1
|
Chaudhary M, Kumar C, Raghav S, Panwar M, Pandey S, Painuli R. Sunlight-driven photocatalytic degradation of industrial dyes using Withania somnifera decorated MnO 2 nanoparticles. DISCOVER NANO 2024; 19:206. [PMID: 39690345 DOI: 10.1186/s11671-024-04160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
This study presents a unique, fast, and environmentally friendly approach for synthesizing MnO2 nanoparticles (MnO2 NPs) utilizing Withania somnifera (Ashwagandha) extract. The formation of nanoparticles was indicated by a color change from dark purple to dark brown within 10 min and validated through techniques including UV-Vis spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy (FTIR), and Energy Dispersive X-ray (EDX). Bromocresol green and Bromothymol blue were established as standards for assessing the photocatalytic efficiency of the synthesized nanoparticles. The synthesized nanocatalyst exhibited remarkable removal efficiency upon sunlight exposure, achieving 92% for Bromothymol blue and 95% for Bromocresol green within a duration of 1 h. The influence of variables including duration, photocatalyst dosage, and photodegradation kinetics was carefully examined to assess the efficacy of the created photocatalyst. The devised procedure is environmentally benign, facile to execute, and does not necessitate any chemical agents or advanced instrumentation for synthesis. This presents a new opportunity for the advancement of green photocatalysts, which may serve as an outstanding nanomaterial for wastewater clean-up.
Collapse
Affiliation(s)
- Mahi Chaudhary
- Department of Chemistry, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Chetan Kumar
- School of Pharmaceutical and Populations Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Sapna Raghav
- Department of Chemistry, Shri Jagdishprasad Jhabarmal Tibbrewala (JJT) University, Jhunjhunu, Rajasthan, India
| | - Medha Panwar
- Department of Chemistry, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Shivam Pandey
- Department of Chemistry, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India.
| | - Ritu Painuli
- Department of Chemistry, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
2
|
Zhang J, Li R, Yu J, Bai H, Lu M, Wang B. Three-dimensional gel network structure of agarose interlayer dispersed Pd nanoparticles in copper foam electrode for electrocatalytic degradation of doxycycline hydrochloride. Int J Biol Macromol 2024; 279:135348. [PMID: 39270913 DOI: 10.1016/j.ijbiomac.2024.135348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
In this study, we successfully prepared palladium/agarose/copper foam (Pd/AG/CF) composite electrodes by utilizing the three-dimensional network structure agarose (AG), a green material derived from biomass, and homogeneously immobilizing palladium (Pd) atoms on a copper foam (CF) substrate through a facile route. The electrode showed excellent performance in the electrocatalytic degradation of doxycycline (DOX), with a high DOX degradation rate of 92.19 % in 60 min. In-depth studies revealed that palladium can form metal-metal interactions with the CF substrates, which enhances the electron transfer on the catalyst surface. In addition, the introduction of agarose effectively prevented the agglomeration of palladium nanoparticles. In addition, the hydroxyl functional groups in the molecular structure of agarose facilitate interactions between water molecules and the electrode interface through the formation of hydrogen bonds, thereby further enhancing the efficiency of the electrocatalytic reaction. In addition to good stability and reusability. Microbial toxicity test results show that the degraded wastewater has minimal impact on the environment. Also, possible degradation pathways of DOX were explored in this study. Finally, a novel continuous flow reactor was designed, featuring a unique design that ensures full contact between wastewater and the composite electrodes, thereby achieving continuous and efficient treatment of antibiotic wastewater.
Collapse
Affiliation(s)
- Jian Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Ruoyi Li
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jiaqi Yu
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Haina Bai
- School of Biological and Food Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China.
| | - Muchen Lu
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Bing Wang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
3
|
Qu G, Liu G, Zhao C, Yuan Z, Yang Y, Xiang K. Detection and treatment of mono and polycyclic aromatic hydrocarbon pollutants in aqueous environments based on electrochemical technology: recent advances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23334-23362. [PMID: 38436845 DOI: 10.1007/s11356-024-32640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Mono and polycyclic aromatic hydrocarbons are widely distributed and severely pollute the aqueous environment due to natural and human activities, particularly human activity. It is crucial to identify and address them in order to reduce the dangers and threats they pose to biological processes and ecosystems. In the fields of sensor detection and water treatment, electrochemistry plays a crucial role as a trustworthy and environmentally friendly technology. In order to accomplish trace detection while enhancing detection accuracy and precision, researchers have created and studied sensors using a range of materials based on electrochemical processes, and their results have demonstrated good performance. One cannot overlook the challenges associated with treating aromatic pollutants, including mono and polycyclic. Much work has been done and good progress has been achieved in order to address these challenges. This study discusses the mono and polycyclic aromatic hydrocarbon sensor detection and electrochemical treatment technologies for contaminants in the aqueous environment. Additionally mentioned are the sources, distribution, risks, hazards, and problems in the removal of pollutants. The obstacles to be overcome and the future development plans of the field are then suggested by summarizing and assessing the research findings of the researchers.
Collapse
Affiliation(s)
- Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China.
| | - Guojun Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Chenyang Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Zheng Yuan
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Yixin Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Keyi Xiang
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| |
Collapse
|
4
|
Li Q, Fang X, Jin L, Sun X, Huang H, Ma R, Zhao H, Ren H. Scientometric analysis of electrocatalysis in wastewater treatment: today and tomorrow. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19025-19046. [PMID: 38374500 DOI: 10.1007/s11356-024-32472-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
Electrocatalytic methods are valuable tools for addressing water pollution and scarcity, offering effective pollutant removal and resource recovery. To investigate the current status and future trends of electrocatalysis in wastewater treatment, a detailed analysis of 9417 papers and 4061 patents was conducted using scientometric methods. China emerged as the leading contributor to publications, and collaborations between China and the USA have emerged as the most frequent partnerships. Primary article co-citation clusters focused on oxygen evolution reaction and electrochemical oxidation, transitioning towards advanced oxidation processes ("persulfate activation"), and electrocatalytic reduction processes ("nitrate reduction"). Bifunctional catalysts, theoretical calculations, electrocatalytic combination technologies, and emerging contaminants were identified as current research hotspots. Patent analysis revealed seven types of electrochemical technologies, which were compared using SWOT analysis, highlighting electrochemical oxidation as prominent. The technological evolution presented the pathway of electro-Fenton to combined electrocatalytic technologies with biochemical processes, and finally to coupling with electrocoagulation. Standardized evaluation systems, waste resource utilization, and energy conservation were important directions of innovation in electrocatalytic technologies. Overall, this study provided a reference for researchers to understand the framework of electrocatalysis in wastewater treatment and also shed light on potential avenues for further innovation in the field.
Collapse
Affiliation(s)
- Qianqian Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Xiaoya Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Lili Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Xiangzhou Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China.
| | - Rui Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Han Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| |
Collapse
|
5
|
Liu Y, Qin L, Qin Y, Yang T, Lu H, Liu Y, Zhang Q, Liang W. Electrocatalytic degradation of nitrogenous heterocycles on confined particle electrodes derived from ZIF-67. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132899. [PMID: 37951167 DOI: 10.1016/j.jhazmat.2023.132899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 11/13/2023]
Abstract
Nitrogen-containing heterocyclic compounds (NHCs) are hazardous, toxic, and persistent pollutants, thereby requiring urgent solutions. Herein, ZIF-67 was compounded with powder-activated carbon (PAC) to prepare Co/NC/PAC (NC i.e. nitrogen-doped carbon) particle electrodes for the electrocatalytic treatment of pyridine and diazines. Co/NC/PAC reflected the confinement of Co3O4/CoN/Co0 into the N-doped graphitic-carbon layer to generate both pyrrolic-N and graphitic-N active sites. Under the optimal conditions (0.3 A, 12 mL min-1, and initial pH 7.00), the degradation of four NHCs realized 90.2-93.7% efficiencies. The number and position of N atoms in NHCs directly affected the degradation efficiency. The following increasing order of facilitated degradation was recorded: pyridazine < pyrimidine < pyrazine < pyridine. The as-obtained Co/NC/PAC possessed the direct redox effect on NHCs, achieving fast electrocatalytic rate. Species like ·OH and H* were detected in Co/NC/PAC system with contributions to NHCs degradation estimated to 24% and 34%, respectively. Density functional theory (DFT) calculations revealed H* susceptible to attacking the N position, while the meta-position of C was subject to hydroxyl radical (·OH) addition. Overall, degradation of NHCs was achieved by hydro-reduction, oxidation, ring opening cleavage, hydroxylation, and mineralization. Ring-cleavage and mineralization of NHCs provided a novel electrochemical strategy to refractory wastewater treatment.
Collapse
Affiliation(s)
- Yu Liu
- Beijing Key Lab for Source Control Technology of Water Pollution; Engineering Research Center for Water Pollution Source Control & Eco-remediation, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Linlin Qin
- Beijing Key Lab for Source Control Technology of Water Pollution; Engineering Research Center for Water Pollution Source Control & Eco-remediation, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Yiming Qin
- Beijing Key Lab for Source Control Technology of Water Pollution; Engineering Research Center for Water Pollution Source Control & Eco-remediation, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Tong Yang
- Beijing Key Lab for Source Control Technology of Water Pollution; Engineering Research Center for Water Pollution Source Control & Eco-remediation, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Haoran Lu
- Beijing Key Lab for Source Control Technology of Water Pollution; Engineering Research Center for Water Pollution Source Control & Eco-remediation, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Yulong Liu
- Beijing Key Lab for Source Control Technology of Water Pollution; Engineering Research Center for Water Pollution Source Control & Eco-remediation, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Qiqi Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution; Engineering Research Center for Water Pollution Source Control & Eco-remediation, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Wenyan Liang
- Beijing Key Lab for Source Control Technology of Water Pollution; Engineering Research Center for Water Pollution Source Control & Eco-remediation, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
6
|
Zhu LB, Ding SN. Enhancing the Photocatalytic Performance of Antibiotics Using a Z-Scheme Heterojunction of 0D ZnIn 2S 4 Quantum Dots and 3D Hierarchical Inverse Opal TiO 2. Molecules 2023; 28:7174. [PMID: 37894652 PMCID: PMC10609623 DOI: 10.3390/molecules28207174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Limited light absorption and rapid photo-generated carriers' recombination pose significant challenges to the practical applications of photocatalysts. In this study, we employed an efficient approach by combining the slow-photon effect with Z-scheme charge transfer to enhance the photo-degradation performance of antibiotics. Specifically, we incorporated 0D ZnIn2S4 quantum dots (QDs) into a 3D hierarchical inverse opal (IO) TiO2 structure through a facile one-step process. This combination enhanced the visible light absorption and provided abundant active surfaces for efficient photo-degradation. Moreover, the ZnIn2S4 QDs formed an artificial Z-scheme system with IO-TiO2, facilitating the separation and migration of charge carriers. To achieve a better band alignment with IO-TiO2, we doped Ag into the ZnIn2S4 QDs (Ag: ZIS QDs) to adjust their energy levels. Through an investigation of the different Ag contents in the ZnIn2S4 QDs, we found that the optimal photo-degradation performance was achieved with Ag (2.0): ZIS QDs/IO-TiO2, exhibiting degradation rates 19.5 and 14.8 times higher than those of ZnIn2S4 QDs and IO-TiO2, respectively. This study provides significant insights for elevating the photocatalytic capabilities of IO-TiO2 and broadening its prospective applications.
Collapse
Affiliation(s)
| | - Shou-Nian Ding
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China;
| |
Collapse
|
7
|
Liu J, Qi W, Xu M, Thomas T, Liu S, Yang M. Piezocatalytic Techniques in Environmental Remediation. Angew Chem Int Ed Engl 2023; 62:e202213927. [PMID: 36316280 DOI: 10.1002/anie.202213927] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022]
Abstract
As a consequence of rapid industrialization throughout the world, various environmental pollutants have begun to accumulate in water, air, and soil. This endangers the ecological environment of the earth, and environmental remediation has become an immediate priority. Among various environmental remediation techniques, piezocatalytic techniques, which uniquely take advantage of the piezoelectric effect, have attracted much attention. Piezoelectric effects allow pollutant degradation directly, while also enhancing photocatalysis by reducing the recombination of photogenerated carriers. In this Review, we provide a comprehensive summary of recent developments in piezocatalytic techniques for environmental remediation. The origin of the piezoelectric effect as well as classification of piezoelectric materials and their application in environmental remediation are systematically summarized. We also analyze the potential underlying mechanisms. Finally, urgent problems and the future development of piezocatalytic techniques are discussed.
Collapse
Affiliation(s)
- Jiahao Liu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Weiliang Qi
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Mengmeng Xu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Tiju Thomas
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Adyar, Chennai, 600036, Tamil Nadu, India
| | - Siqi Liu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
8
|
Yang YL, Huang Z, Liu YY, Guo D, Zhang Q, Hong JM. Mechanism exploration of highly conductive Ni-metal organic frameworks/reduced graphene oxide heterostructure for electrocatalytic degradation of paracetamol: Functions of metal sites, organic ligands, and rGO basement. J Colloid Interface Sci 2023; 629:667-682. [PMID: 36183646 DOI: 10.1016/j.jcis.2022.09.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022]
Abstract
The highly conductive Ni-metal-organic framework/reduced graphene oxide (Ni-MOG/rGO) heterostructure shows an excellent catalytic activity through the modification of active sites, considerably enabling the electron transfer between rGO and Ni-MOF. However, the detailed mechanisms, i.e., the functions of separate metal sites and organic ligands and electron transfer orientation between Ni-MOFs and rGO, remain to be discussed. Here, the electrocatalytic mechanism of Ni-MOF/rGO was experimentally analyzed on the basis of the density functional theory. The dominant active sites of radical and nonradical generation were determined. Findings indicated that radicals (O2•- and •OH) and nonradicals (1O2 and active chlorine) contributed to paracetamol (APAP) degradation. Moreover, metal sites (Ni) were favorable to generate O2•- and partly •OH to initiate the reaction. By contrast, organic frameworks in Ni-MOF and rGO basement favored to generate •OH and nonradicals (1O2 and active chlorine). In this case, N sites (in Ni-MOF), which seized electrons from Ni sites, acted as the primary bonding bridge to accelerate the electron transfer from rGO to Ni-MOF. This study provided essential information to decipher the mechanism of Ni-MOF/rGO heterostructure applicable to the electrocatalytic system.
Collapse
Affiliation(s)
- Yan-Ling Yang
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China
| | - Zhi Huang
- Xiamen Research Academy of Environmental Science, Xiamen 361021, China
| | - Yan-Ying Liu
- Xiamen Research Academy of Environmental Science, Xiamen 361021, China
| | - Die Guo
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China
| | - Qian Zhang
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China.
| | - Jun-Ming Hong
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China
| |
Collapse
|
9
|
Magnetic amorphous carbon@manganese ferrite hybrid materials as a heterogeneous persulfate activator for catalytic oxidation of tetrabromobisphenol A. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Ali I, Van Eyck K, De Laet S, Dewil R. Recent advances in carbonaceous catalyst design for the in situ production of H 2O 2 via two-electron oxygen reduction. CHEMOSPHERE 2022; 308:136127. [PMID: 36028123 DOI: 10.1016/j.chemosphere.2022.136127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The electrochemical oxygen reduction reaction has received increasing attention as a relatively green, safe and sustainable method for in situ hydrogen peroxide (H2O2) production. Recently, significant achievements have been made to explore carbon-based (noble metal-free) low-cost and efficient electrocatalysts for H2O2 electroproduction, which could potentially replace the traditional anthraquinone process. However, to realize industrial-scale implementation, a highly active and selective catalytic material is needed. In this review paper, we first expound on the oxygen reduction reaction (ORR) mechanism, which is the origin of in situ H2O2 production. Then, the recent progress in the development of modified carbon-based catalysts is reviewed and classified, corresponding to their physical or chemical modulation. Furthermore, an overview is provided of the available examples from pilot/large-scale applications. Finally, an outlook on the current challenges and future research prospects to transfer the lab-developed catalysts into pilot or industrial-scale reactors is briefly discussed.
Collapse
Affiliation(s)
- Izba Ali
- InOpSys - Mobiele waterzuivering voor chemie en farma, Zandvoortstraat 12a, 2800, Mechelen, Belgium; KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium.
| | - Kwinten Van Eyck
- InOpSys - Mobiele waterzuivering voor chemie en farma, Zandvoortstraat 12a, 2800, Mechelen, Belgium
| | - Steven De Laet
- InOpSys - Mobiele waterzuivering voor chemie en farma, Zandvoortstraat 12a, 2800, Mechelen, Belgium
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium; University of Oxford, Department of Engineering Science, Parks Road, Oxford, OX1 3PJ, United Kingdom.
| |
Collapse
|
11
|
Fabrication of a novel Ti3C2-modified Sb-SnO2 porous electrode for electrochemical oxidation of organic pollutants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Yang Z, Huang Y, Li X, Jiang Z, Chen Y, Yang S, Garces HF, Sun Y, Yan K. Highly dispersed CoFe2O4 spinel on biomass-derived 3D porous carbon framework for much enhanced Fenton-like reactions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Chu Z, Zheng B, Wang W, Li Y, Yang Y, Yang Z. Magnetic Nitrogen–Doped biochar for adsorptive and oxidative removal of antibiotics in aqueous solutions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Li B, Tong F, Lv M, Wang Z, Liu Y, Wang P, Cheng H, Dai Y, Zheng Z, Huang B. In Situ Monitoring Charge Transfer on Topotactic Epitaxial Heterointerface for Tetracycline Degradation at the Single-Particle Level. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bei Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Fengxia Tong
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Min Lv
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
15
|
Xiaosan S, Boyang S, Yiru W, Jie Z, Sanfan W, Nan W. Adsorption performance of GO-doped activated ATP composites towards tetracycline. RSC Adv 2022; 12:19917-19928. [PMID: 35865195 PMCID: PMC9262408 DOI: 10.1039/d2ra03023c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Antibiotic-related environmental contamination directly threatens ecosystems and human health. Adsorption is an efficient and simple treatment process for removing antibiotics from water environments. Attapulgite (ATP) is a natural clay mineral extensively researched as a promising adsorbent material in the food industry, pharmaceutical sanitation, and organic wastewater treatment. Graphene oxide (GO) is widely employed in the treatment of organic wastewater due to its superior physicochemical properties. Here, using high temperature and HCl, ATP was activated (a-ATP), and a GO/a-ATP composite was prepared via hydrothermal synthesis. Using an adsorbent dosage of 0.75 g L-1, pH = 5, reaction time of 120 min, initial temperature = 35 °C, and initial TC concentration of 50 mg L-1, the adsorption capacity of GO/a-ATP for TC was 38.8 mg g-1. The pseudo-first-order model (PFO) and pseudo-second-order (PSO) model were fitted to the kinetic data, and yielded an R 2-value of PSO (0.99991) > PFO (0.9389), indicating that the adsorption process is related to chemisorption. Adsorption was also well described by the mixed-order (MO) model (R 2 = 0.9827), demonstrating that two rate-limiting adsorption reaction steps, diffusion and adsorption, occur; the former exerting greater influence. Equilibrium data was fitted to Langmuir, Freundlich, and Temkin isotherm models; the Langmuir model gave the best fit, suggesting the adsorption process is a homogeneous and monolayer adsorption process. Various thermodynamic parameters such as standard Gibbs free energy (ΔG 0) and standard enthalpy (ΔH 0) were also calculated, these results indicate the adsorption reaction is an endothermic process. Our study shows that GO/a-ATP is a promising adsorbent material for use in the adsorption of tetracycline in aquatic environments.
Collapse
Affiliation(s)
- Song Xiaosan
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
- Engineering Research Center of Comprehensive Utilization of Water Resources in Cold and Drought Areas, Ministry of Education No. 88 Anning West Road Lanzhou 730070 China
| | - Shui Boyang
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
- Engineering Research Center of Comprehensive Utilization of Water Resources in Cold and Drought Areas, Ministry of Education No. 88 Anning West Road Lanzhou 730070 China
| | - Wang Yiru
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
- Engineering Research Center of Comprehensive Utilization of Water Resources in Cold and Drought Areas, Ministry of Education No. 88 Anning West Road Lanzhou 730070 China
| | - Zhou Jie
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
- Engineering Research Center of Comprehensive Utilization of Water Resources in Cold and Drought Areas, Ministry of Education No. 88 Anning West Road Lanzhou 730070 China
| | - Wang Sanfan
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
- Engineering Research Center of Comprehensive Utilization of Water Resources in Cold and Drought Areas, Ministry of Education No. 88 Anning West Road Lanzhou 730070 China
| | - Wu Nan
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
- Engineering Research Center of Comprehensive Utilization of Water Resources in Cold and Drought Areas, Ministry of Education No. 88 Anning West Road Lanzhou 730070 China
| |
Collapse
|