1
|
Guo X, Ma Y, Wang H, Yin H, Shi X, Chen Y, Gao G, Sun L, Wang J, Wang Y, Fan D. Status and developmental trends in recombinant collagen preparation technology. Regen Biomater 2023; 11:rbad106. [PMID: 38173768 PMCID: PMC10761200 DOI: 10.1093/rb/rbad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Recombinant collagen is a pivotal topic in foundational biological research and epitomizes the application of critical bioengineering technologies. These technological advancements have profound implications across diverse areas such as regenerative medicine, organ replacement, tissue engineering, cosmetics and more. Thus, recombinant collagen and its preparation methodologies rooted in genetically engineered cells mark pivotal milestones in medical product research. This article provides a comprehensive overview of the current genetic engineering technologies and methods used in the production of recombinant collagen, as well as the conventional production process and quality control detection methods for this material. Furthermore, the discussion extends to foresee the strides in physical transfection and magnetic control sorting studies, envisioning an enhanced preparation of recombinant collagen-seeded cells to further fuel recombinant collagen production.
Collapse
Affiliation(s)
- Xiaolei Guo
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Yuan Ma
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Hang Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hongping Yin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xinli Shi
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Yiqin Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Guobiao Gao
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Lei Sun
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Jiadao Wang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Daidi Fan
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| |
Collapse
|
2
|
Rana D, Desai N, Salave S, Karunakaran B, Giri J, Benival D, Gorantla S, Kommineni N. Collagen-Based Hydrogels for the Eye: A Comprehensive Review. Gels 2023; 9:643. [PMID: 37623098 PMCID: PMC10454301 DOI: 10.3390/gels9080643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Collagen-based hydrogels have emerged as a highly promising platform for diverse applications in ophthalmology, spanning from drug delivery systems to biomedical interventions. This review explores the diverse sources of collagen, which give rise to different types of collagen protein. The critical isolation and purification steps are discussed, emphasizing their pivotal role in preparing collagen for biomedical use. To ensure collagen quality and purity, and the suitability of collagen for targeted applications, a comprehensive characterization and quality control are essential, encompassing assessments of its physical, chemical, and biological properties. Also, various cross-linking collagen methods have been examined for providing insight into this crucial process. This comprehensive review delves into every facet of collagen and explores the wide-ranging applications of collagen-based hydrogels, with a particular emphasis on their use in drug delivery systems and their potential in diverse biomedical interventions. By consolidating current knowledge and advancements in the field, this review aims to provide a detailed overview of the utilization of engineered collagen-based hydrogels in ocular therapeutics.
Collapse
Affiliation(s)
- Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (B.K.); (D.B.)
| | - Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India; (N.D.); (J.G.)
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (B.K.); (D.B.)
| | - Bharathi Karunakaran
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (B.K.); (D.B.)
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India; (N.D.); (J.G.)
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (B.K.); (D.B.)
| | - Srividya Gorantla
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA;
| | | |
Collapse
|
3
|
Salthouse D, Novakovic K, Hilkens CMU, Ferreira AM. Interplay between biomaterials and the immune system: Challenges and opportunities in regenerative medicine. Acta Biomater 2023; 155:1-18. [PMID: 36356914 DOI: 10.1016/j.actbio.2022.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
The use of biomaterials for tissue engineering and regenerative medicine applications has increased dramatically over recent years. However, the clinical uptake of a wide variety of biomaterials remains limited due to adverse effects commonly exhibited by patients, which are caused by the host immune response. Despite this, current in vitro evaluation standards (ISO-10993) for assessing the host response to biomaterials have limitations in predicting the likelihood of in vivo biomaterial acceptance. Furthermore, endotoxin contamination of biomaterials is rarely considered, despite its ability to significantly affect the performance of biomaterials and engineered tissues. This review highlights the importance of the immune response to biomaterials and discusses existing challenges and opportunities in the development and standardised assessment of the immune response to biomaterials, including the importance of endotoxin levels. In addition, the properties of biomaterials that impact the host immune response and the exploitation of immunomodulatory biomaterials in regenerative medicine are explored. Finally, a standardised in vitro pathway of evaluating the immune response to biomaterials (hydrogels) and their regenerative potential is proposed, aiming to ensure safety and consistency, while reducing costs and the use of animals in the biomaterials research for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: This review presents a critical analysis of the role of the interactions between the immune system and biomaterials in determining the therapeutic success of biomaterial-based approaches. No such review addressing the lack of understanding of biomaterial-immune system interactions during the developmental and pre-clinical stages of biomaterials, including the impact of the endotoxin levels of biomaterials on the immune response, is published. As there is a lack of in vitro regulations to evaluate the immune response to biomaterials, a standardised in vitro pathway to evaluate the immune response to biomaterials (hydrogels) and their immunomodulatory and regenerative potential for use in tissue engineering/regenerative medicine applications is presented. The aim of the proposed pathway of biomaterial evaluation is to ensure safety and consistency in the biomaterials research community, while reducing costs and animal use (through the concept of the 3R's - reduction, refinement, and replacement of animals).
Collapse
Affiliation(s)
- Daniel Salthouse
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Katarina Novakovic
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Catharien M U Hilkens
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom.
| |
Collapse
|
4
|
Effect of Sulfate, Citrate, and Tartrate Anions on the Liquid-Liquid Equilibrium Behavior of Water + Surfactant. Processes (Basel) 2022. [DOI: 10.3390/pr10102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cloud point extraction is a versatile method aimed at separating compounds from complex mixtures and arouses great technological interest, particularly among the biochemical industries. However, one must have deep knowledge of the liquid–liquid equilibrium behavior of systems to properly use the method. Thus, we used thermodynamic parameters to evaluate the effect of citrate, sulfate, and tartrate anions on the phase separation of water + Triton X-114® mixtures at 283.2 K, 293.2 K, and 303.2 K. In these systems, increasing the temperature and the anion molar fraction expanded the biphasic region in the following order: C6H5O73-> SO42- > C4H4O62−. Unlike other studies based on the Hofmeister series, the Gibbs free energy of micellization correlated the anion effect on the biphasic region with the spontaneity of the micelle formation. The water molecules structured around these anions were evaluated according to the shell volume of the immobilized water by electrostriction, volume of water around the hydration shell, Gibbs free energy of hydration, and Gibbs free energy of electrostriction (ΔGel12). The citrate anion presented a higher ΔGel12 of −1781.49 kJ mol−1, due to the larger number of electrons around it. In addition, the partition coefficient of the surfactant in the two liquid phases revealed a linear dependence upon the anion mole fractions by following the previous anion sequence and temperature in the phase separation.
Collapse
|
5
|
Ghasemi M, Bakhshi B, Khashei R, Soudi S, Boustanshenas M. Vibrio cholerae toxin coregulated pilus provokes inflammatory responses in Coculture model of Caco-2 and peripheral blood mononuclear cells (PBMC) leading to increased colonization. Microbiol Immunol 2021; 65:238-244. [PMID: 33913531 DOI: 10.1111/1348-0421.12889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
The aim of this study was to assess the modulatory effect of TcpA in the expression of CEACAM1 adhesin molecule and IL-1, IL-8, and TNF-α pro-inflammatory cytokines in the Coculture model of Caco-2/PBMC (peripheral blood mononuclear cell) that can mimic the intestinal milieu. The TcpA gene from Vibrio cholerae ATCC14035 was cloned in pET-28a and transformed into Escherichia coli Bl-21. The recombinant TcpA-His6 protein was expressed and purified using Ni-column chromatography. The sequencing of transformed plasmid and Western blot analysis of purified protein confirmed the identity of rTcp. The cytotoxicity of different concentrations of recombinant protein for human colon carcinoma cell line (human colorectal adenocarcinoma cell [Caco-2 cell]) was assessed by MTT assay and showed viability of 92%, 82%, and 70%, for 10 µg/mL of TcpA after 24, 48, and 72 h, respectively. Co-cultures of Caco-2 and PBMCs were used to mimic the intestinal milieu and treated with different concentrations of rTcpA (1, 5, 10, and 50 µg/mL). Our data showed about 2.04-, 3.37-, 3.68-, and 42.7-fold increase in CEACAM1 gene expression, respectively, compared with the nontreated Caco-2/PBMC Coculture. Moreover, the expression of IL-1, IL-8, and TNF-α genes was significantly increased up to 15.75-, 7.04-, and 80.95-folds, respectively. In conclusion, V. cholerae TcpA induces statistically significant dose-dependent stimulatory effect on TNF-α, IL-,1, and IL-8 pro-inflammatory cytokines expression. Of these, TNF-α was much more affected which, consequently, elevated the CEACAM1 expression level in IECs. This suggests that TcpA protein is a critical effector as an inducer of increased adhesion potential of V. cholera as well as inflammatory responses of host intestinal tissue.
Collapse
Affiliation(s)
- Maryam Ghasemi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Khashei
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mina Boustanshenas
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Silva F, Sitia L, Allevi R, Bonizzi A, Sevieri M, Morasso C, Truffi M, Corsi F, Mazzucchelli S. Combined Method to Remove Endotoxins from Protein Nanocages for Drug Delivery Applications: The Case of Human Ferritin. Pharmaceutics 2021; 13:pharmaceutics13020229. [PMID: 33562060 PMCID: PMC7915212 DOI: 10.3390/pharmaceutics13020229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Protein nanocages represent an emerging candidate among nanoscaled delivery systems. Indeed, they display unique features that proved to be very interesting from the nanotechnological point of view such as uniform structure, stability in biological fluids, suitability for surface modification to insert targeting moieties and loading with different drugs and dyes. However, one of the main concerns regards the production as recombinant proteins in E. coli, which leads to a product with high endotoxin contamination, resulting in nanocage immunogenicity and pyrogenicity. Indeed, a main challenge in the development of protein-based nanoparticles is finding effective procedures to remove endotoxins without affecting protein stability, since every intravenous injectable formulation that should be assessed in preclinical and clinical phase studies should display endotoxins concentration below the admitted limit of 5 EU/kg. Different strategies could be employed to achieve such a result, either by using affinity chromatography or detergents. However, these strategies are not applicable to protein nanocages as such and require implementations. Here we propose a combined protocol to remove bacterial endotoxins from nanocages of human H-ferritin, which is one of the most studied and most promising protein-based drug delivery systems. This protocol couples the affinity purification with the Endotrap HD resin to a treatment with Triton X-114. Exploiting this protocol, we were able to obtain excellent levels of purity maintaining good protein recovery rates, without affecting nanocage interactions with target cells. Indeed, binding assay and confocal microscopy experiments confirm that purified H-ferritin retains its capability to specifically recognize cancer cells. This procedure allowed to obtain injectable formulations, which is preliminary to move to a clinical trial.
Collapse
Affiliation(s)
- Filippo Silva
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milano, Italy; (F.S.); (L.S.); (R.A.); (A.B.); (M.S.)
| | - Leopoldo Sitia
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milano, Italy; (F.S.); (L.S.); (R.A.); (A.B.); (M.S.)
| | - Raffaele Allevi
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milano, Italy; (F.S.); (L.S.); (R.A.); (A.B.); (M.S.)
| | - Arianna Bonizzi
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milano, Italy; (F.S.); (L.S.); (R.A.); (A.B.); (M.S.)
| | - Marta Sevieri
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milano, Italy; (F.S.); (L.S.); (R.A.); (A.B.); (M.S.)
| | - Carlo Morasso
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (C.M.); (M.T.)
| | - Marta Truffi
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (C.M.); (M.T.)
| | - Fabio Corsi
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milano, Italy; (F.S.); (L.S.); (R.A.); (A.B.); (M.S.)
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (C.M.); (M.T.)
- Correspondence: (F.C.); (S.M.)
| | - Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milano, Italy; (F.S.); (L.S.); (R.A.); (A.B.); (M.S.)
- Correspondence: (F.C.); (S.M.)
| |
Collapse
|
7
|
Weber M, Steinle H, Golombek S, Hann L, Schlensak C, Wendel HP, Avci-Adali M. Blood-Contacting Biomaterials: In Vitro Evaluation of the Hemocompatibility. Front Bioeng Biotechnol 2018; 6:99. [PMID: 30062094 PMCID: PMC6054932 DOI: 10.3389/fbioe.2018.00099] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
Hemocompatibility of blood-contacting biomaterials is one of the most important criteria for their successful in vivo applicability. Thus, extensive in vitro analyses according to ISO 10993-4 are required prior to clinical applications. In this review, we summarize essential aspects regarding the evaluation of the hemocompatibility of biomaterials and the required in vitro analyses for determining the blood compatibility. Static, agitated, or shear flow models are used to perform hemocompatibility studies. Before and after the incubation of the test material with fresh human blood, hemolysis, cell counts, and the activation of platelets, leukocytes, coagulation and complement system are analyzed. Furthermore, the surface of biomaterials are evaluated concerning attachment of blood cells, adsorption of proteins, and generation of thrombus and fibrin networks.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
de Sousa Junior FC, Ribeiro VT, Chibério AS, da Mata Costa LP, de Araújo Padilha CE, Martins DRA, de Macedo GR, dos Santos ES. Simultaneous recombinant 503 antigen recovery and endotoxin removal from E. coli M15 homogenate using expanded bed adsorption chromatography. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1305411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Francisco Caninde de Sousa Junior
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Vitor Troccoli Ribeiro
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Abimaelle Silva Chibério
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Laura Pires da Mata Costa
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | - Gorete Ribeiro de Macedo
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Everaldo Silvino dos Santos
- Department of Chemical Engineering, Technology Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|