1
|
Elbaz EM, Darwish A, Gad AM, Abdel Rahman AAS, Safwat MH. Canagliflozin alleviates experimentally induced benign prostate hyperplasia in a rat model: exploring potential mechanisms involving mir-128b/EGFR/EGF and JAK2/STAT3 signaling pathways through in silico and in vivo investigations. Eur J Pharmacol 2023; 957:175993. [PMID: 37598927 DOI: 10.1016/j.ejphar.2023.175993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Benign prostatic hyperplasia (BPH) poses a significant health concern amongst elderly males. Canagliflozin (Cana), a selective sodium-glucose co-transporter 2 (SGLT2) inhibitor, has a powerful anti-inflammatory influence. Nevertheless, its role in treating BPH has not been clarified. Therefore, the study aimed to investigate the potential ameliorative effect of Cana on experimentally induced BPH in rats and explore the underlying mechanisms compared to the standard finasteride (Fin). The study employed histological analysis, biochemical assays using ELISA, and western blotting. Animals were categorized into four groups: Control (2.5 ml/kg CMC, orally + 3 ml/kg olive oil, subcutaneous), BPH (3 mg/kg testosterone, subcutaneous + CMC orally), Fin-treated BPH (5 mg/kg, orally), and Cana-treated BPH (5 mg/kg, orally), for 28 days. The BPH group showed obvious BPH manifestations including an increase in prostate weight (PW), prostate index (PI), dihydrotestosterone (DHT) level, and histological aberrations compared to control. Fin and Cana therapy had a comparable impact. Cana treatment significantly reduced PW and PI, besides it improved prostatic biochemical, and histopathological features compared to BPH, consistent with in silico study findings. Cana was associated with downregulation of the androgen axis, increased miR-128b expression, with a lowered expression of epidermal growth factor (EGF) and its receptor. Phosphorylation of STAT3 and its downstream proliferative markers were significantly reduced suggesting apoptotic activity. Cana markedly rescued the BPH-induced upregulation of IL-1β, and iNOS levels. Altogether, the current study demonstrates that Cana could impede BPH progression, possibly by modulating miR-128b/EGFR/EGF and JAK2/STAT3 pathways and downregulating AR, cyclin D1, and PCNA immunoreactivity.
Collapse
Affiliation(s)
- Eman M Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Alshaymaa Darwish
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt.
| | - Amany M Gad
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA) -Formerly NODCAR, Giza 12654, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia, 41636, Egypt.
| | - Amina A S Abdel Rahman
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Maheera H Safwat
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Marzouk B, Refifà M, Montalbano S, Buschini A, Negri S, Commisso M, Degola F. In Vitro Sprouted Plantlets of Citrullus colocynthis (L.) Schrad Shown to Possess Interesting Levels of Cucurbitacins and Other Bioactives against Pathogenic Fungi. PLANTS (BASEL, SWITZERLAND) 2022; 11:2711. [PMID: 36297735 PMCID: PMC9611854 DOI: 10.3390/plants11202711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Cucurbitacins, structurally different triterpenes mainly found in the members of Cucurbitaceae, possess a vast pharmacological potential. Genus Cucurbita, Cucumis, and Citrullus are affluent in these bioactive compounds, and, amongst them, Citrullus colocynthis (L.) Schrad. is widely exploited in folk medicine, since a huge number of diseases are successfully treated with organic and aqueous extracts obtained from different organs and tissues of the plant. The well-known pharmacological activities of such species have been attributed to its peculiar composition, which includes cucurbitacins and other bioactive molecules; thus, owing to its high importance as a valuable natural resource for pharmaceuticals and nutraceuticals, C. colocynthis propagation and multiplication protocols are considered significant, but the exploitation of its phytochemical potential is limited by the restricted cultivation conditions and the low rate of seed germination in the natural environment; in fact, the assessment of accumulation rate of specific phytochemicals under controlled conditions is still missing. Axenically sprouted plantlets obtained without the use of culture media or the addition of hormones have been evaluated here for the production of bioactive compounds and relevant bioactive features. Our results proved that derived organic extracts contain cucurbitacins and other bioactives, show antioxidant potential, and exert activity against some pathogenic fungi (Candida krusei, C. albicans, C. parapsilosis, C. glabrata, and Aspergillus flavus), supporting the feasibility of a methodology intended to scale-up cultivation of this species as a source of pharmaceutically interesting compounds, achievable from plantlets cultivated under laboratory conditions.
Collapse
Affiliation(s)
- Belsem Marzouk
- Laboratory of Chemical, Galenic and Pharmacological Development of Drugs, Faculty of Pharmacy, University of Monastir, Monastir 500, Tunisia
| | - Meher Refifà
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Serena Montalbano
- Interdepartmental Centre for Molecular and Translational Oncology COMT, University of Parma, 43124 Parma, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, 43124 Parma, Italy
- Interdepartmental Centre for Molecular and Translational Oncology COMT, University of Parma, 43124 Parma, Italy
| | - Stefano Negri
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Francesca Degola
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| |
Collapse
|
3
|
Mohamed GA, Ibrahim SRM, El-Agamy DS, Elsaed WM, Sirwi A, Asfour HZ, Koshak AE, Elhady SS. Cucurbitacin E glucoside alleviates concanavalin A-induced hepatitis through enhancing SIRT1/Nrf2/HO-1 and inhibiting NF-ĸB/NLRP3 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115223. [PMID: 35354089 DOI: 10.1016/j.jep.2022.115223] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cucurbitacins are highly oxygenated tetracyclic triterpenoids, that represent the major metabolites reported from C. colocynthis (L.) Schrad.. Cucurbitacin E glucoside (CuE) is a tetracyclic triterpene glycoside separated from Cucurbitaceae plants. CuE has potent anti-inflammatory, immunomodulatory, and anti-tumor properties. AIM OF THE STUDY The current study aimed at examining the hepatoprotective effect of CuE against concanavalin A (Con A)-produced hepatitis. MATERIALS AND METHODS Mice were intravenously administered Con A (15 mg/kg) to induce AIH. CuE was orally administered at two different doses for five days preceding Con A injection. RESULTS The results revealed that CuE pretreatment markedly attenuated the serum indices of hepatotoxicity and the severity of hepatic lesions. CuE depressed Con A-provoked increment in CD4+ T-cells in hepatic tissue. The antioxidant activity of CuE was evident through its ability to decrease markers of Con A-induced oxidative stress (malondialdehyde, 4-hydroxyenonanal, and protein carbonyl) and intensified the antioxidants in the hepatic tissue (SOD, GSH, and TAC). CuE increased mRNA expression of SIRT1 and Nrf2 as well as its binding capacity. Subsequently, CuE augmented mRNA expression of Nrf2 targeted genes as NQO1, GCL, and HO-1 and recovered its normal level. CuE inhibited the activation of NF-κB/downstream pro-inflammatory mediators signaling. Furthermore, CuE attenuated the mRNA expression of NLRP3 and its associated genes. CONCLUSION Collectively, these results demonstrated the remarkable hepatoprotective potential of CuE towards Con A-induced AIH which was mediated via suppression of oxidative stress, enhancing SIRT1/Nrf2/HO-1, and prohibition of the NF-κB/NLRP3 signaling. CuE could be a candidate for hepatitis patients.
Collapse
Affiliation(s)
- Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Sabrin R M Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah, 21442, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, 30078, Saudi Arabia.
| | - Wael M Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Alaa Sirwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Hani Z Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Abdulrahman E Koshak
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Sameh S Elhady
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
4
|
Almukadi H, Eid BG, Shaik RA, Abdel-Naim AB, Esmat A. Auraptene nanoparticles ameliorate testosterone-induced benign prostatic hyperplasia in rats: Emphasis on antioxidant, anti-inflammatory, proapoptotic and PPARs activation effects. Biomed Pharmacother 2021; 143:112199. [PMID: 34649341 DOI: 10.1016/j.biopha.2021.112199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a disease that commonly strikes the majority of aged men. Developing new therapies to manage BPH with improved efficacy and safety is strongly needed. In this regard, auraptene is a natural compound with multiple pharmacological effects, but with poor oral bioavailability. This investigation aimed to assess the possible protection offered by auraptene-nanostructured lipid carrier (auraptene-NLC) in a BPH model induced by testosterone in rats. Auraptene-NLC had optimum particle size and drug release profile compared to raw auraptene. At doses (5 and 10 mg/kg), it hampered the rise in prostatic weights & indices relative to rats challenged with testosterone. Moreover, auraptene-NLC alleviated histopathological abnormalities in prostate architecture and decreased the glandular epithelial height. Additionally, testosterone-induced oxidative stress was alleviated by auraptene-NLC and inhibited raised lipid peroxidation, catalase and superoxide dismutase exhaustion as well as enhanced glutathione content. Moreover, it significantly reduced the prostate content of nuclear factor κB, Interleukins1β & 6, as well as transforming growth factor β, compared to testosterone group. The proapoptotic activity of auraptene-NLC (10 mg/kg) was confirmed by a significant increase of prostate cleaved caspase-3, boosted Bax/Bcl2 mRNA ratio that was further confirmed by assessing their protein expressions. Furthermore, the beneficial effects of auraptene-NLC against BPH were substantiated by ameliorating testosterone-induced decline of nuclear PPARα & PPARγ and inhibiting the increased expression of cyclin D1 protein. In conclusion, auraptene-NLC offers a protective effect in rats whereby BPH was induced by testosterone, via its anti-inflammatory, antioxidant and proapoptotic activities, and PPAR family activation.
Collapse
Affiliation(s)
- Haifa Almukadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rasheed A Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Esmat
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
5
|
Zeng Y, Wang J, Huang Q, Ren Y, Li T, Zhang X, Yao R, Sun J. Cucurbitacin IIa: A review of phytochemistry and pharmacology. Phytother Res 2021; 35:4155-4170. [PMID: 33724593 DOI: 10.1002/ptr.7077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/04/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
Cucurbitacin IIa was first found in plants and it belongs to tetracyclo triterpenoids. It is one of the most important active components in cucurbitaceae plants. Studies have found that cucurbitacin IIa has a variety of pharmacological effects, such as antitumor, antiinflammatory, antibacterial, antihepatitis B virus, inhibition of human immunodeficiency virus replication, and antidepressant effect. However, the underlying mechanisms, intracellular targets, and structure-activity relationships of cucurbitacin IIa remain to be completely elucidated. This review summarizes the current advances concerning the phytochemistry and pharmacology of cucurbitacin IIa. Electronic databases such as PubMed, Web of Science, Google Scholar, Science Direct, and CNKI were used to find relevant information about cucurbitacin IIa using keywords such as "Cucurbitacin IIa," "Pharmacology," and "Phytochemistry." These pharmacological effects involve the actin cytoskeleton aggregation, the regulation of JAK2/STAT3, ERBB-MAPK, CaMKII α/CREB/BDNF signal pathways, as well as the regulation of survivin, caspases, and other cell cycles, apoptosis, autophagy-related cytokines, and kinases. It has high development and use value.
Collapse
Affiliation(s)
- Yijia Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanyuan Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingna Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaorui Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Renchuan Yao
- Sichuan Provincial Engineering Research Center for Fermented Traditional Chinese Medicine, Jianyang, China
| | - Jilin Sun
- Sichuan Fu Zheng Pharmaceutical Co. Ltd., Jianyang, China
| |
Collapse
|
6
|
Eid BG, Abdel-Naim AB. Piceatannol Attenuates Testosterone-Induced Benign Prostatic Hyperplasia in Rats by Modulation of Nrf2/HO-1/NFκB Axis. Front Pharmacol 2020; 11:614897. [PMID: 33519479 PMCID: PMC7845651 DOI: 10.3389/fphar.2020.614897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a serious illness affecting middle-aged and elderly male patients. It is a complication of several diseases including metabolic syndrome. BPH has been associated with inflammation and increased oxidative stress in prostatic tissues. Piceatannol (PIC) is an active natural polyhydroxylated stilbene found in many plants. It has profound anti-inflammatory as well as antioxidant activities. However, it suffers relatively poor pharmacokinetic properties. Nanoformulation is an acknowledged approach to improve PIC bioavailability. The goal was to evaluate the ability of PIC in preventing testosterone-induced benign prostatic hyperplasia in rats. PIC was prepared in a self-nanoemulsifying drug delivery system (SNEDDS). Animals were placed into seven groups: 1) control (vehicle), 2) PIC SNEDDS (20 mg/kg), 3) testosterone (3 mg/kg), 4) testosterone + PIC SNEDDS (5 mg/kg), 5) testosterone + PIC (10 mg/kg), 6) testosterone + PIC SNEDDS (20 mg/kg) and 7) testosterone + finasteride (5 mg/kg). Testosterone was injected SC while PIC SNEDDS and finasteride were given orally. All treatments were given once daily, 5 days/week for four consecutive weeks. PIC administration ameliorated increased prostate weights and indices in addition to histopathological alterations. Further it inhibited accumulation of lipid peroxidation, depletion of glutathione (GSH) and exhaustion of catalase (CAT). PIC SNEDDS exhibited anti-proliferative activities as demonstrated by the inhibition of cyclin D1 protein expression and Bcl2 mRNA expression in addition to enhancement of Bax mRNA expression and caspase-3 content. Immunohistochemically, PIC SNEDDS protected against the testosterone-induced increased expression of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), nuclear factor kappa B (NFκB) and also offered protection against the decline in Nrf2 expression. Further, a significant enhancement of Nfe212 and Homx1 mRNA expression was detected in PIC SNEDDS-treated animals in comparison to the testosterone group. Conclusively, PIC prepared in SNEDDS protects against experimentally induced BPH via modulation of, at least partly, Nrf2/HO-1/NFκB axis.
Collapse
Affiliation(s)
- Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Park JJ, Kim JE, Jeon Y, Lee MR, Choi JY, Song BR, Park JW, Kang MJ, Choi HJ, Bae SJ, Lee H, Kang BC, Hwang DY. Deletion of NKX3.1 via CRISPR/Cas9 Induces Prostatic Intraepithelial Neoplasia in C57BL/6 Mice. Technol Cancer Res Treat 2020; 19:1533033820964425. [PMID: 33094683 PMCID: PMC7586030 DOI: 10.1177/1533033820964425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Several techniques have been employed for deletion of the NKX3.1 gene, resulting in developmental defects of the prostate, including alterations in ductal branching morphogenesis and prostatic secretions as well as epithelial hyperplasia and dysplasia. To investigate whether the CRISPR/Cas9-mediated technique can be applied to study prostate carcinogenesis through exon I deletion of NKX3.1 gene, alterations in the prostatic intraepithelial neoplasia (PIN) and their regulatory mechanism were observed in the prostate of NKX3.1 knockout (KO) mice produced by the CRISPR/Cas9-mediated NKX3.1 mutant gene, at the ages of 16 and 24 weeks. The weight of dorsal-lateral prostate (DLP) and anterior prostate (AP) were observed to be increased in only the 24 weeks KO mice, although morphogenesis was constant in all groups. Obvious PIN 1 and 2 lesions were frequently detected in prostate of the 24 weeks KO mice, as compared with the same age wild type (WT) mice. Ki67, a key indicator for PIN, was densely stained in the epithelium of prostate in the 24 weeks KO mice, while the expression of p53 protein was suppressed in the same group. Also, both the 16 and 24 weeks KO mice reveal inhibition of the PI3K/AKT/mTOR pathway in the prostate. However, prostate specific antigen (PSA) levels and Bax/Bcl-2 expressions were decreased in the prostate of 16 weeks KO mice, and were increased in only the 24 weeks KO mice. Taken together, the results of the present study provide additional evidence that CRISPR/Cas9-mediated exon 1 deletion of the NKX3.1 gene successfully induces PIN lesions, along with significant alterations of Ki67 expression, EGFR signaling pathway, and cancer-regulated proteins.
Collapse
Affiliation(s)
- Jin Ju Park
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Ji Eun Kim
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Yoon Jeon
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang-si, Korea
| | - Mi Rim Lee
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Jun Young Choi
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Bo Ram Song
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Ji Won Park
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Mi Ju Kang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Hyeon Jun Choi
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Su Ji Bae
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang-si, Korea
| | - Byeong Cheol Kang
- Graduate School of Translational Medicine, Seoul National University, College of Medicine/Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| |
Collapse
|
8
|
Afify H, Abo-Youssef AM, Abdel-Rahman HM, Allam S, Azouz AA. The modulatory effects of cinnamaldehyde on uric acid level and IL-6/JAK1/STAT3 signaling as a promising therapeutic strategy against benign prostatic hyperplasia. Toxicol Appl Pharmacol 2020; 402:115122. [PMID: 32628957 DOI: 10.1016/j.taap.2020.115122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 01/24/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a widespread disorder in elderly men. Cinnamaldehyde, which is a major constituent in the essential oil of cinnamon, has been previously reported to reduce xanthine oxidase activity, in addition to its anti-inflammatory, anti-oxidant, and anti-proliferative activities. Our study was designed to investigate the potential modulatory effects of cinnamaldehyde on testosterone model of BPH in rats through reduction of uric acid level, and suppression of IL-6/JAK1/STAT3 signaling pathway. Cinnamaldehyde (40 and 75 mg/kg) was orally administered to male Wistar rats for 3 weeks, and concurrently with testosterone (3 mg/kg, s.c.) from the second week. Cinnamaldehyde ameliorated the elevation in prostatic weight and index compared to rats treated with testosterone only, that was also confirmed by alleviation of histopathological changes in prostate architecture. The protective mechanisms of cinnamaldehyde were elucidated through inhibition of xanthine oxidase activity and reduced uric acid level. That was accompanied by reduction of the pro-inflammatory cytokines; interleukin-6 (IL-6), IL-1β, tumor necrosis factor-alpha (TNF-α), and the nuclear translocation of the transcription factor NF-κB p65, that could be attributed also to the enhanced anti-oxidant defense by cinnamaldehyde. The protein expression of JAK1, which is IL-6 receptor linked protein, was reduced with subsequently reduced activation of STAT3 protein. That eventually suppressed the formation of the proliferation protein cyclin D1, while elevated Bax/Bcl2 ratio. It can be concluded that reducing uric acid level through xanthine oxidase inhibition and suppression of the inflammatory signaling cascade; IL-6/JAK1/STAT3; by cinnamaldehyde could be a novel and promising therapeutic approach against BPH.
Collapse
Affiliation(s)
- Hassan Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian-Russian University, Cairo, Egypt
| | - Amira M Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hanaa M Abdel-Rahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian-Russian University, Cairo, Egypt; Department of Forensic Medicine and Toxicology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Shady Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Amany A Azouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|