1
|
Yuan M, Huan X, Yang X, Fan M, Yin J, Ma Y, Deng B, Cao H, Han Y, Xu F. Simultaneous extraction of five heavy metal ions from root vegetables via dual-frequency ultrasound-assisted enzymatic digestion. Food Chem 2024; 454:139741. [PMID: 38805922 DOI: 10.1016/j.foodchem.2024.139741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
The dual-frequency ultrasound-assisted enzymatic digestion (DUED) technique was developed for synchronous green extraction of five heavy metal ions in root vegetables. The combination of α-amylase, cellulase, and papain showed significant advantageous in extracting heavy metal ions. Under optimized dual-frequency ultrasonic conditions, the extraction rates of Cr, As, Cd, Pb, and Hg in carrots reached 99.04%, 105.88%, 104.65%, 104.10%, and 103.13% respectively. And the extraction process is highly efficient, completing in just 15 min. Compared to conventional microwave-assisted acid hydrolysis method, this technique eliminates the need for high-temperature concentrated acid, enhancing its environmental sustainability while maintaining mild reaction conditions, making it ideal for biosensors application. Additionally, simultaneous extraction and detection of four heavy metals in lotus roots were successfully achieved by using DUED and a fluorescent paper-based microfluidic chip. The obtained results are consistent with those obtained using conventional methods.
Collapse
Affiliation(s)
- Min Yuan
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xinyan Huan
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Centre of Agri-products Quality and Safety, Shanghai 201708, China
| | - Xiaojun Yang
- Shanghai Centre of Agri-products Quality and Safety, Shanghai 201708, China
| | - Menghan Fan
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiaqi Yin
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - YingQing Ma
- Shanghai Centre of Agri-products Quality and Safety, Shanghai 201708, China
| | - Bo Deng
- Shanghai Centre of Agri-products Quality and Safety, Shanghai 201708, China
| | - Hui Cao
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yiyi Han
- Shanghai Centre of Agri-products Quality and Safety, Shanghai 201708, China.
| | - Fei Xu
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
2
|
Gaber MAFM, Logan A, Tamborrino A, Leone A, Romaniello R, Juliano P. Innovative technologies to enhance oil recovery. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 105:221-254. [PMID: 37516464 DOI: 10.1016/bs.afnr.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
The processes for extracting and refining edible oils are well-established in industry at different scales. However, these processing lines encounter inefficiencies and oil losses when recovering crude or refined oil. Palm oil and olive oil extraction methods are used mainly as a combination of physical, thermal, and centrifugal methods to recover crude oil, which results in oil losses in the olive pomace or in palm oil effluents. Seed oils generally require a seed steam conditioning, and cooking stage, followed by physical oil recovery through an inefficient expeller. Most of the crude oil remaining in the expeller cake is then recovered by hexane. Crude seed oil is further refined in stages that also undergo oil losses. This chapter provides an overview of innovative technologies using microwave, ultrasound, megasonic and pulsed electric field energies, which can be used in the above-mentioned crude and refined oil processes to improve oil recovery. This chapter describes traditional palm oil, olive oil, and seed oil processes, as well as the specific process interventions that have been tested with these technologies. The impact of such technology interventions on oil quality is also summarized.
Collapse
Affiliation(s)
| | - Amy Logan
- CSIRO Agriculture and Food, Werribee, VIC, Australia
| | - Antonia Tamborrino
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Leone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Roberto Romaniello
- Department of Agriculture, Food, Natural Resource and Engineering, University of Foggia, Foggia, Italy
| | - Pablo Juliano
- CSIRO Agriculture and Food, Werribee, VIC, Australia.
| |
Collapse
|
3
|
Donn P, Barciela P, Perez-Vazquez A, Cassani L, Simal-Gandara J, Prieto MA. Bioactive Compounds of Verbascum sinuatum L.: Health Benefits and Potential as New Ingredients for Industrial Applications. Biomolecules 2023; 13:biom13030427. [PMID: 36979363 PMCID: PMC10046334 DOI: 10.3390/biom13030427] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Verbascum sinuatum (V. sinuatum) is a plant belonging to the Scrophulariaceae family that has been used as an ingredient in traditional medicine infusions for the treatment of many diseases. The aerial part of this plant is a source of bioactive compounds, especially polyphenols and iridoids. Moreover, antioxidant activity studies have shown that V. sinuatum phenolic and flavonoid composition is higher than those in other plants of the same genus. V. sinuatum bioactive compound composition could vary according to the harvesting location, growing conditions of the plants, sample preparation methods, type and concentration of the extraction solvent, and the extraction methods. The obtention of these compounds can be achieved by different extraction techniques, most commonly, maceration, heat assisted extraction, and infusion. Nevertheless, since conventional extraction techniques have several drawbacks such as long times of extraction or use of large amounts of solvents, the use of green extraction techniques is suggested, without affecting the efficiency of the extraction. Moreover, V. sinuatum bioactive compounds have several biological activities, such as antioxidant, anticancer, cardiovascular, antimicrobial, antidiabetic, and neuroprotective activities, that may be increased by encapsulation. Since the bioactive compounds extracted from V. sinuatum present good potential as functional food ingredients and in the development of drugs or cosmetics, this review gives an approach of the possible incorporation of these compounds in the food and pharmacological industries.
Collapse
Affiliation(s)
- Pauline Donn
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Paula Barciela
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Ana Perez-Vazquez
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Lucia Cassani
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Miguel A. Prieto
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence:
| |
Collapse
|
4
|
Modupalli N, Krisshnan A, C K S, D V C, Natarajan V, Koidis A, Rawson A. Effect of novel combination processing technologies on extraction and quality of rice bran oil. Crit Rev Food Sci Nutr 2022; 64:1911-1933. [PMID: 36106441 DOI: 10.1080/10408398.2022.2119367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Rice bran, a primary by-product from the rice processing industries, containing 10-15% oil, attracts significant attention from consumers due to its many health-promoting effects. The extraction methodology used is one of the most critical factors affecting the quality and yield of oil from rice bran. Using solvents is the current commercial process for rice bran oil extraction, which has its setbacks. It is challenging and expensive, and there is a risk of traces of solvent residue in the oil. Emerging combination extraction technologies offer zero to minimal solvent residues or chemical deformation while considering increasing environmental and energy footprint. Emerging combination processing technologies include new-age methods like supercritical fluid extraction, sub-critical fluid extraction, ultrasound-assisted enzymatic extraction, ohmic heating, and microwave-assisted extraction. These techniques have been reported to extract oil from rice bran, improving extraction efficiency and quality. These techniques demonstrate solid prospects for future applications. The present review discusses and compares these emerging technologies for oil extraction from rice bran commercially.
Collapse
Affiliation(s)
- Nikitha Modupalli
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | - Anitha Krisshnan
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | - Sunil C K
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | - Chidanand D V
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | | | - Anastasios Koidis
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Ashish Rawson
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| |
Collapse
|
5
|
Tavakoli A, Sahari MA, Barzegar M, Ahmadi Gavlighi H, Marzocchi S, Marziali S, Caboni M. Deodorization of sunflower oil by high voltage electric field as a nonthermal method sunflower oil refining by electric field. J Food Sci 2022; 87:4363-4378. [DOI: 10.1111/1750-3841.16312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Atefeh Tavakoli
- Faculty of Agriculture, Department of Food Science and Technology Tarbiat Modares University Tehran Iran
| | - Mohammad Ali Sahari
- Faculty of Agriculture, Department of Food Science and Technology Tarbiat Modares University Tehran Iran
| | - Mohsen Barzegar
- Faculty of Agriculture, Department of Food Science and Technology Tarbiat Modares University Tehran Iran
| | - Hassan Ahmadi Gavlighi
- Faculty of Agriculture, Department of Food Science and Technology Tarbiat Modares University Tehran Iran
| | - Silvia Marzocchi
- Interdepartmental Centre for Agri‐Food Industrial Research, Alma Mater Studiorum University of Bologna Cesena Italy
| | - Sara Marziali
- Department of Agricultural, Environmental and Food Sciences University of Molise Campobasso Italy
| | - Maria Caboni
- Department of Agricultural and Food Science, Alma Mater Studiorum University of Bologna Cesena Italy
| |
Collapse
|
6
|
De Aquino D, Roders C, Vessoni A, Stevanato N, Da Silva C. Assessment of obtaining sunflower oil from enzymatic aqueous extraction using protease enzymes. GRASAS Y ACEITES 2022. [DOI: 10.3989/gya.0323211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of this work was to maximize the enzymatic aqueous extraction (EAE) of sunflower seed oil using protease enzymes from the evaluation of various temperatures, pH and enzyme concentrations, using a Box-Behnken experimental design. The effect of a thermal pre-treatment of sunflower seeds on free oil yield (FOY) and oil quality was also determined. In the experimental range adopted, a lower temperature (40 °C) provided higher FOY values, as well as the intermediate pH (8.00) and maximum enzyme concentration (9% v/v). Thermal pre-treatment provided an increase in FOY in the initial extraction times (60 to 180 min) and decreased of the extraction time of 4 to 3 h to obtain the highest FOY value (~16%). The fatty acid composition of the oils obtained showed a predominance of oleic (~47.5%) and linoleic acids (~39.5%). The total phytosterol content in the samples was hardly affected by the heat pre-treatment of the seeds, while the fatty acid profile, tocopherol content and oxidative stability were not altered.
Collapse
|
7
|
Cassen A, Fabre JF, Lacroux E, Cerny M, Vaca-Medina G, Mouloungui Z, Merah O, Valentin R. Aqueous Integrated Process for the Recovery of Oil Bodies or Fatty Acid Emulsions from Sunflower Seeds. Biomolecules 2022; 12:biom12020149. [PMID: 35204650 PMCID: PMC8961559 DOI: 10.3390/biom12020149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
An aqueous integrated process was developed to obtain several valuable products from sunflower seeds. With a high-shear rate crusher, high-pressure homogenization and centrifugation, it is possible to process 600× g of seeds in 1400× g of water to obtain a concentrated cream phase with a dry matter (dm) content of 46%, consisting of 74 (w/w dm) lipids in the form of an oil-body dispersion (droplet size d(0.5): 2.0 µm) rich in proteins (13% w/w dm, with membranous and extraneous proteins). The inclusion of an enzymatic step mediated by a lipase made possible the total hydrolysis of trigylcerides into fatty acids. The resulting cream had a slightly higher lipid concentration, a ratio lipid/water closer to 1, with a dry matter content of 57% consisting of 69% (w/w) lipids, a more complex structure, as observed on Cryo-SEM, with a droplet size slightly greater (d(0.5): 2.5 µm) than that of native oil bodies and a conserved protein concentration (12% w/w dm) but an almost vanished phospholipid content (17.1 ± 4.4 mg/g lipids compared to 144.6 ± 6 mg/g lipids in the oil-body dispersion and 1811.2 ± 122.2 mg/g lipids in the seed). The aqueous phases and pellets were also characterized, and their mineral, lipid and protein contents provide new possibilities for valorization in food or technical applications.
Collapse
|
8
|
Shabbir MA, Ahmed W, Latif S, Inam‐Ur‐Raheem M, Manzoor MF, Khan MR, Bilal RM, Aadil RM. The quality behavior of ultrasound extracted sunflower oil and structural computation of potato strips appertaining to deep‐frying with thermic variations. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture Faisalabad Pakistan
| | - Waqar Ahmed
- National Institute of Food Science and Technology, University of Agriculture Faisalabad Pakistan
| | - Sumera Latif
- National Institute of Food Science and Technology, University of Agriculture Faisalabad Pakistan
| | - Muhammad Inam‐Ur‐Raheem
- National Institute of Food Science and Technology, University of Agriculture Faisalabad Pakistan
| | | | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology, University of Agriculture Faisalabad Pakistan
| | - Rana Muhammad Bilal
- College of Veterinary and Animal Sciences The Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad Pakistan
| |
Collapse
|
9
|
Mushtaq A, Roobab U, Denoya GI, Inam‐Ur‐Raheem M, Gullón B, Lorenzo JM, Barba FJ, Zeng X, Wali A, Aadil RM. Advances in green processing of seed oils using ultrasound‐assisted extraction: A review. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14740] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anam Mushtaq
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Ume Roobab
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Gabriela I. Denoya
- Instituto Nacional de Tecnología Agropecuaria (INTA) Instituto Tecnología de Alimentos Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Argentina
| | - Muhammad Inam‐Ur‐Raheem
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science University of Vigo (Campus Ourense) Ourense Spain
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia Parque Tecnológico de Galicia Ourense Spain
| | - Francisco J. Barba
- Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area Universitat de València Burjassot Spain
| | - Xin‐An Zeng
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Asif Wali
- Department of Agriculture and Food Technology Karakoram International University Gilgit Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| |
Collapse
|
10
|
|