1
|
Ajiboye OM, Ogunwenmo KO, Adewumi AG, Mohanye CC. Parkia biglobosa Jacq. (Locust Bean) leaves and seeds extracts attenuates diabetic-linked cognitive dysfunction in streptozotocin-induced male wistar rats. Metab Brain Dis 2024; 40:76. [PMID: 39714608 DOI: 10.1007/s11011-024-01514-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Diabetes Mellitus is a metabolic disorder characterized by high blood glucose levels, causing significant morbidity and mortality rates. This study investigated the antidiabetic, neuroprotective, and antioxidant effects of ethanol extracts of Parkia biglobosa (PB) leaves and seeds in streptozotocin (STZ)-induced diabetic rats. The administration of STZ significantly elevated fasting blood glucose levels (FBGL) to 355-400 mg/mL compared to 111 mg/mL in normal controls, indicating hyperglycemia. Treatment with PB extracts at 100 mg/kg and 200 mg/kg significantly (p < 0.05) reduced FBGL in a dose-dependent manner. No significant difference was observed between the effects of metformin and PB extracts at 200 mg/kg. Cognitive dysfunction, assessed using the Y-maze test, was significantly improved in groups treated with PB extracts (p < 0.05), particularly at 200 mg/kg, through inhibition of cholinesterase activity and protection against oxidative damage. Both PB extracts also demonstrated significant inhibition (p < 0.05) of α-amylase and α-glucosidase activity, reducing postprandial hyperglycemia, with a stronger inhibition at 200 mg/kg. Additionally, PB extracts significantly increased catalase (CAT) and superoxide dismutase (SOD) activities, reversing the diabetes-induced decline in antioxidant enzyme levels. Monoamine oxidase (MAO) activity, elevated in diabetic conditions, was significantly downregulated by PB treatment, further contributing to neuroprotection. The neuroprotective effects may be attributed to the inhibition of cholinesterase and MAO, which help maintain neurotransmitter levels, alongside the antioxidant properties that mitigate oxidative stress in the brain. These findings suggest that PB extracts could serve as a natural therapeutic agent for diabetes management, with its effects comparable to metformin at higher doses.
Collapse
Affiliation(s)
- Oluwapelumi M Ajiboye
- Department of Basic Science, School of Science and Technology, Babcock University, Ilishan-Remo, Ogun State, Nigeria.
| | - Kayode O Ogunwenmo
- Department of Basic Science, School of Science and Technology, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Aderiike G Adewumi
- Department of Basic Science, School of Science and Technology, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Clinton C Mohanye
- Department of Basic Science, School of Science and Technology, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| |
Collapse
|
2
|
Kısa D, Baş Topcu KS, Tunçkol B, Genç N, Imamoğlu R. Evaluation of Biological Potency of two Endemic Species Integrated with in vitro and in silico Approches: LC-MS/MS Analysis of the Plants. Chem Biodivers 2024; 21:e202301351. [PMID: 38268337 DOI: 10.1002/cbdv.202301351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
In the present study, the main phytochemical components of endemic plant extracts and inhibitory potency were screened related to different biological activities. Seven compounds were quantified, and cyanidin-3-o-glucoside was the dominant secondary metabolite in the extract of plants. The extract from P. asiae-minoris (PAM) exhibited the best enzyme inhibitory activity against BChE (1.73±0.23 μg mL-1 ), tyrosinase (2.47±0.28 μg mL-1 ), α-glucosidase (5.28±0.66 μg mL-1 ), AChE (8.66±0.86 μg mL-1 ), and ACE (19.27±1.02 μg mL-1 ). In vitro antioxidant assay, PAM extract possessed the highest activity in respect of DPPH radical scavenging (24.29±0.23 μg/mL), ABTS⋅+ scavenging (13.50±0.27 μg/mL) and FRAP reducing power (1.56±0.01 μmol TE/g extract). MIC values ranged from 1-8 mg/mL for antibacterial ability, and the PAM extract showed a stronger effect for B. subtilis, E. faecalis, and E. coli at 1 mg/mL. The antiproliferative ability of A. bartinense (AB) extract demonstrated a suppressive effect (IC50 : 70.26 μg/mL) for pancreatic cancer cell lines. According to the affinity scores analysis, the cyanidin-3-o-glucoside demonstrated the lowest docking scores against ACE, AChE, BChE, and collagenase. It was found that the PAM extract exhibited better inhibitory capabilities than A. bartinense. The P. asiae-minoris plant, reported to be in the Critically Endangered (CR) category, should be conserved by culturing, considering its biological abilities.
Collapse
Affiliation(s)
- Dursun Kısa
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, 74100, Bartin, Turkey
| | - Kübra Sena Baş Topcu
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, 74100, Bartin, Turkey
| | - Bilge Tunçkol
- Ulus Vocational School Department of Forestry and Forest Products Program, Bartin University, 74600, Bartin, Turkey
| | - Nusret Genç
- Department of Chemistry, Faculty of Science and Letters, Tokat Gaziosmanpaşa University, 60250, Tokat, Turkey
| | - Rizvan Imamoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, 74100, Bartin, Turkey
| |
Collapse
|
3
|
Rotimi DE, Ben-Goru GM, Evbuomwan IO, Elebiyo TC, Alorabi M, Farasani A, Batiha GES, Adeyemi OS. Zingiber officinale and Vernonia amygdalina Infusions Improve Redox Status in Rat Brain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9470178. [PMID: 36199544 PMCID: PMC9529415 DOI: 10.1155/2022/9470178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
The study investigated the effects of Zingiber officinale root and Vernonia amygdalina leaf on the brain redox status of Wistar rats. Twenty-four (24) rats weighing 160 ± 20 g were randomly assigned into four (4) groups, each with six (6) rats. Animals in Group 1 (control) were orally administered distilled water (1 mL), while the test groups were orally administered 5 mg/mL of either Z. officinale, V. amygdalina infusion, or a combination of both, respectively, for 7 days. The rats were sacrificed at the end of treatments and blood and tissue were harvested and prepared for biochemical assays. Results showed that administration of V. amygdalina and Z. officinale, as well as their coadministration, reduced the levels of malondialdehyde (MDA), nitric oxide (NO), acetylcholinesterase (AChE), and myeloperoxidase (MPO) in rat brain tissue compared with the control group. Conversely, coadministration of V. amygdalina and Z. officinale increased the levels of reduced glutathione (GSH) in rat brain tissue compared with the control group. However, the administration of the infusions singly, as well as the combination of both infusions, did not have any effect on the rat brain levels of glutathione peroxidase (GPx) and catalase (CAT) antioxidant enzymes compared to the control. Taken together, the findings indicate that the V. amygdalina and Z. officinale tea infusions have favorable antioxidant properties in the rat brain. The findings are confirmatory and contribute to deepening our understanding of the health-promoting effects of V. amygdalina and Z. officinale tea infusions.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
| | - Goodnews Mavoghenegbero Ben-Goru
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
| | - Ikponmwosa Owen Evbuomwan
- Department of Microbiology, Cellular Parasitology Unit, College of Pure and Applied Sciences, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
| | - Tobiloba Christiana Elebiyo
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
| | - Mohammed Alorabi
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdullah Farasani
- Department of Medical Laboratory Technology, Biomedical Research Unit, Medical Research Center, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Oluyomi Stephen Adeyemi
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-Onsen, Osaki, Miyagi 989-6711, Sendai, Japan
| |
Collapse
|
4
|
Ogunsuyi O, Olasehinde T, Oboh G. Neuroprotective properties of Solanum leaves in Transgenic Drosophila melanogaster model of Alzheimer's disease. Biomarkers 2022; 27:587-598. [PMID: 35546534 DOI: 10.1080/1354750x.2022.2077446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
INTRODUCTION We investigated the effect of African eggplant (AE) (Solanum macrocarpon L) and Black nightshade (BN) (Solanum nigrum L) leaves; two tropical vegetables consumed by humans on behavioral, biochemical and histological indices in Drosophila melanogaster model of Alzheimer's disease (AD). MATERIALS AND METHOD Transgenic flies expressing human Amyloid Precursor Protein (hAPP) and β-secretase (hBACE 1) were exposed to the pulverized leaf samples (0.1 and 1.0%) in their diets for fourteen days. Thereafter, the flies were assessed for their behavioral indices and routine histology of brain cells. Furthermore, fly head homogenates were assayed for β-amyloid level, activities of acetylcholinesterase (AChE) and β-secretase (BACE-1), as well as oxidative stress markers. RESULTS Result showed that the significantly lower (p < 0.05) behavioral parameters (survival, locomotor performance and memory index), higher AChE and BACE-1 activities, β-amyloid, ROS and lipid peroxidation levels, as well as reduced antioxidant indices observed in the AD flies, were significantly ameliorated (p < 0.05) in AD flies treated with the leaf samples. DISCUSSION This study has showed that leaves of AE and BN ameliorated behavioral and biochemical indices in AD flies via neural enzyme modulatory, and antioxidant mechanisms. CONCLUSION Hence, this study further justifies the neuroprotective properties of both AE and BN.
Collapse
Affiliation(s)
- Opeyemi Ogunsuyi
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria.,Department of Biomedical Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Tosin Olasehinde
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research, Lagos, Nigeria.,Discipline of Microbiology, School of Life Sciences, University of Kwazulu-Natal, Westville, Durban, Kwazulu-Natal Province, South Africa
| | - Ganiyu Oboh
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| |
Collapse
|
5
|
Fakhri S, Piri S, Moradi SZ, Khan H. Phytochemicals Targeting Oxidative Stress, Interconnected Neuroinflammatory, and Neuroapoptotic Pathways Following Radiation. Curr Neuropharmacol 2022; 20:836-856. [PMID: 34370636 PMCID: PMC9881105 DOI: 10.2174/1570159x19666210809103346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/19/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
The radiation for therapeutic purposes has shown positive effects in different contexts; however, it can increase the risk of many age-related and neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and Parkinson's disease (PD). These different outcomes highlight a dose-response phenomenon called hormesis. Prevailing studies indicate that high doses of radiation could play several destructive roles in triggering oxidative stress, neuroapoptosis, and neuroinflammation in neurodegeneration. However, there is a lack of effective treatments in combating radiation-induced neurodegeneration, and the present drugs suffer from some drawbacks, including side effects and drug resistance. Among natural entities, polyphenols are suggested as multi-target agents affecting the dysregulated pathogenic mechanisms in neurodegenerative disease. This review discusses the destructive effects of radiation on the induction of neurodegenerative diseases by dysregulating oxidative stress, apoptosis, and inflammation. We also describe the promising effects of polyphenols and other candidate phytochemicals in preventing and treating radiation-induced neurodegenerative disorders, aiming to find novel/potential therapeutic compounds against such disorders.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,Address correspondence to these author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; E-mail: Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan; E-mail:
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,These authors have contributed equally to this work.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,These authors have contributed equally to this work.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan,Address correspondence to these author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; E-mail: Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan; E-mail:
| |
Collapse
|
6
|
Ekong MB, Iniodu CF. Nutritional therapy can reduce the burden of depression management in low income countries: A review. IBRO Neurosci Rep 2021; 11:15-28. [PMID: 34939062 PMCID: PMC8664701 DOI: 10.1016/j.ibneur.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/06/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Depression is a serious mental and mood disorder with global health and economic burden. This burden may be overwhelming in low income countries, although there are insufficient data. Most antidepressant formulations are predicated on the monoamine, neuroendocrine and neuro-inflammation hypotheses, with little or no cognizance to other neurochemicals altered in depression. A nutritional strategy with or without conventional antidepressants is recommended, as nutrition plays vital roles in the onset, severity and duration of depression, with poor nutrition contributing to its pathogenesis. This review discusses nutritional potentials of utilizing omega-3 fatty acids, proteins, vitamins, minerals and herbs or their phytochemicals in the management of depression with the aim of reducing depression burden. Literature search of empirical data in books and journals in data bases including but not limited to PubMed, Scopus, Science Direct, Web of Science and Google Scholar that might contain discussions of sampling were sought, their full text obtained, and searched for relevant content to determine eligibility. Omega-3 fatty and amino acids had significant positive anti-depression outcomes, while vitamins and minerals although essential, enhanced omega-3 fatty and amino acids activities. Some herbs either as whole extracts or their phytochemicals/metabolites had significant positive anti-depression efficacy. Nutrition through the application of necessary food classes or herbs as well as their phytochemicals, may go a long way to effectively manage depression. This therefore will provide inexpensive, natural, and non-invasive therapeutic means with reduced adverse effects that can also be applied alongside clinical management. This nutritional strategy should be given more attention in research, assessment and treatment for those with depression and other mental illness in low income countries, especially in Africa.
Collapse
Affiliation(s)
- Moses B Ekong
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Nigeria
| | - Clementina F Iniodu
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Nigeria
| |
Collapse
|
7
|
Talebi M, Kakouri E, Talebi M, Tarantilis PA, Farkhondeh T, İlgün S, Pourbagher-Shahri AM, Samarghandian S. Nutraceuticals-based therapeutic approach: recent advances to combat pathogenesis of Alzheimer's disease. Expert Rev Neurother 2021; 21:625-642. [PMID: 33910446 DOI: 10.1080/14737175.2021.1923479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Alzheimer's disease (AD) is a progressive neurodegenerative disease accompanying memory deficits. The available pharmaceutical care has some limitations mostly entailing side effects, shelf-life, and patient's compliance. The momentous implications of nutraceuticals in AD have attracted scientists. Several preclinical studies for the investigation of nutraceuticals have been conducted.Areas covered: This review focuses on the potential use of a nutraceuticals-based therapeutic approach to treat and prevent AD. Increasing knowledge of AD pathogenesis has led to the discovery of new therapeutic targets including pathophysiological mechanisms and various cascades. Hence, the present contribution will attend to the most popular and effective nutraceuticals with proposed brief mechanisms entailing antioxidant, anti-inflammatory, autophagy regulation, mitochondrial homeostasis, and more. Therefore, even though the effectiveness of nutraceuticals cannot be dismissed, it is essential to do further high-quality randomized clinical trials.Expert opinion: According to the potential of nutraceuticals to combat AD as multi-target directed drugs, there is critical importance to assess them as feasible lead compounds for drug discovery and development. To the best of the authors' knowledge, modification of blood-brain barrier permeability, bioavailability, and features of randomized clinical trials should be considered in prospective studies.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Eleni Kakouri
- Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, United States.,Food Safety Net Services, San Antonio, Texas, United States
| | - Petros A Tarantilis
- Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ali Mohammad Pourbagher-Shahri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
8
|
Dada FA, Oyeleye SI, Adefegha SA, Babatola LJ, Adebayo A. Evaluation of different almond ( Terminalia catappa) extracts against oxidative stress induced by cyclosporine in brain and liver of rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 18:727-735. [PMID: 33852232 DOI: 10.1515/jcim-2020-0193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/21/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study was designed to evaluate the ameliorative effect of almond (Terminalia catappa) leaf (ALE) and stem bark (ABE) extracts on the enzyme activities and oxidative stress markers in the brain and liver tissues of cyclosporine-A (CsA) stressed male albino rats. METHODS Eighty-eight adult male rats weighing between 200 and 220 g were randomly distributed to into 11 groups (n=8) and different doses (100 and 200 mg/kg bwt.) of ALE and ABE were administered through oral gavages to the normal rats and 50 mg/kg/bwt/day CsA-stressed, while normal control rats was given a saline solution (p.o), and the treatment lasted for 14 days. Blood plasma, liver and brain tissues were prepared for biochemical analysis. RESULTS Neuronal [acetylcholinesterase (AChE) and butrylcholinesterase (BChE) and arginase] enzyme activities and thiobarbituric acid reactive species (TBARS) level, plasma aspartate transferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities, liver non-protein thiol (NPSH) level were analyzed. The results revealed that, the administration of CsA induced a significant increase in neuronal AChE, BChE, arginase, TBARS level, but decreased nitric oxide (NO) level. CsA also increased ALT, AST, and ALP activities in the blood plasma of CsA stress rats compared to normal control, but were significantly reversed respectively (p<0.001) upon treatment with the ALE and ABE dose-dependently. CONCLUSIONS The study revealed that ALE and ABE could prevent neuronal dysfunction and liver toxicity induced by CsA administration, however, higher dose (200 mg/kg) of the studied extracts appears to be more potent.
Collapse
Affiliation(s)
- Felix Abayomi Dada
- Science Laboratory Technology Department (Biochemistry Unit), Federal Polytechnic Ede, Ede, Osun State, Nigeria
| | - Sunday Idowu Oyeleye
- Functional Foods and Nutraceuticals Research Laboratory, Biochemistry Department, Federal University of Technology, Akure, Nigeria
- Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Stephen Adeniyi Adefegha
- Functional Foods and Nutraceuticals Research Laboratory, Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Leye Jonathan Babatola
- Department of Chemical Sciences, Joseph Ayo Babalola University, Ikeji Arakeji, Osun State, Nigeria
| | - Adeniyi Adebayo
- Department of Chemical Sciences, Joseph Ayo Babalola University, Ikeji Arakeji, Osun State, Nigeria
| |
Collapse
|
9
|
Ademiluyi AO, Oyesomi AA, Ogunsuyi OB, Oyeleye SI, Oboh G. Influence of cooking on the neuroprotective properties of pepper (bird pepper and cayenne pepper) varieties in scopolamine‐induced neurotoxicity in rats. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Adeola A. Oyesomi
- Department of Biochemistry Federal University of Technology Akure Nigeria
| | - Opeyemi B. Ogunsuyi
- Department of Biochemistry Federal University of Technology Akure Nigeria
- Department of Biomedical Technology Federal University of Technology Akure Nigeria
| | - Sunday I. Oyeleye
- Department of Biochemistry Federal University of Technology Akure Nigeria
- Department of Biomedical Technology Federal University of Technology Akure Nigeria
| | - Ganiyu Oboh
- Department of Biochemistry Federal University of Technology Akure Nigeria
| |
Collapse
|
10
|
Oyeleye SI, Ogunsuyi OB, Adedeji V, Olatunde D, Oboh G. Citrus spp. essential oils improve behavioral pattern, repressed cholinesterases and monoamine oxidase activities, and production of reactive species in fruit fly (Drosophila melanogaster) model of Alzheimer's Disease. J Food Biochem 2020; 45:e13558. [PMID: 33179303 DOI: 10.1111/jfbc.13558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/26/2022]
Abstract
Much emphasis has been placed on the biological activities of citrus peel's essential oils (CPEOs) against human ailments. This study investigated the effect of Citrus limon and Citrus reticulata peel's essential oils (EOs) on behavioral and neurochemical imbalance in transgenic and Harwish (Wild) fruit flies. Flies were divided into seven groups comprising of the control and those that were fed with 0.1, 0.5, and 1.0 µg/ml of the dietary inclusions of study CPEOs for 7 days. Thereafter, behavioral profile was examined using lethality response and negative geotaxis assays. Effect of the EOs on cholinesterase and monoamine oxidase (MAO) activities, and antioxidative parameters were determined. The result showed a significant improvement of behavioral pattern and biochemical parameters of the flies fed with studied CPEOs inclusive diets. Conclusively, both EOs exert neuroprotective capability by reducing cholinesterases and monoamine activities, and also prevent oxidative stress, which are implicated in neuronal dysfunction in humans. PRACTICAL APPLICATIONS: With the growing increase in the search for safer alternatives, having no side effects, for the management of neurodegenerative diseases, a large proportion of the populace is beginning to find solace in the use of natural products. Also, the wide array of similarities between the humans and the dipteran insects, fruit flies is a perfect organism for the study of neurodegenerative diseases. Therefore, this study presents the neuroprotective potentials of lemon and tangerine peels-derived EOs, and the possibility of their exploration as neuroactive agents and alternative in the management of Alzheimer's disease (AD).
Collapse
Affiliation(s)
| | | | - Victor Adedeji
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Damilola Olatunde
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
11
|
Nwanna EE, Oyeleye SI, Oboh G. Editan (Lasianthera africana) leaf-inclusive diets modulate some neuronal enzyme activities and antioxidant status of cyclophosphamide-treated Wistar rats. J Food Biochem 2020; 45:e13427. [PMID: 32779754 DOI: 10.1111/jfbc.13427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/21/2022]
Abstract
The effect of Editan (Lasianthera africana) leaf inclusive diet (ELD) on neuronal cholinesterases (ChE), ecto-5'-nucleotidase, and endogenous antioxidant indices [superoxide dismutase (SOD), catalase (CAT), glutathione (GSH)] in cyclophosphamide (CYP)-administered albino rats were investigated. Thirty male albino Wistar rats were dissevered appropriately (n = 6). Group I-normal control rats (NC), II-untreated CYP-administered rats, III-CYP-administered rats pre-treated with donepezil (DON), group IV-CYP-administered rats fed ELD, and V-normal rats fed with ELD for 21 days. Results obtained revealed that CYP-administered rats significantly (p < .05) had elevated activities of ChE, ecto-5'-nucleotidase and thiobarbituric acid reactive species (TBARS), and concomitantly decreased in the antioxidant indices. However, pre-treatment with either DON or ELD reversed these effects, thereby eliciting a therapeutic effect which could be linked to the rich polyphenol and alkaloid constituents in the studied leaf, and could be responsible for the potential ethnopharmacological actions of the ELD in the management neurodegeneration. PRACTICAL APPLICATIONS: Currently, the use of plant-food to control diseased conditions due to their phytochemicals has been explored, most especially, the indigenous edible vegetables from the Southwestern part of Nigeria. "Editan" leafy vegetable scientifically known as Lasianthera africana is commonly used in soups preparation and in folklore for the management of some human ailments. Editan leaf is a rich source of alkaloid and phenolic compounds, which could be used to treat and or manage neurological diseases. This study, therefore, unravels the fact that the studied leafy vegetable possesses therapeutic potentials toward the management of neurological disorders.
Collapse
Affiliation(s)
- Esther Emem Nwanna
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Sunday Idowu Oyeleye
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|