1
|
Chen B, Shi C, Xiong S, Wu K, Yang Y, Mu W, Li X, Yang Y, Shen X, Peng S. Insights into the spontaneous multi-scale supramolecular assembly in an ionic liquid-based extraction system. Phys Chem Chem Phys 2022; 24:25950-25961. [PMID: 36263674 DOI: 10.1039/d2cp03389e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, we report a four-step mechanism for the spontaneous multi-scale supramolecular assembly (MSSA) process in a two-phase system concerning an ionic liquid (IL). The complex ions, elementary building blocks (EBBs), [EBB]n clusters and macroscopic assembly (MA) sphere are formed step by step. The porous large-sized [EBB]n clusters in the glassy state can hardly stay in the IL phase and they transfer to the IL-water interface due to both electroneutrality and amphiphilicity. Then, the clusters undergo random collision in the interface driven by the Marangoni effect and capillary force thereafter. Finally, a single MA sphere can be formed owing to supramolecular interactions. To our knowledge, this is the first example realizing spontaneous whole-process supramolecular assembly covering microscopic, mesoscopic and macroscopic scales in extraction systems. The concept of multi-scale selectivity (MSS) is therefore suggested and its mechanism is revealed. The selective separation and solidification of metal ions can be realized in a MSSA-based extraction system depending on MSS. In addition, insights into the physicochemical characteristics of ILs from microscopic, mesoscopic to macroscopic scales are provided, and especially, the solvation effect of ILs on the large-sized clusters leading to the phase-splitting is examined. It is quite important that the polarization of uranyl in its complex, the growing of uranyl clusters in an IL as well as the glassy material of uranyl are investigated systematically on the basis of both experiment and theoretical calculations in this work.
Collapse
Affiliation(s)
- Baihua Chen
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, P. R. China.
| | - Ce Shi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Shijie Xiong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Kaige Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Yanqiu Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, P. R. China.
| | - Wanjun Mu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, P. R. China.
| | - Xingliang Li
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, P. R. China.
| | - Yuchuan Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, P. R. China.
| | - Xinghai Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory, Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Shuming Peng
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, P. R. China.
| |
Collapse
|
2
|
Nayak S, Kumal RR, Uysal A. Spontaneous and Ion-Specific Formation of Inverted Bilayers at Air/Aqueous Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5617-5625. [PMID: 35482964 DOI: 10.1021/acs.langmuir.2c00208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing better separation technologies for rare earth metals, an important aspect of a sustainable materials economy, is challenging due to their chemical similarities. Identifying molecular-scale interactions that amplify the subtle differences between the rare earths can be useful in developing new separation technologies. Here, we describe the ion-dependent monolayer to inverted bilayer transformation of extractant molecules at the air/aqueous interface. The inverted bilayers form with Lu3+ ions but not with Nd3+. By introducing Lu3+ ions to preformed monolayers, we extract kinetic parameters corresponding to the monolayer to inverted bilayer conversion. Temperature-dependent studies show Arrhenius behavior with an energy barrier of 40 kcal/mol. The kinetics of monolayer to inverted bilayer conversion is also affected by the character of the background anion, although anions are expected to be repelled from the interface. Our results show the outsized importance of ion-specific effects on interfacial structure and kinetics, pointing to their role in chemical separation methods.
Collapse
Affiliation(s)
- Srikanth Nayak
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Raju R Kumal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
4
|
Lommelen R, Binnemans K. Thermodynamic Modeling of Salting Effects in Solvent Extraction of Cobalt(II) from Chloride Media by the Basic Extractant Methyltrioctylammonium Chloride. ACS OMEGA 2021; 6:11355-11366. [PMID: 34056291 PMCID: PMC8153924 DOI: 10.1021/acsomega.1c00340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The design and optimization of solvent extraction processes for metal separations are challenging tasks due to the large number of adjustable parameters. A quantitative predictive solvent extraction model could help to determine the optimal parameters for solvent extraction flow sheets, but such predictive models are not available yet. The main difficulties for such models are the large deviations from ideal thermodynamic behavior in both the aqueous and organic phases due to high solute concentrations. We constructed a molecular thermodynamic model for the extraction of CoCl2 from different chloride salts by 0.2 mol L-1 trioctylmethylammonium chloride in toluene using the OLI mixed-solvent electrolyte (OLI-MSE) framework. This was accomplished by analyzing the water and hydrochloric acid content of the organic phase, measuring the water activity of the system, and using metal complex speciation and solvent extraction data. The full extractant concentration range cannot be modeled by the OLI-MSE framework as this framework lacks a description for reversed micelle formation. Nevertheless, salting effects and the behavior of hydrochloric acid can be accurately described with the presented extraction model, without determining specific Co(II)-salt cation interaction parameters. The resulting model shows that the salting effects originate from indirect salt cation-solvent interactions that influence the availability of water in the aqueous and organic phases.
Collapse
|
5
|
Chowdhury AU, Lin L, Doughty B. Hydrogen-Bond-Driven Chemical Separations: Elucidating the Interfacial Steps of Self-Assembly in Solvent Extraction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32119-32130. [PMID: 32551500 DOI: 10.1021/acsami.0c06176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Chemical separations, particularly liquid extractions, are pervasive in academic and industrial laboratories, yet a mechanistic understanding of the events governing their function are obscured by interfacial phenomena that are notoriously difficult to measure. In this work, we investigate the fundamental steps of ligand self-assembly as driven by changes in the interfacial H-bonding network using vibrational sum frequency generation. Our results show how the bulk pH modulates the interfacial structure of extractants at the buried oil/aqueous interface via the formation of unique H-bonding networks that order and bridge ligands to produce self-assembled aggregates. These extended H-bonded structures are key to the subsequent extraction of Co2+ from the aqueous phase in promoting micelle formation and subsequent ejection of the said micelle into the oil phase. The combination of static and time-resolved measurements reveals the events underlying complexities of liquid extractions at high [Co2+]:[ligand] ratios by showing an evolution of interfacially assembled structures that are readily tuned on a chemical basis by altering the compositions of the aqueous phase. The results of this work point to new principles to design-applied separations through the manipulation of surface charge, electrostatic screening, and the associated H-bonding networks that arise at the interface to facilitate organization and subsequent extraction.
Collapse
Affiliation(s)
- Azhad U Chowdhury
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Lu Lin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
7
|
Singh MB, Nayak SG, Kanthe AD, Patil RB, Gaikar VG. Insight into acidity driven third phase formation of TBP in organic solutions by MD simulation. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.02.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Su W, Chen J, Jing Y. Aqueous Partition Mechanism of Organophosphorus Extractants in Rare Earths Extraction. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01709] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenrou Su
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Ji Chen
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yu Jing
- State
Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
9
|
Sun T, Xu C, Chen J. Formation of W/O microemulsions in the extraction of Nd(iii) by bis(2,4,4-trimethylpentyl)dithiophosphinic acid and its effects on Nd(iii) coordination. Dalton Trans 2016; 45:1078-84. [DOI: 10.1039/c5dt03964a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our work describes the formation of W/O microemulsions and its effect on the coordination environment of Nd(iii) in the extraction using purified Cyanex 301 as an extractant.
Collapse
Affiliation(s)
- Taoxiang Sun
- Institute of Nuclear and New Energy Technology
- Beijing Key Lab of Radioactive Waste Treatment
- Collaborative Innovation Center of Advanced Nuclear Energy Technology
- Tsinghua University
- Beijing 100084
| | - Chao Xu
- Institute of Nuclear and New Energy Technology
- Beijing Key Lab of Radioactive Waste Treatment
- Collaborative Innovation Center of Advanced Nuclear Energy Technology
- Tsinghua University
- Beijing 100084
| | - Jing Chen
- Institute of Nuclear and New Energy Technology
- Beijing Key Lab of Radioactive Waste Treatment
- Collaborative Innovation Center of Advanced Nuclear Energy Technology
- Tsinghua University
- Beijing 100084
| |
Collapse
|
11
|
Ribeiro LC, da Soledade Santos M, Paula Paiva A. Apparent Molar Volumes ofN,N– Disubstituted Monoamides: A Convenient Tool to Interpret Iron(Iii) Extraction Profiles from Hydrochloric Acid Solutions. SOLVENT EXTRACTION AND ION EXCHANGE 2013. [DOI: 10.1080/07366299.2013.764784] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|