney injury markers (IL-1β, IL-6, TNF-α, Nrf2, OH-1, kappa-light-chain-enhancer of activated B cells (NF-κB), NADPH oxidase, Kim-1, COX-II, NGAL, Cys-C were also evaluated. RESULTS VCM resulted in significant elevation in markers of kidney damage, oxidative stress, apoptosis, and inflammatory markers. Co-administration of VCM with either/or FX and FENO significantly mitigated nephrotoxicity and associated oxidative stress, inflammatory and apoptotic markers. In comparison to either treatment alone, a more notable improvement was observed with the FX and FENO combination regimen. CONCLUSION Our findings show that FX, FENO, and their combination regimen have a nephroprotective impact on VCM-induced kidney injury by suppressing oxidative stress, apoptosis, and the inflammatory response. Renal recovery from VCM-induced injury was accomplished by activation of Nrf2/HO-1 signaling and inhibition of NF-κB expression. This study highlights the importance of FX and FENO as effective therapies for reducing nephrotoxicity in VCM-treated patients.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Horus University in Egypt, New Damietta, Egypt
| | - Souty M Z Sharkawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
2
|
Yavuz A, Küçük A, Ergörün Aİ, Dursun AD, Yiğman Z, Alkan M, Arslan M. Evaluation of the efficacy of silymarin and dexmedetomidine on kidney and lung tissue in the treatment of sepsis in rats with cecal perforation. Exp Ther Med 2024; 27:242. [PMID: 38655036 PMCID: PMC11036365 DOI: 10.3892/etm.2024.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/27/2023] [Indexed: 04/26/2024] Open
Abstract
Sepsis is a systemic inflammatory response syndrome that develops in the host against microorganisms. This response develops away from the primary infection site and results in end-organ damage. The present study aimed to investigate the protective and therapeutic effects on lung and kidney tissue of silymarin (S) and dexmedetomidine (DEX) applied 1 h before and after sepsis induced by the cecal ligation and puncture (CLP) method in rats. A total of 62 rats was randomly divided into eight groups: i) Control (n=6); ii) cecal perforation (CLP; n=8); iii) S + CLP (n=8; S + CLP; S administered 1 h before CPL); iv) CLP + S (n=8; S administered 1 h after CLP); v) DEX + CLP (n=8; D + CLP; DEX administered 1 h before CLP); vi) CLP + D (n=8; DEX administered 1 h after CLP); vii) SD + CLP (n=8; S and DEX administered 1 h before CLP) and viii) CLP + SD (n=8; S and DEX administered 1 h after CLP). After the cecum filled with stool, it was tied with 3/0 silk under the ileocecal valve and the anterior surface of the cecum was punctured twice with an 18-gauge needle. A total of 100 mg/kg silymarin and 100 µg/kg DEX were administered intraperitoneally to the treatment groups. Lung and kidney tissue samples were collected to evaluate biochemical and histopathological parameters. In the histopathological examination, all parameters indicating kidney injury; interstitial edema, peritubular capillary dilatation, vacuolization, ablation of tubular epithelium from the basement membrane, loss of brush border in the proximal tubule epithelium, cell swelling and nuclear defragmentation; were increased in the CLP compared with the control group. Silymarin administration increased kidney damage, including ablation of tubular epithelium from the basement membrane, compared with that in the CLP group. DEX significantly reduced kidney damage compared with the CLP and silymarin groups. The co-administration of DEX + silymarin decreased kidney damage, although it was not as effective as DEX-alone. To conclude, intraperitoneal DEX ameliorated injury in CLP rats. DEX + silymarin partially ameliorated injury but silymarin administration increased damage. As a result, silymarin has a negative effects with this dosage and DEX has a protective effect. In the present study, it was determined that using the two drugs together had a greater therapeutic effect than silymarin and no differences in the effects were not observed any when the application times of the agents were changed.
Collapse
Affiliation(s)
- Aydin Yavuz
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Ayşegül Küçük
- Department of Physiology, Faculty of Medicine, Kutahya Health Science University, Kutahya 43020, Turkey
| | - Aydan İremnur Ergörün
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Ali Doğan Dursun
- Department of Physiology, Faculty of Medicine, Atılım University, Ankara 06830, Turkey
| | - Zeynep Yiğman
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
- Neuroscience and Neurotechnology Center of Excellence, Gazi University, Ankara 06510, Turkey
| | - Metin Alkan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Mustafa Arslan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
- Life Sciences Application and Research Center, Gazi University, Ankara 06830, Turkey
- Laboratory Animal Breeding and Experimental Research Center, Gazi University, Ankara 06510, Turkey
| |
Collapse
|
3
|
Gupta J, Jalil AT, Riyad Muedii ZAH, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. The Radiosensitizing Potentials of Silymarin/Silibinin in Cancer: A Systematic Review. Curr Med Chem 2024; 31:6992-7014. [PMID: 37921180 DOI: 10.2174/0109298673248404231006052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Although radiotherapy is one of the main cancer treatment modalities, exposing healthy organs/tissues to ionizing radiation during treatment and tumor resistance to ionizing radiation are the chief challenges of radiotherapy that can lead to different adverse effects. It was shown that the combined treatment of radiotherapy and natural bioactive compounds (such as silymarin/silibinin) can alleviate the ionizing radiation-induced adverse side effects and induce synergies between these therapeutic modalities. In the present review, the potential radiosensitization effects of silymarin/silibinin during cancer radiation exposure/radiotherapy were studied. METHODS According to the PRISMA guideline, a systematic search was performed for the identification of relevant studies in different electronic databases of Google Scholar, PubMed, Web of Science, and Scopus up to October 2022. We screened 843 articles in accordance with a predefined set of inclusion and exclusion criteria. Seven studies were finally included in this systematic review. RESULTS Compared to the control group, the cell survival/proliferation of cancer cells treated with ionizing radiation was considerably less, and silymarin/silibinin administration synergistically increased ionizing radiation-induced cytotoxicity. Furthermore, there was a decrease in the tumor volume, weight, and growth of ionizing radiation-treated mice as compared to the untreated groups, and these diminutions were predominant in those treated with radiotherapy plus silymarin/ silibinin. Furthermore, the irradiation led to a set of biochemical and histopathological changes in tumoral cells/tissues, and the ionizing radiation-induced alterations were synergized following silymarin/silibinin administration (in most cases). CONCLUSION In most cases, silymarin/silibinin administration could sensitize the cancer cells to ionizing radiation through an increase of free radical formation, induction of DNA damage, increase of apoptosis, inhibition of angiogenesis and metastasis, etc. However, suggesting the use of silymarin/silibinin during radiotherapeutic treatment of cancer patients requires further clinical studies.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P., India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Psychometry and Ethology Laboratory, Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellin, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Balkrishna A, Sharma S, Gohel V, Kumari A, Rawat M, Maity M, Sinha S, Dev R, Varshney A. Renogrit attenuates Vancomycin-induced nephrotoxicity in human renal spheroids and in Sprague-Dawley rats by regulating kidney injury biomarkers and creatinine/urea clearance. PLoS One 2023; 18:e0293605. [PMID: 37939153 PMCID: PMC10631690 DOI: 10.1371/journal.pone.0293605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Vancomycin, is widely used against methicillin-resistant bacterial infections. However, Vancomycin accumulation causes nephrotoxicity which leads to an impairment in the filtration mechanisms of kidney. Traditional herbal medicines hold potential for treatment of drug-induced nephrotoxicity. Herein, we investigated protective properties of plant-based medicine Renogrit against Vancomycin-induced kidney injury. Phytometabolite analysis of Renogrit was performed by UHPLC. Spheroids formed from human proximal tubular cell (HK-2) were used for in vitro evaluation of Vancomycin-induced alterations in cell viability, P-gp functionality, NAG, KIM-1 levels, and mRNA expression of NGAL and MMP-7. The in vivo efficacy of Renogrit against Vancomycin-induced nephrotoxicity was further evaluated in Sprague-Dawley (SD) rats by measurement of BUN, serum creatinine, and their respective clearances. Moreover, eGFR, kidney-to-body weight ratio, GSH/GSSG ratio, KIM-1, NAG levels and mRNA expression of KIM-1 and osteopontin were also analyzed. Changes in histopathology of kidney and hematological parameters were also observed. Renogrit treatment led to an increase in cell viability, normalization of P-gp functionality, decrease in levels of NAG, KIM-1, and reduction in mRNA expression of NGAL and MMP-7. In Vancomycin-challenged SD rats, Renogrit treatment normalized altered kidney functions, histological, and hematological parameters. Our findings revealed that Renogrit holds a clinico-therapeutic potential for alleviating Vancomycin-associated nephrotoxicity.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India
- Patanjali Yog Peeth (UK) Trust, Glasgow, United Kingdom
| | - Sonam Sharma
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Vivek Gohel
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Ankita Kumari
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Malini Rawat
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Madhulina Maity
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Sandeep Sinha
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
5
|
Darwish SF, Mahmoud AMA, Abdel Mageed SS, Sallam AAM, Oraby MA. Dapagliflozin improves early acute kidney injury induced by vancomycin in rats: Insights on activin A/miRNA-21 signaling and FOXO3a expression. Eur J Pharmacol 2023; 955:175908. [PMID: 37451422 DOI: 10.1016/j.ejphar.2023.175908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Drug-induced acute kidney injury (AKI) represents a potentially serious disorder associated with increased morbidity and mortality. The presented study investigated the ability of the oral antidiabetic agent, dapagliflozin (DAPA), to preserve the kidneys of rats subjected to vancomycin (VCM)-induced AKI. Rats were injected with VCM (400 mg/kg; i.p daily) for 7 successive days to induce AKI. Rats that received VCM were pretreated with DAPA at 5 or 10 mg/kg; p.o daily for 14 successive days. Vancomycin-treated rats depicted renal tubular damage, decline in renal function, and renal morphological alterations. Impairment of renal antioxidant machinery and propagation of renal cell apoptosis was apparent in the setting of VCM overdose. Pretreatment of VCM rats with DAPA, particularly at 10 mg/kg, effectively attenuated NADPH oxidase-4 (NOX4)-induced renal ROS, hampered activin A activation, and repressed miRNA-21/PTEN/pAKT signaling. These events were associated with impeding the expression of renal p-FOXO3a/t-FOXO3a ratio and promoting the nuclear localization of FOXO3a immnoexpression, enhancing renal antioxidant enzymes. At the same time, DAPA pretreatment improved renal function indices and alleviated the kidney injury markers, NGAL, and KIM-1, accompanied by restoring the normal renal histopathological structure. Regarding renal apoptosis, DAPA suppressed the expression of Bax/Bcl2 ratio and caspase-3. This study demonstrates that DAPA ameliorates VCM-induced AKI in rats via modulating renal oxidative stress, presumably by interfering with NOX4/activin A/miRNA-21 cascade and augmenting t-FOXO3a expression as well as dampening renal cell apoptosis.
Collapse
Affiliation(s)
- Samar F Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, 11829, Egypt.
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, 11829, Egypt
| | - Al-Aliaa M Sallam
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, 11829, Egypt.
| | - Mamdouh A Oraby
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, 11829, Egypt
| |
Collapse
|
6
|
Das K, Muthukumar A, Almuqbil M, Imran M, Rabaan AA, Halwani MA, Garout M, Alsaleh AA, Alissa M, Alwashmi ASS, Alshehri AA, Alsayyah A, Bhavani K, Mittal S, Gayathri R, Alomar NF, Rabbani SI, Basheeruddin Asdaq SM. Nephroprotective potential of Polyalthia longifolia roots against vancomycin-induced renal toxicity in experimental animals. Front Pharmacol 2023; 14:1107435. [PMID: 36755952 PMCID: PMC9900101 DOI: 10.3389/fphar.2023.1107435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
This study was done to investigate the possible nephroprotective effect of an ethanolic root extract of Polyalthia Longifolia (PL) on vancomycin-induced nephrotoxicity using curative and protective models. Vancomycin (150 mg/kg, intravenous) was given to healthy Wistar albino rats in the curative model before the start of treatment, whereas the protective group received vancomycin at the conclusion of the 10-day treatment procedure. Animals were divided into six groups for both models; group I served as the normal control, while groups II, III, IV, V, and VI were kept as toxic control, standard (selenium, 6 mg/kg), LDPL (low dose of PL 200 mg/kg), HDPL (high dose of PL 400 mg/kg), and HDPL + selenium (interactive) groups, respectively. Renal biomarkers [(uric acid, creatinine, blood urea nitrogen (BUN), serum proteins], and blood electrolyte levels were measured for all tested groups. When compared to the vancomycin group, the HDPL significantly (p < 0.01) showed greater effectiveness in lowering the BUN, potassium, and calcium levels. Additionally, in the curative model, there was a significant (p < 0.05) decrease in the blood levels of uric acid, creatinine, BUN, potassium, and calcium in the animals who received the combination of selenium and HDPL. Both LDPL and HDPL did not provide any distinguishable effect in the protective model, but groups that received HDPL with selenium did provide detectable protection by significantly lowering their levels of uric acid, BUN, serum potassium, and total serum protein in comparison to the vancomycin control group. These findings indicate that, whether administered before or after renal damage is induced, the Polyalthia longifolia root extract provided only modest protection to nephrons, which require selenium support to prevent vancomycin-induced kidney damage.
Collapse
Affiliation(s)
- Kuntal Das
- Nitte College of Pharmaceutical Science, Yelahanka, Bangalore, India
| | - A. Muthukumar
- Central Animal House, Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore, India,*Correspondence: Syed Mohammed Basheeruddin Asdaq, /; A. Muthukumar,
| | - Mansour Almuqbil
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Muhammad A. Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Al Baha, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Healthcare for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulmonem A. Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Swati Mittal
- Central Animal House, Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore, India
| | - R. Gayathri
- Department of Pharmaceutics, KMCH College of Pharmacy, Coimbatore, India
| | | | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia,*Correspondence: Syed Mohammed Basheeruddin Asdaq, /; A. Muthukumar,
| |
Collapse
|
7
|
Terzi F, Ciftci MK. Protective effect of silymarin on tacrolimus-induced kidney and liver toxicity. BMC Complement Med Ther 2022; 22:331. [PMID: 36514062 PMCID: PMC9746137 DOI: 10.1186/s12906-022-03803-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tacrolimus (FK506) is an immunosuppressive agent and has toxic side effects such as nephrotoxicity, hepatotoxicity, and neurotoxicity. In our study, we aimed to investigate the protective effect of silymarin on renal and hepatic toxicity considered to be tacrolimus related. METHODS In this 6-week experimental study, 46 eight-week-old healthy male rats were used. The groups comprised the Control (healthy rats, n = 6), Tac (tacrolimus 1 mg/kg, n = 8), silymarin 100 mg/kg (SLI 100 mg/kg n = 8), Tac + SLI 100 (tacrolimus 1 mg/kg + SLI 100 n = 8), SLI 200 (SLI 200 mg/kg n = 8), and Tac + SLI 200 (tacrolimus 1 mg/kg + SLI 200 mg/kg n = 8). After 6 weeks, all rats were sacrificed, and the tissue follow-up procedure was performed for kidney and liver tissues, histopathology, and in situ TUNEL analysis. Blood samples were analyzed for the total antioxidant capacity (TAC), total oxidant capacity (TOC), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), albumin, total bilirubin, creatine. RESULTS Histopathological findings of kidney and liver tissue of rats were determined to increase statistically in Tac group compared to SLI 1 00 and SLI 200 groups (P < 0.05). In addition, the Tac + SLI 100 and Tac + SLI 200 groups were found to be statistically similar to the Control group (P > 0.05). The in situ TUNEL method showed that the tacrolimus increased apoptosis while the silymarin decreased it. TOC levels increased statistically in Tac groups compared to silymarin-treated groups (P < 0.05). Although the TAC level was not statistically significant among the experimental groups (P > 0.05), the lowest was measured in the Tac group. The ALT, AST, GGT, total bilirubin, and creatine values were higher in the Tac group than in the silymarin groups (P < 0.05). There was no statistically significant difference between the groups with regard to the albumin level (P > 0.05). CONCLUSION In our study, we determined that tacrolimus caused damage to kidney and liver tissue. Histopathological, biochemical and apoptotic findings show that silymarin has a protective effect against nephrotoxicity and hepatotoxicity caused by tacrolimus.
Collapse
Affiliation(s)
- Funda Terzi
- grid.412062.30000 0004 0399 5533Faculty of Veterinary Medicine, Department of Pathology, Kastamonu University, 37150 Kastamonu, Turkey
| | - Mustafa Kemal Ciftci
- grid.459507.a0000 0004 0474 4306Faculty of Dentistry, Department of Basic Science, Istanbul Gelişim University, 34295 Istanbul, Turkey
| |
Collapse
|
8
|
Mechanistic Insights into the Pharmacological Significance of Silymarin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165327. [PMID: 36014565 PMCID: PMC9414257 DOI: 10.3390/molecules27165327] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/29/2022]
Abstract
Medicinal plants are considered the reservoir of diverse therapeutic agents and have been traditionally employed worldwide to heal various ailments for several decades. Silymarin is a plant-derived mixture of polyphenolic flavonoids originating from the fruits and akenes of Silybum marianum and contains three flavonolignans, silibinins (silybins), silychristin and silydianin, along with taxifolin. Silybins are the major constituents in silymarin with almost 70–80% abundance and are accountable for most of the observed therapeutic activity. Silymarin has also been acknowledged from the ancient period and is utilized in European and Asian systems of traditional medicine for treating various liver disorders. The contemporary literature reveals that silymarin is employed significantly as a neuroprotective, hepatoprotective, cardioprotective, antioxidant, anti-cancer, anti-diabetic, anti-viral, anti-hypertensive, immunomodulator, anti-inflammatory, photoprotective and detoxification agent by targeting various cellular and molecular pathways, including MAPK, mTOR, β-catenin and Akt, different receptors and growth factors, as well as inhibiting numerous enzymes and the gene expression of several apoptotic proteins and inflammatory cytokines. Therefore, the current review aims to recapitulate and update the existing knowledge regarding the pharmacological potential of silymarin as evidenced by vast cellular, animal, and clinical studies, with a particular emphasis on its mechanisms of action.
Collapse
|
9
|
Mirjalili M, Mirzaei E, Vazin A. Pharmacological agents for the prevention of colistin-induced nephrotoxicity. Eur J Med Res 2022; 27:64. [PMID: 35525994 PMCID: PMC9077985 DOI: 10.1186/s40001-022-00689-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/19/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Colistin is a polymyxin antibiotic which has been used for treatment of Gram-negative infections, but it was withdrawn due to its nephrotoxicity. However, colistin has gained its popularity in recent years due to the reemergence of multidrug resistant Gram-negative infections and drug-induced toxicity is considered as the main obstacle for using this valuable antibiotic. RESULTS In total, 30 articles, including 29 animal studies and one clinical trial were included in this study. These compounds, including aged black garlic extract, albumin fragments, alpha lipoic acid, astaxanthin, baicalein, chrysin, cilastatin, colchicine, curcumin, cytochrome c, dexmedetomidine, gelofusine, grape seed proanthocyanidin extract, hesperidin, luteolin, lycopene, melatonin, methionine, N-acetylcysteine, silymarin, taurine, vitamin C, and vitamin E exhibited beneficial effects in most of the published works. CONCLUSIONS In this review, the authors have attempted to review the available literature on the use of several compounds for prevention or attenuation of colistin-induced nephrotoxicity. Most of the studied compounds were potent antioxidants, and it seems that using antioxidants concomitantly can have a protective effect during the colistin exposure.
Collapse
Affiliation(s)
- Mahtabalsadat Mirjalili
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Mirzaei
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Afsaneh Vazin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Dumludag B, Derici MK, Sutcuoglu O, Ogut B, Pasaoglu OT, Gonul II, Derici U. Role of silymarin ( Silybum marianum) in the prevention of colistin-induced acute nephrotoxicity in rats. Drug Chem Toxicol 2022; 45:568-575. [PMID: 32174194 DOI: 10.1080/01480545.2020.1733003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 02/08/2023]
Abstract
Silymarin (Silybum marianum) has some protective effects against drug toxicity (cisplatin, acetaminophen, adriamycin, gentamicin etc.). Colistin is a strong antimicrobial, which is frequently used in the treatment of resistant gram-negative bacterial infections in recent years although it has nephrotoxic potential. This study was aimed to determine the role of silymarin against colistin-induced acute nephrotoxicity (CIN). Rats were randomly divided into four groups. The control group was treated with tap water whereas groups 2 and 3 received silymarin (orally, 100 mg/kg/day) and colistin (intraperitoneally, 750.000 IU/kg/day) for seven days, respectively. Group 4 received both 750,000 IU/kg/day colistin and 100 mg/kg/day silymarin for seven days. After euthanasia, histopathological and biochemical examinations were completed for the kidney tissue specimens and blood samples. All parameters of the control and silymarin groups were similar. Severe weight loss was seen in the groups receiving colistin (groups 3 and 4). Silymarin significantly increased glutathione peroxidase and superoxide dismutase levels when administered with colistin in group 4 only. Acute tubular injury, tubular necrosis, meduller congestion, interstitial inflammation and apoptotic indices of colistin group were significantly higher than the control group. The administration of colistin with silymarin (group 4) was able to make some improvements in tubular necrosis and significant increase in antioxidant capacity. Silymarin increased antioxidant enzyme activity only when used in combination with colistin. The effects of silymarin may become more pronounced when used at higher doses or with a longer duration of treatment and may prevent nephrotoxicity.
Collapse
Affiliation(s)
- Burak Dumludag
- Department of Nephrology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Kursat Derici
- Department of Medical Pharmacology, Kirikkale University Faculty of Medicine, Kirikkale, Turkey
| | - Osman Sutcuoglu
- Department of Nephrology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Betul Ogut
- Department of Pathology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ozge Tugce Pasaoglu
- Department of Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ipek Isık Gonul
- Department of Pathology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ulver Derici
- Department of Nephrology, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
11
|
Rahmani H, Khalili H. Prevention of vancomycin-induced nephrotoxicity; an update review of clinical and preclinical studies. Infect Disord Drug Targets 2021; 22:e310321192584. [PMID: 33797371 DOI: 10.2174/1871526521666210331164552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 11/22/2022]
Abstract
PURPOSE Clinical and preclinical evidences regarding new strategies for prevention of vancomycin-induced nephrotoxicity are reviewed. METHODS Evidence from 2014 to end of 2019 was included. Finally, twelve animal studies and one clinical trial were evaluated. RESULTS Although incidence of vancomycin-induced nephrotoxicity was not reduced significantly in the clinical trial, antioxidants reduced incidence of vancomycin-induced nephrotoxicity in preclinical studies. CONCLUSIONS Antioxidants including vitamin C, vitamin E, cilastatin, melatonin, zingerone, rutin, naringenin, saffron, silymarin and dexmedetomidine were nephroprotective against vancomycin-induced nephrotoxicity in preclinical studies. The nephroprotective effects of these antioxidants must be confirmed before routine use in the clinical practice.
Collapse
Affiliation(s)
- Hamid Rahmani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran. Iran
| | - Hossein Khalili
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran. Iran
| |
Collapse
|
12
|
Wang X, Zhang Z, Wu SC. Health Benefits of Silybum marianum: Phytochemistry, Pharmacology, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11644-11664. [PMID: 33045827 DOI: 10.1021/acs.jafc.0c04791] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silybum marianum (SM), a well-known plant used as both a medicine and a food, has been widely used to treat various diseases, especially hepatic diseases. The seeds and fruits of SM contain a flavonolignan complex called silymarin, the active compounds of which include silybin, isosilybin, silychristin, dihydrosilybin, silydianin, and so on. In this review, we thoroughly summarize high-quality publications related to the pharmacological effects and underlying mechanisms of SM. SM has antimicrobial, anticancer, hepatoprotective, cardiovascular-protective, neuroprotective, skin-protective, antidiabetic, and other effects. Importantly, SM also counteracts the toxicities of antibiotics, metals, and pesticides. The diverse pharmacological activities of SM provide scientific evidence supporting its use in both humans and animals. Multiple signaling pathways associated with oxidative stress and inflammation are the common molecular targets of SM. Moreover, the flavonolignans of SM are potential agonists of PPARγ and ABCA1, PTP1B inhibitors, and metal chelators. At the end of the review, the potential and perspectives of SM are discussed, and these insights are expected to facilitate the application of SM and the discovery and development of new drugs. We conclude that SM is an interesting dietary medicine for health enhancement and drug discovery and warrants further investigation.
Collapse
Affiliation(s)
- Xin Wang
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Zhen Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Shuai-Cheng Wu
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| |
Collapse
|
13
|
Malkani N, Naeem A, Ijaz F, Mumtaz S, Ashraf S, Sohail MI. Silybum marianum (milk thistle) improves vancomycin induced nephrotoxicity by downregulating apoptosis. Mol Biol Rep 2020; 47:5451-5459. [PMID: 32638317 DOI: 10.1007/s11033-020-05635-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/27/2020] [Indexed: 02/02/2023]
Abstract
Increased use of vancomycin for treating infections, and the associated risk of causing nephrotoxicity lead to the present study. The antioxidant and anti-apoptotic potential of Silybum marianum is used along with vancomycin to reduce adverse effects on the kidney. Vero cells (monkey kidney cells) and mice were used to test S. marianum extract on vancomycin induced nephrotoxicity. Vero cells were treated with different concentrations of vancomycin and S. marianum for 24 h for determination of cytotoxic potential and mRNA levels of apoptotic genes p53 , p21, and cyt-c were measured. For in-vivo studies mice were divided into five groups; G1 control (untreated), G2 vehicle (olive oil), G3 vancomycin treated (300 mg/kg body weight), G4 (S. marianum; 400 mg/kg bodyweight and vancomycin 300 mg/kg bodyweight simultaneously) and G5 (S. marianum 400 mg/kg bodyweight and vancomycin 300 mg/kg bodyweight treatment started after day 4 of S. marianum treatment). After 10 days histopathological analysis of mice kidneys was performed, serum urea and creatinine were analysed and mRNA expression of p53 , p21, and cyt-c was evaluated. Expression of p53, p21, and cyt-c in Vero cells was elevated in response to vancomycin treatment, whereas after S. marianum administration expression of these genes reduced. Vancomycin showed apoptosis in cells at the concentration of 6 mg/ml (LC50). Urea and creatinine levels in mice were increased in response to vancomycin administration and kidney histology showed an abnormality in functional units. The apoptotic cells were very visible in kidney structure in vancomycin treated group. These symptoms were however relieved in groups where treatment of S. marianum extract was given. mRNA expression of p53 , p21, and cyt-c also reduced in S. marianum treated groups of mice. S. marianum extract has protective effects against renal damage from vancomycin induced oxidative stress and relieves symptoms may be by downregulating apoptotic genes.
Collapse
Affiliation(s)
- Naila Malkani
- Department of Zoology, GC University, Lahore, Pakistan.
| | - Ammara Naeem
- Department of Zoology, GC University, Lahore, Pakistan
| | - Farah Ijaz
- Department of Zoology, GC University, Lahore, Pakistan
| | - Sidra Mumtaz
- Department of Zoology, GC University, Lahore, Pakistan
| | - Saima Ashraf
- Department of Anatomy and Histology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | |
Collapse
|
14
|
Pais GM, Liu J, Zepcan S, Avedissian SN, Rhodes NJ, Downes KJ, Moorthy GS, Scheetz MH. Vancomycin-Induced Kidney Injury: Animal Models of Toxicodynamics, Mechanisms of Injury, Human Translation, and Potential Strategies for Prevention. Pharmacotherapy 2020; 40:438-454. [PMID: 32239518 PMCID: PMC7331087 DOI: 10.1002/phar.2388] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Vancomycin is a recommended therapy in multiple national guidelines. Despite the common use, there is a poor understanding of the mechanistic drivers and potential modifiers of vancomycin-mediated kidney injury. In this review, historic and contemporary rates of vancomycin-induced kidney injury (VIKI) are described, and toxicodynamic models and mechanisms of toxicity from preclinical studies are reviewed. Aside from known clinical covariates that worsen VIKI, preclinical models have demonstrated that various factors impact VIKI, including dose, route of administration, and thresholds for pharmacokinetic parameters. The degree of acute kidney injury (AKI) is greatest with the intravenous route and higher doses that produce larger maximal concentrations and areas under the concentration curve. Troughs (i.e., minimum concentrations) have less of an impact. Mechanistically, preclinical studies have identified that VIKI is a result of drug accumulation in proximal tubule cells, which triggers cellular oxidative stress and apoptosis. Yet, there are several gaps in the knowledge that may represent viable targets to make vancomycin therapy less toxic. Potential strategies include prolonging infusions and lowering maximal concentrations, administration of antioxidants, administering agents that decrease cellular accumulation, and reformulating vancomycin to alter the renal clearance mechanism. Based on preclinical models and mechanisms of toxicity, we propose potential strategies to lessen VIKI.
Collapse
Affiliation(s)
- Gwendolyn M. Pais
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois
- Pharmacometrics Center of Excellence, Midwestern University Chicago College of Pharmacy, Downers Grove, Illinois
| | - Jiajun Liu
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois
- Pharmacometrics Center of Excellence, Midwestern University Chicago College of Pharmacy, Downers Grove, Illinois
| | - Sanja Zepcan
- Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois
| | - Sean N. Avedissian
- Antiviral Pharmacology Laboratory, University of Nebraska Medical Center (UNMC) Center for Drug Discovery, UNMC, Omaha, Nebraska
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nathaniel J. Rhodes
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois
- Pharmacometrics Center of Excellence, Midwestern University Chicago College of Pharmacy, Downers Grove, Illinois
| | - Kevin J. Downes
- Division of Infectious Diseases, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ganesh S. Moorthy
- Division of Critical Care, Department of Anesthesiology and Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Marc H. Scheetz
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois
- Pharmacometrics Center of Excellence, Midwestern University Chicago College of Pharmacy, Downers Grove, Illinois
| |
Collapse
|
15
|
Damiano S, Andretta E, Longobardi C, Prisco F, Paciello O, Squillacioti C, Mirabella N, Florio S, Ciarcia R. Effects of Curcumin on the Renal Toxicity Induced by Ochratoxin A in Rats. Antioxidants (Basel) 2020; 9:antiox9040332. [PMID: 32325727 PMCID: PMC7222377 DOI: 10.3390/antiox9040332] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022] Open
Abstract
Ochratoxin A (OTA) is a powerful nephrotoxin and the severity of its damage to kidneys depends on both the dose and duration of exposure. According to the scientific data currently available, the mechanism of action still is not completely clarified, but it is supposed that oxidative stress is responsible for OTA-induced nephrotoxicity. Bioactive compound use has emerged as a potential approach to reduce chronic renal failure. Therefore, curcumin (CURC), due to its therapeutic effects, has been chosen for our study to reduce the toxic renal effects induced by OTA. CURC effects are examined in Sprague Dawley rats treated with CURC (100 mg/kg), alone or in combination with OTA (0.5 mg/kg), by gavage daily for 14 days. The end result of the experiment finds rats treated with OTA show alterations in biochemical and oxidative stress parameters in the kidney, related to a decrease in the Glomerular Filtration Rate (GFR). Conversely, the administration of CURC attenuates oxidative stress and prevents glomerular hyperfiltration versus the OTA group. Furthermore, kidney histological tests show a reduction in glomerular and tubular damage, inflammation and tubulointerstitial fibrosis. This study shows that CURC can mitigate OTA-induced oxidative damage in the kidneys of rats.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
- Correspondence: ; Tel.: +39-081-2536127
| | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli” Naples, Largo Madonna delle Grazie, 1, 80138 Napoli, Italy;
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| |
Collapse
|
16
|
Abdel-Magied N, Elkady AA. Possible curative role of curcumin and silymarin against nephrotoxicity induced by gamma-rays in rats. Exp Mol Pathol 2019; 111:104299. [PMID: 31442446 DOI: 10.1016/j.yexmp.2019.104299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/05/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
Abstract
Curcumin (CUR) and silymarin (SLM) are powerful antioxidant and anti-inflammatory compounds with beneficial protective effects against renal diseases. The purpose of this study was to evaluate the efficacy of CUR and SLM alone or in combination on radiation (IR) induced kidney injury. The results showed that CUR and SLM alone or in combination attenuated the oxidative stress denoted by a reduction in the level of malondialdehyde (MDA), hydrogen peroxide (H2O2) and advanced oxidation protein products (AOPP) along with a marked increase of glutathione GSH content and total antioxidant capacity (TAC). Additionally, a significant decrease in the level of blood urea nitrogen (BUN), creatinine, Cystatin-C (CYT-C), neutrophil gelatinase-associated lipocalin (N-GAL) and Kidney Injury Molecule-1 (Kim-1) was recorded. Moreover, the treatment resulted in a remarkable decline in the serum levels of interleukin-18(IL-18), tumor necrosis factor- alpha (TNF-α), C reactive protein (CRP), BCL2 associated X protein (Bax), Factor-related Apoptosis (FAS) and the activity of Caspase-3 associated by an increase of B-cell CLL/lymphoma 2 (Bcl2) level. The results were confirmed with the histopathological examination. Kidney of irradiated showed glomerular atrophy, massive necrotic changes of expanded tubules with hyaline cast inside some tubules and apoptotic changes were recorded in some renal tubules. While irradiated rats treated with CUR and SLM exhibited marked preservation of the cellular structure of their kidney tissue. In conclusion, the combination of CUR and SLM could be more potent than a single agent on the biochemical and histological changes of the irradiated rat renal tissue.
Collapse
Affiliation(s)
- Nadia Abdel-Magied
- Radiation Biology Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 29, Nasr City, Cairo, Egypt.
| | - Ahmed A Elkady
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 29, Nasr City, Cairo, Egypt.
| |
Collapse
|