1
|
Mamun MAA, Islam ARMT, Aktar MN, Uddin MN, Islam MS, Pal SC, Islam A, Bari ABMM, Idris AM, Senapathi V. Predicting groundwater phosphate levels in coastal multi-aquifers: A geostatistical and data-driven approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176024. [PMID: 39241889 DOI: 10.1016/j.scitotenv.2024.176024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The groundwater (GW) resource plays a central role in securing water supply in the coastal region of Bangladesh and therefore the future sustainability of this valuable resource is crucial for the area. However, there is limited research on the driving factors and prediction of phosphate concentration in groundwater. In this work, geostatistical modeling, self-organizing maps (SOM) and data-driven algorithms were combined to determine the driving factors and predict GW phosphate content in coastal multi-aquifers in southern Bangladesh. The SOM analysis identified three distinct spatial patterns: K+Na+pH, Ca2+Mg2+NO₃-, and HCO₃-SO₄2-PO43-F-. Four data-driven algorithms, including CatBoost, Gradient Boosting Machine (GBM), Long Short-Term Memory (LSTM), and Support Vector Regression (SVR) were used to predict phosphate concentration in GW using 380 samples and 15 prediction parameters. Forecasting accuracy was evaluated using RMSE, R2, RAE, CC, and MAE. Phosphate dissolution and saltwater intrusion, along with phosphorus fertilizers, increase PO43- content in GW. Using input parameters selected by multicollinearity and SOM, the CatBoost model showed exceptional performance in both training (RMSE = 0.002, MAE = 0.001, R2 = 0.999, RAE = 0.057, CC = 1.00) and testing (RMSE = 0.001, MAE = 0.002, R2 = 0.989, RAE = 0.057, CC = 0.998). Na+, K+, and Mg2+ significantly influenced prediction accuracy. The uncertainty study revealed a low standard error for the CatBoost model, indicating robustness and consistency. Semi-variogram models confirmed that the most influential attributes showed weak dependence, suggesting that agricultural runoff increases the heterogeneity of PO43- distribution in GW. These findings are crucial for developing conservation and strategic plans for sustainable utilization of coastal GW resources.
Collapse
Affiliation(s)
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mst Nazneen Aktar
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Md Nashir Uddin
- Department of Civil Engineering, Dhaka University of Engineering and Technology, Gazipur, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal 713104, India
| | - Aznarul Islam
- Department of Geography, Aliah University, 17 Gorachand Road, Kolkata 700014, India
| | - A B M Mainul Bari
- Department of Industrial and Production Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Venkatramanan Senapathi
- PG and Research Department of Geology, National College (Autonomous), Tiruchirappalli 620001, Tamil Nadu, India.
| |
Collapse
|
2
|
Lavanya A. Treatment and nutrient recovery from landfill leachate by sequential persulfate oxidation and struvite precipitation: An evaluation of technical feasibility. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55022-55034. [PMID: 39222229 DOI: 10.1007/s11356-024-34825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The technical feasibility of advanced oxidation process, in particular persulfate (PS) oxidation followed by struvite precipitation for landfill leachate treatment and nutrient recovery has been depicted in the current study. Furthermore, the impact of activation of PS with thermal and ultraviolet (UV) irradiation techniques on COD removal efficiency is also investigated. A maximum COD removal efficiency of 96% is accomplished at 65 °C together with supply of UV irradiation. The impact of persulfate dose, pH, and PS/65 °C/UV system on COD and biodegradability is also illustrated in the current study. Additionally, decomposition rate constant values are also ascertained in the present study. Afterwards, nutrient recovery using struvite precipitation is carried out for sustainable utilization of resources. Preliminary treatment of leachate with PS/65 °C/UV system is greatly conducive to recovering high quality struvite crystals. Besides, 94.9%, 83.5%, and 91.3% of PO43- - P, NH4+ - N, and Mg2+ recovery efficiency attained respectively at pH 9.5 and 1.2:1:1 molar ratio of Mg2+: NH4+ - N: PO43- - P. Additionally, all the nutrient recovery studies are validated using chemical equilibrium model Visual MINTEQ. Later, bioavailable fraction of PO43- - P in the recovered struvite is also investigated for utilization as fertilizer. The presence of Cu and Zn in the recovered struvite precipitate enhanced its economic value as a fertilizer. Since Cu and Zn are vital micronutrients for growth of plants. The low soluble values of recovered struvite precipitate confirmed its utilization as slow releasing fertilizer.
Collapse
Affiliation(s)
- Addagada Lavanya
- Department of Civil Engineering, M.S. Ramaiah Institute of Technology, Bangalore, 560054, India.
| |
Collapse
|
3
|
Uhlemann JPR, Oude Lansink A, Leahy JJ, Dalhaus T. Do investments in phosphorus recovery from dairy processing wastewater pay off? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120606. [PMID: 38583387 DOI: 10.1016/j.jenvman.2024.120606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/14/2024] [Accepted: 03/10/2024] [Indexed: 04/09/2024]
Abstract
While phosphorus fertilizers contribute to food security, part of the introduced phosphorus dissipates into water bodies leading to eutrophication. At the same time, conventional mineral phosphorus sources are increasingly scarce. Therefore, closing phosphorus cycles reduces pollution while decreasing trade dependence and increasing food security. A major part of the phosphorus loss occurs during food processing. In this article, we combine a systematic literature review with investment and efficiency analysis to investigate the financial feasibility of recovering phosphorus from dairy processing wastewater. This wastewater is particularly rich in phosphorus, but while recovery technologies are readily available, they are rarely adopted. We calculate the Net Present Value (NPV) of investing in phosphorus recycling technology for a representative European dairy processing company producing 100,000 tonnes of milk per year. We develop sensitivity scenarios and adjust the parameters accordingly. Applying struvite precipitation, the NPV can be positive in two scenarios. First, if the phosphorus price is high (1.51 million EUR) or second if phosphorus recovery is a substitute for mandatory waste disposal (1.48 million EUR). However, for a variety of methodological specifications, the NPV is negative, mainly because of high input costs for chemicals and energy. These trade-offs between off-setting pollution and reducing energy consumption imply, that policy makers and investors should consider the energy source for phosphorus recovery carefully.
Collapse
Affiliation(s)
- Jan-Philip R Uhlemann
- Business Economics Group, Wageningen University and Research, Wageningen, the Netherlands.
| | - Alfons Oude Lansink
- Business Economics Group, Wageningen University and Research, Wageningen, the Netherlands
| | - James J Leahy
- Department of Chemical Science, University of Limerick, Limerick, Ireland
| | - Tobias Dalhaus
- Business Economics Group, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
4
|
Sniatala B, Kurniawan TA, Sobotka D, Makinia J, Othman MHD. Macro-nutrients recovery from liquid waste as a sustainable resource for production of recovered mineral fertilizer: Uncovering alternative options to sustain global food security cost-effectively. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159283. [PMID: 36208738 DOI: 10.1016/j.scitotenv.2022.159283] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Global food security, which has emerged as one of the sustainability challenges, impacts every country. As food cannot be generated without involving nutrients, research has intensified recently to recover unused nutrients from waste streams. As a finite resource, phosphorus (P) is largely wasted. This work critically reviews the technical applicability of various water technologies to recover macro-nutrients such as P, N, and K from wastewater. Struvite precipitation, adsorption, ion exchange, and membrane filtration are applied for nutrient recovery. Technological strengths and drawbacks in their applications are evaluated and compared. Their operational conditions such as pH, dose required, initial nutrient concentration, and treatment performance are presented. Cost-effectiveness of the technologies for P or N recovery is also elaborated. It is evident from a literature survey of 310 published studies (1985-2022) that no single technique can effectively and universally recover target macro-nutrients from liquid waste. Struvite precipitation is commonly used to recover over 95 % of P from sludge digestate with its concentration ranging from 200 to 4000 mg/L. The recovered precipitate can be reused as a fertilizer due to its high content of P and N. Phosphate removal of higher than 80 % can be achieved by struvite precipitation when the molar ratio of Mg2+/PO43- ranges between 1.1 and 1.3. The applications of artificial intelligence (AI) to collect data on critical parameters control optimization, improve treatment effectiveness, and facilitate water utilities to upscale water treatment plants. Such infrastructure in the plants could enable the recovered materials to be reused to sustain food security. As nutrient recovery is crucial in wastewater treatment, water treatment plant operators need to consider (1) the costs of nutrient recovery techniques; (2) their applicability; (3) their benefits and implications. It is essential to note that the treatment cost of P and/or N-laden wastewater depends on the process applied and local conditions.
Collapse
Affiliation(s)
- Bogna Sniatala
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Tonni Agustiono Kurniawan
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland.
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
5
|
Fang F, Li N, Zhang X, Liu J, Beiyuan J, Cao J, Wang J, Liu Y, Song G, Xiao T. Perspective on Fe 0-PS synergetic effect and reaction mechanism in the thallium(I) contaminated water treatment. ENVIRONMENTAL RESEARCH 2022; 214:113698. [PMID: 35779618 DOI: 10.1016/j.envres.2022.113698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/25/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Due to extreme toxicity of the element of thallium (Tl), increasing aqueous Tl pollution incidents have aroused growing concerns. As the prevalent and stable form, i.e., monovalent Tl, the highly efficient removal methodologies of Tl(I) from (waste)water remains limited and challenging. In this study, an advanced oxidation method, the feasibility of using zero valent iron (Fe0) coupled with persulfate (PS) to treat Tl(I)-containing synthetic wastewater was investigated. Its influence parameters, including reaction time, initial Tl concentration, dosages of PS and Fe0, initial and coagulation pH, temperature, coexisting ions and organic matter (NO3-, SO42-, Cl- and HA) were examined. The results revealed that the system can be applied to a wide range of pH and temperature and the reaction equilibrium can be reached in about 30 min. Favorable Tl(I) removal rate (>98%) was observed in the synthetic wastewater with medium and relatively high Tl(I) concentration (≤0.250 mM). The analyses of characterization results including electron spin resonance spectrometer and X-ray photoelectron spectroscopy indicated that ·OH played a vital role in the removal of Tl(I), which was oxidized and removed by co-precipitation. Fe0 can be served as a stable source of Fe2+ to efficiently catalyze PS. The remaining Fe0 can be easily separated because of its magnetism, assuring the promising reusability of the reactant. The study aims to provide references for treatment of real Tl polluted wastewater.
Collapse
Affiliation(s)
- Fa Fang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Nuo Li
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xian Zhang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Jielong Cao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou, 510006, China.
| | - Yanyi Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Gang Song
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou, 510006, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| |
Collapse
|
6
|
Divya KB, Ramesh ST, Lavanya A, Gandhimathi R. Recovery of phosphate as hydroxyapatite by fluidized bed homogeneous crystallization technique. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46214-46225. [PMID: 35167021 DOI: 10.1007/s11356-022-19135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Phosphorous recovery from aqueous solutions gained substantial attention and this not only secure the food demand but also curtail the pollution of freshwater courses. In the current study, authors employed novel fluidized bed homogeneous crystallization (FBHC) technique to granulate the phosphorous as hydroxyapatite (HAP). FBHC technique nurtures the formation of high pure HAP crystals without seed addition and potential technique to recover phosphorous compared to other techniques. The key operational parameters influencing the HAP crystallization were analyzed prior to FBHC by batch analysis. From the batch study results, the range of pH and calcium to phosphorous molar ratio fixed for FBHC studies. Maximum phosphate removal and granulation efficiencies obtained were 91.25% and 82.55%, respectively, at 500 mg/L phosphate concentration, pH 12, and calcium to phosphorous molar ratio 1.65. Box-Behnken design of response surface methodology was employed for evaluating interaction impact of process parameters on granulation efficiency. Granulation efficiency of 79.74% was attained at pH 11.83, calcium to phosphorous molar ratio 1.637, and reaction time 70.73 h.
Collapse
Affiliation(s)
| | | | - Addagada Lavanya
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440 020, India
| | - Rajan Gandhimathi
- Department of Civil Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, 620 015, India
| |
Collapse
|
7
|
Lavanya A, Ramesh SKT. Crystal seed-enhanced ammonia nitrogen and phosphate recovery from landfill leachate using struvite precipitation technique. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60569-60584. [PMID: 34156615 DOI: 10.1007/s11356-021-14950-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen and phosphorous are limiting and crucial elements for all living organisms. The recovery of nitrogen and phosphorous as struvite gained attention due to its ecofriendly fertilizer application. In the present study, feasible recovery of NH4+ -N available in the landfill leachate with addition of economically viable waste resources like sewage sludge and Mg2+ source as struvite is investigated. However, the fertilizer application of struvite depends upon its purity, which in turn is influenced by pH, molar ratio, and presence of other ions. Laboratory scale studies are conducted to find optimum pH and molar ratio. The results of the studies demonstrated the optimum pH being 9.5 along with PO43- -P: Mg2+: NH4+ -N molar ratio of 1:1.3:1 is the best condition for struvite formation. To further augment the struvite precipitation kaolinite seed is added to the solution and optimized seed dose is 20 g/L. Existence of Ca2+ and Na+ ions in the solution exhibits a negative impact on struvite precipitation. Response surface methodology is employed to understand the interactive influence of parameters on recovery efficiency. The recovered precipitate consists of 82.5% struvite with PO43- -P: Mg2+: NH4+ -N ratio 1:1.1:0.9. Also, bioavailability of PO43- -P in the recovered precipitate is 89.3%; this signifies high performance of precipitate as fertilizer. Economic assessment highlights that the struvite production is profitable and the profit gained is 159.5$/m3.
Collapse
Affiliation(s)
- Addagada Lavanya
- Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu, 620 015, India.
| | | |
Collapse
|
8
|
Jia L, Li Z, Yu Q, Gao J, Liu C, Liu T, Ning P, Wang F. Removal of SO 2 and NO x from flue gas using mud-phosphorus slurry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23270-23280. [PMID: 32335836 DOI: 10.1007/s11356-020-08852-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
In this study, the mud-phosphorus slurry was used to simultaneously remove SO2 and NOx. The technology proposed new avenues for the purification and utilization of remove SO2 and NOx in flue gas. The effects of reaction temperature, solid-liquid ratio, and oxygen content on the efficiency of desulfurization and denitrification were studied experimentally. Results show that the parameters were solid-liquid ratio of 5.0 g/40 mL, T = 60 °C, φ (O2) = 20%, Q = 300 mL/min under the best experimental conditions. The maximum amount of ozone generated was 563.8 mg/m3. The reaction time with desulfurization rate ≥ 99% was 340 min; the reaction time with denitrification rate ≥ 99% was 160 min. Response surface analysis method was used to perform a three-factor three-level response surface experiment. Results show that the oxygen content had a highly significant effect on the desulfurization and denitrification efficiency, and the relationship between the desulfurization and denitrification efficiency was oxygen content > mud-phosphorus slurry liquid-solid ratio > reaction temperature. The process is simple, the solid waste is used to treat the flue gas, and the removal effect is good, which is convenient for popularization.
Collapse
Affiliation(s)
- Lijuan Jia
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, Yunnan, People's Republic of China
| | - Zizhen Li
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, Yunnan, People's Republic of China
| | - Qian Yu
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, Yunnan, People's Republic of China
| | - Jiyun Gao
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, Yunnan, People's Republic of China
| | - Chenhui Liu
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, Yunnan, People's Republic of China
| | - Tiancheng Liu
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, Yunnan, People's Republic of China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| | - Fang Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, Yunnan, People's Republic of China.
| |
Collapse
|