1
|
Bote ME. Studies on electrode combination for COD removal from domestic wastewater using electrocoagulation. Heliyon 2021; 7:e08614. [PMID: 34977420 PMCID: PMC8688571 DOI: 10.1016/j.heliyon.2021.e08614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/12/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
Electrocoagulation is an electrochemical method that uses sacrificial electrodes to remediate wastewater. The combination of electrodes for the treatment of domestic wastewater is the factor that influences the removal efficiency of COD (Chemical Oxygen Demand) by using the electrocoagulation process. Aluminum and Iron electrodes are combined as anode-cathode and cathode-anode in Al-Al, Fe-Fe, Al-Fe, and Fe-Al. Different factors are considered to evaluate the removal efficiency of COD like; pH (3-9), reaction time (15-60 min), and current density (9.23-45 A/m2). Based on this influencing factor Al-Al and Fe-Fe can remove COD up to 87.5 % and 90 % respectively. Similarly, 87.5 % and 88.89 % of COD were removed, when aluminum and iron were combined as Al-Fe and Fe-Al respectively. In addition, the effects of different operating parameters were discussed on the removal percentage of COD. This indicated that the combination of electrode influence the removal efficiency of COD using the electrocoagulation process under different operating parameters.
Collapse
Affiliation(s)
- Million Ebba Bote
- Department of Water Supply and Environmental Engineering, Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, Po Box - 378, Ethiopia
| |
Collapse
|
2
|
Mousazadeh M, Niaragh EK, Usman M, Khan SU, Sandoval MA, Al-Qodah Z, Khalid ZB, Gilhotra V, Emamjomeh MM. A critical review of state-of-the-art electrocoagulation technique applied to COD-rich industrial wastewaters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43143-43172. [PMID: 34164789 DOI: 10.1007/s11356-021-14631-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Electrocoagulation (EC) is one of the emerging technologies in groundwater and wastewater treatment as it combines the benefits of coagulation, sedimentation, flotation, and electrochemical oxidation processes. Extensive research efforts implementing EC technology have been executed over the last decade to treat chemical oxygen demand (COD)-rich industrial wastewaters with the aim to protect freshwater streams (e.g., rivers, lakes) from pollution. A comprehensive review of the available recent literature utilizing EC to treat wastewater with high COD levels is presented. In addition, recommendations are provided for future studies to improve the EC technology and broaden its range of application. This review paper introduces some technologies which are often adopted for industrial wastewater treatment. Then, the EC process is compared with those techniques as a treatment for COD-rich wastewater. The EC process is considered as the most privileged technology by different research groups owing to its ability to deal with abundant volumes of wastewater. After, the application of EC as a single and combined treatment for COD-rich wastewaters is thoroughly reviewed. Finally, this review attempts to highlight the potentials and limitations of EC. Related to the EC process in batch operation mode, the best operational conditions are found at 10 V and 60 min of voltage and reaction time, respectively. These last values guarantee high COD removal efficiencies of > 90%. This review also concludes that considerably large operation costs of the EC process appears to be the serious drawback and renders it as an unfeasible approach for handling of COD rich wastewaters. In the end, this review has attempted to highlights the potential and limitation of EC and suggests that vast notably research in the field of continuous flow EC system is essential to introduce this technology as a convincing wastewater technology.
Collapse
Affiliation(s)
- Milad Mousazadeh
- Student research committee, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Elnaz Karamati Niaragh
- Civil and Environmental Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Muhammad Usman
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173, Hamburg, Germany
| | - Saif Ullah Khan
- Department of Civil Engineering, Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh, U.P., 202001, India
| | - Miguel Angel Sandoval
- Departamento de Química de los Materiales, Laboratorio de Electroquímica Medio Ambiental, LEQMA, Universidad de Santiago de Chile USACH, Casilla 40, Correo 33, Santiago, Chile
- División de Ciencias Naturales y Exactas, Departamento de Ingeniería Química, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Guanajuato, México
| | - Zakaria Al-Qodah
- Department of Chemical Engineering, Al-Balqa Applied University, Amman, Jordan
| | - Zaied Bin Khalid
- Universiti Malaysia Pahang (UMP), 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Vishakha Gilhotra
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Mohammad Mahdi Emamjomeh
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
3
|
Zhao C, Zhou J, Yan Y, Yang L, Xing G, Li H, Wu P, Wang M, Zheng H. Application of coagulation/flocculation in oily wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142795. [PMID: 33572034 DOI: 10.1016/j.scitotenv.2020.142795] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/16/2020] [Accepted: 09/29/2020] [Indexed: 06/12/2023]
Abstract
Volumes of oily wastewater are inevitably generated by every walk of life. The removal of oil particles from oil-contaminated wastewater which is characterized as huge amounts, intricate composition, and great threats to human health and the ecological environment is a research hotspot in water treatment fields. Due to high treatment costs and undesirable treatment efficiencies, oily wastewater treatment remains a topical and urgent issue. At present, coagulation/flocculation as an indispensable oily wastewater treatment technology receives much attention because it is very well established, economical, practical and relatively efficient. The influencing factors of oil wastewater treatment by coagulation/flocculation have also been summarized in-depth, like dosage, pH, etc. In consideration of its complex composition and treatment difficulty, this paper will also compare the treatment effects of different coagulants/flocculants used alone and combined effects in oily wastewater treatment: inorganic coagulants, organic synthetic polymeric flocculants, natural flocculants and modified polymeric flocculants. Additionally, in this review, the mechanisms of removing oily substance by coagulation/flocculation are emphasized. Given strict emission standards and the refractory nature of oily wastewater, the combination process with coagulation/flocculation, such as electrocoagulation, coagulation-membrane filtration hybrid process, and coagulation/flocculation-flotation can present better application potential and are discussed in this review. To provide a proper choice in practical application, the operating cost of coagulation and several conventional technologies are also compared. Finally, the existing challenges in the treatment of oily wastewater by coagulation are analyzed, and the feasible research direction is proposed.
Collapse
Affiliation(s)
- Chuanliang Zhao
- School of Civil Engineering, Chang'an University, Xi'an 710061, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junyuan Zhou
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Yi Yan
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Liwei Yang
- School of Civil Engineering, Chang'an University, Xi'an 710061, China.
| | - Guohua Xing
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Huanyu Li
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Pei Wu
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Mingyuan Wang
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Huaili Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
4
|
Bendaia M, Hazourli S, Aitbara A, Nait Merzoug N. Performance of electrocoagulation for food azo dyes treatment in aqueous solution: optimization, kinetics, isotherms, thermodynamic study and mechanisms. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1806883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Marwa Bendaia
- Laboratory of Water Treatment and Valorization of Industrial Wastes, Chemistry Department, Faculty of Sciences, Badji-Mokhtar University, Annaba, Algeria
| | - Sabir Hazourli
- Laboratory of Water Treatment and Valorization of Industrial Wastes, Chemistry Department, Faculty of Sciences, Badji-Mokhtar University, Annaba, Algeria
| | - Adel Aitbara
- Laboratory of Physical Chemistry of Materials, Chemistry Department, Faculty of Sciences and Technology, Chadli Bendjedid University, El Tarf, Algeria
| | - Nesrine, Nait Merzoug
- Laboratory of Water Treatment and Valorization of Industrial Wastes, Chemistry Department, Faculty of Sciences, Badji-Mokhtar University, Annaba, Algeria
| |
Collapse
|
5
|
Kumar D, Sharma C. Reduction of chlorophenols and sludge management from paper industry wastewater using electrocoagulation process. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1646761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dushyant Kumar
- Environmental research Laboratory, Department of Paper Technology, Indian Institute of Technology Roorkee, Saharanpur, India
| | - Chhaya Sharma
- Environmental research Laboratory, Department of Paper Technology, Indian Institute of Technology Roorkee, Saharanpur, India
| |
Collapse
|
6
|
Safwat SM, Hamed A, Rozaik E. Electrocoagulation/electroflotation of real printing wastewater using copper electrodes: A comparative study with aluminum electrodes. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1494744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Safwat M. Safwat
- Sanitary & Environmental Engineering Division, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Ahmed Hamed
- Purchasing & Procurement Department, Rowad Modern Engineering, Cairo, Egypt
| | - Ehab Rozaik
- Sanitary & Environmental Engineering Division, Faculty of Engineering, Cairo University, Giza, Egypt
| |
Collapse
|