1
|
Osés SM, Fernández-Muiño MA, Rodríguez-Fernández A, Sancho MT, Lázaro R, Bayarri S. Phenolic Composition, Antiradical, Antimicrobial, and Anti-Inflammatory Activities of Propolis Extracts from North East Spain. J Med Food 2024; 27:563-574. [PMID: 38868932 DOI: 10.1089/jmf.2023.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Antioxidant-related parameters and anti-inflammatory and antimicrobial activities against Listeria monocytogenes were assessed in eight North East Spain poplar propolis samples. Propolis extracts (PEs) were obtained using 70% ethanol (PEE) and methanol (PME). Yield and total phenol compounds were higher in PEE. Phenolic acids were analyzed by a high-performance liquid chromatograph-diode array detector. Caffeic and ferulic acids were quantified in all PEE and PME. All samples contained p-coumaric acid (quantified in 6 PEE and in 3 PME). Ascorbic acid was detected in all propolis, but mainly quantified in PME (≤0.37 mg/g PE). Biological properties were tested on PEE. As for antiradical activities, trolox equivalent antioxidant capacity (TEAC) [against 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)•+], ranged between 578 and 4620 µmol trolox/g, 2,2-diphenyl-1-picrylhydrazyl (DPPH) (against DPPH free radical), between 0.049 and 0.094 mg/mL, antioxidant activity against hydroxyl (•OH) radical (AOA), between 0.04 and 11.01 mmol uric acid/g, and oxygen radical absorbance capacity (ORAC) against peroxyl (ROO•) radical between 122 and 3282 µmol trolox/g. Results of TEAC, AOA, and ORAC were significantly correlated. IC50 anti-inflammatory activity ranged from 1.08 to 6.19 mg/mL. Propolis showed higher inhibitory activity against L. monocytogenes CECT934 and L. monocytogenes CP101 by agar well diffusion (P < .05) (10.5 and 10.2 mm, respectively) than against L. monocytogenes CP102 (7.0 mm). Data of this research show that North East Spain propolis may be of interest for pharmaceutical and food industry use.
Collapse
Affiliation(s)
- Sandra M Osés
- Department of Biotechnology and Food Science, Universidad de Burgos (University of Burgos), Burgos, Spain
| | - Miguel A Fernández-Muiño
- Department of Biotechnology and Food Science, Universidad de Burgos (University of Burgos), Burgos, Spain
| | - Andrea Rodríguez-Fernández
- Department of Biotechnology and Food Science, Universidad de Burgos (University of Burgos), Burgos, Spain
| | - M Teresa Sancho
- Department of Biotechnology and Food Science, Universidad de Burgos (University of Burgos), Burgos, Spain
| | - Regina Lázaro
- Instituto Agroalimentario de Aragón-IA2. Veterinary School. Universidad de Zaragoza (University of Zaragoza), Zaragoza, Spain
| | - Susana Bayarri
- Instituto Agroalimentario de Aragón-IA2. Veterinary School. Universidad de Zaragoza (University of Zaragoza), Zaragoza, Spain
| |
Collapse
|
2
|
Extraction of Antioxidant Compounds from Brazilian Green Propolis Using Ultrasound-Assisted Associated with Low- and High-Pressure Extraction Methods. Molecules 2023; 28:molecules28052338. [PMID: 36903583 PMCID: PMC10005562 DOI: 10.3390/molecules28052338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The demand for bee products has been growing, especially regarding their application in complementary medicine. Apis mellifera bees using Baccharis dracunculifolia D.C. (Asteraceae) as substrate produce green propolis. Among the examples of bioactivity of this matrix are antioxidant, antimicrobial, and antiviral actions. This work aimed to verify the impact of the experimental conditions applied in low- and high-pressure extractions of green propolis, using sonication (60 kHz) as pretreatment to determine the antioxidant profile in the extracts. Total flavonoid content (18.82 ± 1.15-50.47 ± 0.77 mgQE·g-1), total phenolic compounds (194.12 ± 3.40-439.05 ± 0.90 mgGAE·g-1) and antioxidant capacity by DPPH (33.86 ± 1.99-201.29 ± 0.31 µg·mL-1) of the twelve green propolis extracts were determined. By means of HPLC-DAD, it was possible to quantify nine of the fifteen compounds analyzed. The results highlighted formononetin (4.76 ± 0.16-14.80 ± 0.02 mg·g-1) and p-coumaric acid (<LQ-14.33 ± 0.01 mg·g-1) as majority compounds in the extracts. Based on the principal component analysis, it was possible to conclude that higher temperatures favored the release of antioxidant compounds; in contrast, they decreased the flavonoid content. Thus, the obtained results showed that samples pretreated with 50 °C associated with ultrasound displayed a better performance, which may support the elucidation of the use of these conditions.
Collapse
|
3
|
Peng S, Zhu M, Li S, Ma X, Hu F. Ultrasound-assisted extraction of polyphenols from Chinese propolis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1131959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
IntroductionPropolis is a beneficial bioactive food with rich polyphenols content. Nowadays, an increasing interest is attracted to the extraction of polyphenols from raw propolis. This study utilized the novel ultrasound-assisted approach for polyphenol extraction from Chinese propolis, aiming to improve its extraction yield and reveal the relevant mechanisms via extraction kinetic study as well as the compositional and structural analysis.MethodsThe optimum ultrasound-assisted extraction conditions were optimized according to the total phenolic content and total flavonoids content. Compositional and structural analysis were conducted using high performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry, high-performance liquid chromatography, Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM).Results and discussionThe optimum ultrasound-assisted extraction conditions were as follows: ratio of liquid to solid, 60:1; ultrasound power, 135 W; ultrasound duration, 20 min. Under the optimum conditions, the antioxidant activities of the extract were increased by 95.55% and 64.46% by 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability assay and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging ability assay, respectively, compared to those obtained by traditional maceration. The second-order kinetics model was employed to study the extraction process; it was found that ultrasound significantly accelerated the extraction of propolis and increased the maximum extraction volume of phenolic compounds. The qualitative and quantitative analysis of polyphenol compositions showed that ultrasound did not change the polyphenol types in the extract but it significantly improved the contents of various flavonoids and phenolic acids such as galangin, chrysin, pinocembrin, pinobanksin and isoferulic acid. Likewise, the FT-IR analysis indicated that the types of functional groups were similar in the two extracts. The SEM analysis revealed that the ultrasound-assisted extraction enhanced the contact areas between propolis and ethanol by breaking down the propolis particles and eroding the propolis surface.
Collapse
|
4
|
Machmudah S, Maulana NA, Norman ASM, Nyoto VM, Amrullah I, Wahyudiono, Winardi S, Wenten IG, Goto M. Oil removal from spent bleaching earth of vegetable oil refinery plant using supercritical carbon dioxide. Heliyon 2022; 8:e10826. [PMID: 36267373 PMCID: PMC9576808 DOI: 10.1016/j.heliyon.2022.e10826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/04/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
The oil in the spent bleaching earth (SBE) matrix was successfully removed by applying the supercritical carbon dioxide (SCCO2) extraction technique in a semi-continuous flow–type system. The SCCO2 extraction process was conducted at 40–80 °C and 20–30 MPa with extraction time of ∼180 min. The color of SBE matrix changes from the dark to dark-pale color after the SCCO2 extraction treatment exhibiting the substances including oil in the SBE matrix were successfully removed. The extracted oil yield was around 95% when the SCCO2 extraction process was performed at 40 °C and 30 MPa with 10% ethanol addition as a co–solvent. The GC analysis showed that the prominent fatty acid constituents in the extracted oil are palmitic and oleic acids, furthermore it can be fed as a feedstock to produce biodiesel fuel. Next, it can be proposed that SCCO2 extraction system is a viable way to extract oil from the SBE matrix.
Collapse
Affiliation(s)
- Siti Machmudah
- Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia,Corresponding author.
| | - Nabil Apta Maulana
- Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Andhika Shafian Maindo Norman
- Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Valencia Marchilia Nyoto
- School of Chemical Engineering and Technology, Tianjin University, Beiyang Ave, Nankai District, Tianjin 300072, China
| | - Irji Amrullah
- Department of Biotechnology, IPB University, Jl Raya Dramaga, Bogor 16680, Indonesia
| | - Wahyudiono
- New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Sugeng Winardi
- Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - I Gede Wenten
- Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
| | - Motonobu Goto
- Super Critical Technology Centre Co. Ltd., Kuwana, Mie 511-0838, Japan
| |
Collapse
|
5
|
Mounika A, Ilangovan B, Mandal S, Shraddha Yashwant W, Priya Gali S, Shanmugam A. Prospects of ultrasonically extracted food bioactives in the field of non-invasive biomedical applications - A review. ULTRASONICS SONOCHEMISTRY 2022; 89:106121. [PMID: 35987106 PMCID: PMC9403563 DOI: 10.1016/j.ultsonch.2022.106121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 05/15/2023]
Abstract
Foods incorporated with bioactive compounds, called nutraceuticals, can fight or prevent or alleviate diseases. The contribution of nutraceuticals or phytochemicals to non-invasive biomedical applications is increasing. Although there are many traditional methods for extracting bioactive compounds or secondary metabolites, these processes come with many disadvantages like lower yield, longer process time, high energy consumption, more usage of solvent, yielding low active principles with low efficacy against diseases, poor quality, poor mass transfer, higher extraction temperature, etc. However, nullifying all these disadvantages of a non-thermal technology, ultrasound has played a significant role in delivering them with higher yield and improved bio-efficacy. The physical and chemical effects of acoustic cavitation are the crux of the output. This review paper primarily discusses the ultrasound-assisted extraction (USAE) of bioactives in providing non-invasive prevention and cure to diseases and bodily dysfunctions in human and animal models. The outputs of non-invasive bioactive components in terms of yield and the clinical efficacy in either in vitro or in vitro conditions are discussed in detail. The non-invasive biomedical applications of USAE bioactives providing anticancer, antioxidant, cardiovascular health, antidiabetic, and antimicrobial benefits are analyzed in-depth and appraised. This review additionally highlights the improved performance of USAE compounds against conventionally extracted compounds. In addition, an exhaustive analysis is performed on the role and application of the food bioactives in vivo and in vitro systems, mainly for promoting these efficient USAE bioactives in non-invasive biomedical applications. Also, the review explores the recovery of bioactives from the less explored food sources like cactus pear fruit, ash gourd, sweet granadilla, basil, kokum, baobab, and the food processing industrial wastes like peel, pomace, propolis, wine residues, bran, etc., which is rare in literature.
Collapse
Affiliation(s)
- Addanki Mounika
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Bhaargavi Ilangovan
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Sushmita Mandal
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Waghaye Shraddha Yashwant
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Swetha Priya Gali
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Akalya Shanmugam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India; Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India.
| |
Collapse
|
6
|
Hoshino Y, Wahyudiono, Machmudah S, Hirayama S, Kanda H, Hoshino M, Goto M. Extraction of Functional Components from Freeze-Dried Angelica furcijuga Leaves Using Supercritical Carbon Dioxide. ACS OMEGA 2022; 7:5104-5111. [PMID: 35187326 PMCID: PMC8851661 DOI: 10.1021/acsomega.1c06105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/26/2022] [Indexed: 09/26/2023]
Abstract
Angelica furcijuga (A. furcijuga), as a material for traditional Chinese medicine, has been widely used in Asian countries, such as China, Korea, and Japan, for several centuries owing to its therapeutic effects. In this study, A. furcijuga leaves were used as starting materials to extract functional substances using supercritical carbon dioxide (SC-CO2) at pressure and temperature ranges of 20-40 MPa and 40-80 °C, respectively. The extraction process was performed in a semibatch-type system with extraction times of 15-120 min. The high-performance liquid chromatography analysis indicated that kaempferol, ferulic acid, ligustilide, and butylidenephthalide as selected functional substances were successfully extracted under these operating conditions. An operating pressure of 30 MPa with an extraction time of 60 min seems to be an appropriate pressure to extract functional components from A. furcijuga leaves. The Hansen solubility parameter values and statistical analysis showed that SC-CO2 with 10% ethanol addition is a feasible tool to isolate these selected functional substances from the A. furcijuga matrix.
Collapse
Affiliation(s)
- Yuriko Hoshino
- Department
of Materials Process Engineering, Nagoya
University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- M&A
Food Technology and Biology of Technical Center (M.A.F.T.), Kawasaki-machi, Tagawa-gun, Fukuoka 827-0004, Japan
| | - Wahyudiono
- Department
of Materials Process Engineering, Nagoya
University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Siti Machmudah
- Department
of Chemical Engineering, Sepuluh Nopember
Institute of Technology, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Shoji Hirayama
- M&A
Food Technology and Biology of Technical Center (M.A.F.T.), Kawasaki-machi, Tagawa-gun, Fukuoka 827-0004, Japan
| | - Hideki Kanda
- Department
of Materials Process Engineering, Nagoya
University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Munehiro Hoshino
- Maruboshi
Vinegar Co., Ltd., Kawasaki-machi, Tagawa-gun, Fukuoka 827-0004, Japan
| | - Motonobu Goto
- Department
of Materials Process Engineering, Nagoya
University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
7
|
Comparison of the Biological Potential and Chemical Composition of Brazilian and Mexican Propolis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Propolis is a resinous substance collected by bees from plants and its natural product is available as a safe therapeutic option easily administered orally and readily available as a natural supplement and functional food. In this work, we review the most recent scientific evidence involving propolis from two countries (Brazil and Mexico) located in different hemispheres and with varied biomes. Brazil has a scientifically well documented classification of different types of propolis. Although propolis from Brazil and Mexico present varied compositions, they share compounds with recognized biological activities in different extraction processes. Gram-negative bacteria growth is inhibited with lower concentrations of different types of propolis extracts, regardless of origin. Prominent biological activities against cancer cells and fungi were verified in the different types of extracts evaluated. Antiprotozoal activity needs to be further evaluated for propolis of both origins. Regarding the contamination of propolis (e.g., pesticides, toxic metals), few studies have been carried out. However, there is evidence of chemical contamination in propolis by anthropological action. Studies demonstrate the versatility of using propolis in its different forms (extracts, products, etc.), but several potential applications that might improve the value of Brazilian and Mexican propolis should still be investigated.
Collapse
|
8
|
Yosri N, Abd El-Wahed AA, Ghonaim R, Khattab OM, Sabry A, Ibrahim MAA, Moustafa MF, Guo Z, Zou X, Algethami AFM, Masry SHD, AlAjmi MF, Afifi HS, Khalifa SAM, El-Seedi HR. Anti-Viral and Immunomodulatory Properties of Propolis: Chemical Diversity, Pharmacological Properties, Preclinical and Clinical Applications, and In Silico Potential against SARS-CoV-2. Foods 2021; 10:1776. [PMID: 34441553 PMCID: PMC8391193 DOI: 10.3390/foods10081776] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
Propolis, a resin produced by honeybees, has long been used as a dietary supplement and folk remedy, and more recent preclinical investigations have demonstrated a large spectrum of potential therapeutic bioactivities, including antioxidant, antibacterial, anti-inflammatory, neuroprotective, immunomodulatory, anticancer, and antiviral properties. As an antiviral agent, propolis and various constituents have shown promising preclinical efficacy against adenoviruses, influenza viruses, respiratory tract viruses, herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Over 300 chemical components have been identified in propolis, including terpenes, flavonoids, and phenolic acids, with the specific constituent profile varying widely according to geographic origin and regional flora. Propolis and its constituents have demonstrated potential efficacy against SARS-CoV-2 by modulating multiple pathogenic and antiviral pathways. Molecular docking studies have demonstrated high binding affinities of propolis derivatives to multiple SARS-CoV-2 proteins, including 3C-like protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), the receptor-binding domain (RBD) of the spike protein (S-protein), and helicase (NSP13), as well as to the viral target angiotensin-converting enzyme 2 (ACE2). Among these compounds, retusapurpurin A has shown high affinity to 3CLpro (ΔG = -9.4 kcal/mol), RdRp (-7.5), RBD (-7.2), NSP13 (-9.4), and ACE2 (-10.4) and potent inhibition of viral entry by forming hydrogen bonds with amino acid residues within viral and human target proteins. In addition, propolis-derived baccharin demonstrated even higher binding affinity towards PLpro (-8.2 kcal/mol). Measures of drug-likeness parameters, including metabolism, distribution, absorption, excretion, and toxicity (ADMET) characteristics, also support the potential of propolis as an effective agent to combat COVID-19.
Collapse
Affiliation(s)
- Nermeen Yosri
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (N.Y.); (Z.G.); (X.Z.)
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (R.G.); (O.M.K.); (A.S.)
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
| | - Reem Ghonaim
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (R.G.); (O.M.K.); (A.S.)
| | - Omar M. Khattab
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (R.G.); (O.M.K.); (A.S.)
| | - Aya Sabry
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (R.G.); (O.M.K.); (A.S.)
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt;
| | - Mahmoud F. Moustafa
- Department of Biology, College of Science, King Khalid University, Abha 9004, Saudi Arabia;
- Department of Botany & Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (N.Y.); (Z.G.); (X.Z.)
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (N.Y.); (Z.G.); (X.Z.)
| | | | - Saad H. D. Masry
- Department of Plant Protection and Biomolecular Diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria 21934, Egypt;
- Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Al Ain 52150, United Arab Emirates
| | - Mohamed F. AlAjmi
- Pharmacognosy Group, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hanan S. Afifi
- Food Research Section, R&D Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates;
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, Stockholm University, The Wenner-Gren Institute, SE-106 91 Stockholm, Sweden
| | - Hesham R. El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (R.G.); (O.M.K.); (A.S.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Division of Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, P.O. Box 591, SE 751 24 Uppsala, Sweden
| |
Collapse
|
9
|
Yong H, Liu J. Active packaging films and edible coatings based on polyphenol‐rich propolis extract: A review. Compr Rev Food Sci Food Saf 2021; 20:2106-2145. [DOI: 10.1111/1541-4337.12697] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Huimin Yong
- College of Food Science and Engineering Yangzhou University Yangzhou PR China
| | - Jun Liu
- College of Food Science and Engineering Yangzhou University Yangzhou PR China
| |
Collapse
|
10
|
Supercritical Extraction of Red Propolis: Operational Conditions and Chemical Characterization. Molecules 2020; 25:molecules25204816. [PMID: 33092095 PMCID: PMC7587948 DOI: 10.3390/molecules25204816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/05/2022] Open
Abstract
The objective of this study was to determine the best operational conditions for obtaining red propolis extract with high antioxidant potential through supercritical fluid extraction (SFE) technology, using carbon dioxide (CO2) as the supercritical fluid and ethanol as the cosolvent. The following parameters were studied: overall extraction curve, S/F (mass of CO2/mass of sample), cosolvent percentage (0, 1, 2 and 4%) and global yield isotherms as a function of different pressures (250, 350 and 450 bar) and temperatures (31.7, 40 and 50 °C). Within the investigated parameters, the best conditions found were an S/F of 131 and the use of ethanol at the highest concentration (4% w/w), which resulted in higher extract yields and higher content of antioxidant compounds. Formononetin, the main biomarker of red propolis, was the compound found at the highest amounts in the extracts. As expected, the temperature and pressure conditions also influenced the process yield, with 350 bar and 40 °C being the best conditions for obtaining bioactive compounds from a sample of red propolis. The novel results for red propolis found in this study show that it is possible to obtain extracts with high antioxidant potential using a clean technology under the defined conditions.
Collapse
|
11
|
de Carvalho FMDA, Schneider JK, de Jesus CVF, de Andrade LN, Amaral RG, David JM, Krause LC, Severino P, Soares CMF, Caramão Bastos E, Padilha FF, Gomes SVF, Capasso R, Santini A, Souto EB, de Albuquerque-Júnior RLC. Brazilian Red Propolis: Extracts Production, Physicochemical Characterization, and Cytotoxicity Profile for Antitumor Activity. Biomolecules 2020; 10:biom10050726. [PMID: 32384801 PMCID: PMC7277404 DOI: 10.3390/biom10050726] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022] Open
Abstract
Brazilian red propolis has been proposed as a new source of compounds with cytotoxic activity. Red propolis is a resinous material of vegetal origin, synthesized from the bees of the Appis mellifera family, with recognized biological properties. To obtain actives of low polarity and high cytotoxic profile from red propolis, in this work, we proposed a new solvent accelerated extraction method. A complete 23 factorial design was carried out to evaluate the influence of the independent variables or factors (e.g., temperature, number of cycles, and extraction time) on the dependent variable or response (i.e., yield of production). The extracts were analyzed by gas chromatography coupled with mass spectrometry for the identification of chemical compounds. Gas chromatography analysis revealed the presence of hydrocarbons, alcohols, ketones, ethers, and terpenes, such as lupeol, lupenone, and lupeol acetate, in most of the obtained extracts. To evaluate the cytotoxicity profile of the obtained bioactives, the 3-(4,5-dimethyl-2-thiazole)-2,5-diphenyl-2-H-tetrazolium bromide colorimetric assay was performed in different tumor cell lines (HCT116 and PC3). The results show that the extract obtained from 70 °C and one cycle of extraction of 10 min exhibited the highest cytotoxic activity against the tested cell lines. The highest yield, however, did not indicate the highest cytotoxic activity, but the optimal extraction conditions were indeed dependent on the temperature (i.e., 70 °C).
Collapse
Affiliation(s)
- Felipe Mendes de Andrade de Carvalho
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Jaderson Kleveston Schneider
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Carla Viviane Freitas de Jesus
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Luciana Nalone de Andrade
- Federal University of Sergipe (UFS), Avenida Marechal Rondon, São Cristovão 49100-000, Brazil; (L.N.d.A.); (R.G.A.)
| | - Ricardo Guimarães Amaral
- Federal University of Sergipe (UFS), Avenida Marechal Rondon, São Cristovão 49100-000, Brazil; (L.N.d.A.); (R.G.A.)
| | | | - Laíza Canielas Krause
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Patrícia Severino
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - Cleide Mara Faria Soares
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Elina Caramão Bastos
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Francine Ferreira Padilha
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Silvana Vieira Flores Gomes
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, 80055 Portici, Italy;
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Eliana Barbosa Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (E.B.S.); (R.L.C.d.A.-J.)
| | - Ricardo Luiz Cavalcanti de Albuquerque-Júnior
- Tiradentes University (UNIT), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil; (F.M.d.A.d.C.); (J.K.S.); (C.V.F.d.J.); (L.C.K.); (P.S.); (C.M.F.S.); (E.C.B.); (F.F.P.); (S.V.F.G.)
- Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49032-490, Brazil
- Correspondence: (E.B.S.); (R.L.C.d.A.-J.)
| |
Collapse
|