1
|
Fraser JF, Pahwa S, Maniskas M, Michas C, Martinez M, Pennypacker KR, Dornbos D. Now that the door is open: an update on ischemic stroke pharmacotherapeutics for the neurointerventionalist. J Neurointerv Surg 2024; 16:425-428. [PMID: 37258227 DOI: 10.1136/jnis-2022-019293] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
The last 10 years have seen a major shift in management of large vessel ischemic stroke with changes towards ever-expanding use of reperfusion therapies (intravenous thrombolysis and mechanical thrombectomy). These strategies 'open the door' to acute therapeutics for ischemic tissue, and we should investigate novel therapeutic approaches to enhance survival of recently reperfused brain. Key insights into new approaches have been provided through translational research models and preclinical paradigms, and through detailed research on ischemic mechanisms. Additional recent clinical trials offer exciting salvos into this new strategy of pairing reperfusion with neuroprotective therapy. This pairing strategy can be employed using drugs that have shown neuroprotective efficacy; neurointerventionalists can administer these during or immediately after reperfusion therapy. This represents a crucial moment when we emphasize reperfusion, and have the technological capability along with the clinical trial experience to lead the way in multiprong approaches to stroke treatment.
Collapse
Affiliation(s)
- Justin F Fraser
- Department of Neurological Surgery, University of Kentucky, Lexington, Kentucky, USA
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Shivani Pahwa
- Department of Neurological Surgery, University of Kentucky, Lexington, Kentucky, USA
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Michael Maniskas
- Department of Neurology, The University of Texas Health Science Center at Houston John P and Katherine G McGovern Medical School, Houston, Texas, USA
| | - Christopher Michas
- Department of Neurological Surgery, University of Kentucky, Lexington, Kentucky, USA
| | - Mesha Martinez
- Department of Neurointerventional Radiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Keith R Pennypacker
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
- University of Kentucky, Lexington, Kentucky, USA
| | - David Dornbos
- Department of Neurological Surgery, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Doron O, Patel AB, Hawryluk GWJ. Neurovascular Interventions for Neurotrauma: From Treatment of Injured Vessels to Treatment of the Injured Brain? Oper Neurosurg (Hagerstown) 2024; 26:247-255. [PMID: 37976141 DOI: 10.1227/ons.0000000000000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/17/2023] [Indexed: 11/19/2023] Open
Abstract
Traumatic brain injury is often associated with a direct or secondary neurovascular pathology. In this review, we present recent advancements in endovascular neurosurgery that enable accurate and effective vessel reconstruction with emphasis on its role in early diagnosis, the expanding use of flow diversion in pseudoaneurysms, and traumatic arteriovenous fistulas. In addition, future directions in which catheter-based interventions could potentially affect traumatic brain injury are described: targeting blood brain barrier integrity using the advantages of intra-arterial drug delivery of blood brain barrier stabilizers to prevent secondary brain edema, exploring the impact of endovascular venous access as a means to modulate venous outflow in an attempt to reduce intracranial pressure and augment brain perfusion, applying selective intra-arterial hypothermia as a neuroprotection method mitigating some of the risks conferred by systemic cooling, trans-vessel wall delivery of regenerative therapy agents, and shifting attention using multimodal neuromonitoring to post-traumatic vasospasm to further characterize the role it plays in secondary brain injury. Thus, we believe that the potential of endovascular tools can be expanded because they enable access to the "highways" governing perfusion and flow and call for further research focused on exploring these routes because it may contribute to novel endovascular approaches currently used for treating injured vessels, harnessing them for treatment of the injured brain.
Collapse
Affiliation(s)
- Omer Doron
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston , Massachusetts , USA
- Department of Biomedical Engineering, The Aldar and Iby Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv , Israel
| | - Aman B Patel
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | - Gregory W J Hawryluk
- Department of Neurosurgery, Akron General Neuroscience Institute, Cleveland Clinic, Akron , Ohio , USA
| |
Collapse
|
3
|
Diprose WK, Rao A, Ghate K, Dyer Z, Campbell D, Almekhlafi M, Barber PA. Penumbral cooling in ischemic stroke with intraarterial, intravenous or active conductive head cooling: A thermal modeling study. J Cereb Blood Flow Metab 2024; 44:66-76. [PMID: 37734834 PMCID: PMC10905634 DOI: 10.1177/0271678x231203025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 09/23/2023]
Abstract
In ischemic stroke, selectively cooling the ischemic penumbra might lead to neuroprotection while avoiding systemic complications. Because penumbral tissue has reduced cerebral blood flow and in vivo brain temperature measurement remains challenging, the effect of different methods of therapeutic hypothermia on penumbral temperature are unknown. We used the COMSOL Multiphysics® software to model a range of cases of therapeutic hypothermia in ischemic stroke. Four ischemic stroke models were developed with ischemic core and/or penumbra volumes between 33-300 mL. Four experiments were performed on each model, including no cooling, and intraarterial, intravenous, and active conductive head cooling. The steady-state temperature of the non-ischemic brain, ischemic penumbra, and ischemic core without cooling was 37.3 °C, 37.5-37.8 °C, and 38.9-39.4 °C respectively. Intraarterial, intravenous and active conductive head cooling reduced non-ischemic brain temperature by 4.3 °C, 2.1 °C, and 0.7-0.8 °C respectively. Intraarterial, intravenous and head cooling reduced the temperature of the ischemic penumbra by 3.9-4.3 °C, 1.9-2.1 °C, and 1.2-3.4 °C respectively. Active conductive head cooling was the only method to selectively reduce penumbral temperature. Clinical studies that measure brain temperature in ischemic stroke patients undergoing therapeutic hypothermia are required to validate these hypothesis-generating findings.
Collapse
Affiliation(s)
- William K Diprose
- Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Avinash Rao
- Department of Engineering, Victoria University of Wellington, Wellington, New Zealand
| | - Kaustubha Ghate
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Zoe Dyer
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Doug Campbell
- Department of Anesthesia and Perioperative Medicine, Auckland City Hospital, Auckland, New Zealand
| | | | - P Alan Barber
- Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
4
|
Chen J, Xu S, Lee H, Wu L, He X, Zhao W, Zhang M, Ma Y, Ding Y, Fu Y, Wu C, Li M, Jiang M, Cheng H, Li S, Ma T, Ji X, Wu D. Hypothermic neuroprotection by targeted cold autologous blood transfusion in a non-human primate stroke model. Sci Bull (Beijing) 2023:S2095-9273(23)00392-4. [PMID: 37391345 DOI: 10.1016/j.scib.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/06/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
Over decades, nearly all attempts to translate the benefits of therapeutic hypothermia in stroke models of lower-order species to stroke patients have failed. Potentially overlooked reasons may be biological gaps between different species and the mismatched initiation of therapeutic hypothermia in translational studies. Here, we introduce a novel strategy of selective therapeutic hypothermia in a non-human primate ischemia-reperfusion model, in which autologous blood was cooled ex vivo and the cool blood transfusion was administered at the middle cerebral artery just after the onset of reperfusion. Cold autologous blood cooled the targeted brain rapidly to below 34 °C while the rectal temperature remained around 36 °C with the assistance of a heat blanket during a 2-h hypothermic process. Therapeutic hypothermia or extracorporeal-circulation related complications were not observed. Cold autologous blood treatment reduced infarct sizes, preserved white matter integrity, and improved functional outcomes. Together, our results suggest that therapeutic hypothermia, induced by cold autologous blood transfusion, was achieved in a feasible, swift, and safe way in a non-human primate model of stroke. More importantly, this novel hypothermic approach conferred neuroprotection in a clinically relevant model of ischemic stroke due to reduced brain damage and improved neurofunction. This study reveals an underappreciated potential for this novel hypothermic modality for acute ischemic stroke in the era of effective reperfusion.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Shuaili Xu
- China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Hangil Lee
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit MI 46801, USA
| | - Longfei Wu
- Department of Neurology, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Xiaoduo He
- China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Mo Zhang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yanhui Ma
- Department of Anesthesiology, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit MI 46801, USA
| | - Yongjuan Fu
- Department of Pathology, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Ming Li
- Department of Neurosurgery, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China
| | - Miuwen Jiang
- Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Huakun Cheng
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin 1500036, China
| | - Shengli Li
- Department of Laboratory Animal Science, Capital Medical University, Beijing 100069, China
| | - Ting Ma
- Department of Anesthesiology, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Di Wu
- China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
5
|
Jiang M, Li M, Gao Y, Wu L, Zhao W, Li C, Hou C, Qi Z, Wang K, Zheng S, Yin Z, Wu C, Ji X. The intra-arterial selective cooling infusion system: A mathematical temperature analysis and in vitro experiments for acute ischemic stroke therapy. CNS Neurosci Ther 2022; 28:1303-1314. [PMID: 35702957 PMCID: PMC9344093 DOI: 10.1111/cns.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION The neuroprotection of acute ischemic stroke patients can be achieved by intra-arterial selective cooling infusion using cold saline, which can decrease brain temperature without influencing the body core temperature. This approach can lead to high burdens on the heart and decreased hematocrit in the scenario of loading a high amount of liquid for longtime usage. Therefore, autologous blood is utilized as perfusate to circumvent those side effects. METHODS In this study, a prototype instrument with an autologous blood cooling system was developed and further evaluated by a mathematical model for brain temperature estimation. RESULTS Hypothermia could be achieved due to the adequate cooling capacity of the prototype system, which could provide the lowest cooling temperature into the blood vessel of 10.5°C at 25 rpm (209.7 ± 0.8 ml/min). And, the core body temperature did not alter significantly (-0.7 ~ -0.2°C) after 1-h perfusion. The cooling rate and temperature distributions of the brain were analyzed, which showed a 2°C decrease within the initial 5 min infusion by 44 ml/min and 13.7°C perfusate. CONCLUSION This prototype instrument system could safely cool simulated blood in vitro and reperfuse it to the target cerebral blood vessel. This technique could promote the clinical application of an autologous blood perfusion system for stroke therapy.
Collapse
Affiliation(s)
- Miaowen Jiang
- School of Instrumentation and Optoelectronic EngineeringBeihang UniversityBeijingChina
- Beijing Institute of Geriatrics, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Ming Li
- Beijing Institute of Geriatrics, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yuan Gao
- School of Instrumentation and Optoelectronic EngineeringBeihang UniversityBeijingChina
| | - Longfei Wu
- Beijing Institute of Geriatrics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Wenbo Zhao
- Beijing Institute of Geriatrics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Chuanhui Li
- Beijing Institute of Geriatrics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Chengbei Hou
- Center for Evidence‐Based Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Zhengfei Qi
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| | - Kun Wang
- School of Instrumentation and Optoelectronic EngineeringBeihang UniversityBeijingChina
| | - Shiqiang Zheng
- School of Instrumentation and Optoelectronic EngineeringBeihang UniversityBeijingChina
| | - Zhichen Yin
- Beijing Institute of Geriatrics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| | - Chuanjie Wu
- Beijing Institute of Geriatrics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xunming Ji
- School of Instrumentation and Optoelectronic EngineeringBeihang UniversityBeijingChina
- Beijing Institute of Geriatrics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
- BUAA‐CCMU Advanced Innovation Center for Big Data‐based Precision MedicineBeihang UniversityBeijingChina
| |
Collapse
|
6
|
Jiang M, Gao Y, Wu C, Wu L, Tang S, Yin Z, Li A, Wang K, Zheng S, Lee H, Ding Y, Li M, Ji X. The blood heat exchanger in intra-arterial selective cooling infusion for acute ischemic stroke: A computational fluid-thermodynamics performance, experimental assessment and evaluation on the brain temperature. Comput Biol Med 2022; 145:105497. [DOI: 10.1016/j.compbiomed.2022.105497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 02/07/2023]
|
7
|
Wang X, Wehbe A, Kaura S, Chaudhry N, Geng X, Ding Y. Updates on Selective Brain Hypothermia: Studies From Bench Work to Clinical Trials. Front Neurol 2022; 13:899547. [PMID: 35599727 PMCID: PMC9120368 DOI: 10.3389/fneur.2022.899547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/13/2022] [Indexed: 12/01/2022] Open
Abstract
Thrombectomy or thrombolysis are the current standards of care for acute ischemic stroke (AIS), however, due to time constraints regarding operations and a multitude of contraindications, AIS remains one of the leading causes of death and chronic disability worldwide. In recent years, therapeutic hypothermia has been explored as an adjuvant therapy for AIS treatment and has shown potential to improve outcomes in patients with AIS. In particular, selective therapeutic hypothermia has shown to markedly reduce infarct volumes and have neuroprotective effects, while also minimizing many systemic side effects seen with systemic therapeutic hypothermia. Both preclinical and clinical trials have demonstrated that selective therapeutic hypothermia is a safe and feasible therapy for patients who have suffered an AIS. In this review, we summarize the current update on selective hypothermia through major studies that have been conducted in rodents, large animals, and clinical trials, and briefly discuss the prospects of selective hypothermic research. We hope this review helps facilitate the exploration of other possible adjuvant treatment modalities in the neuroprotection of ischemic stroke, whether upon symptom onset or after vascular recanalization.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Shawn Kaura
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA, United States
| | - Naveed Chaudhry
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA, United States
| | - Xiaokun Geng
- Department of Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
- *Correspondence: Xiaokun Geng
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
- Yuchuan Ding
| |
Collapse
|
8
|
Nonhuman Primate Models of Ischemic Stroke and Neurological Evaluation After Stroke. J Neurosci Methods 2022; 376:109611. [PMID: 35487315 DOI: 10.1016/j.jneumeth.2022.109611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/23/2022]
Abstract
Nonhuman primates are closer to human beings than rodents in genetics, neuroanatomy, physiology and immunology. Nonhuman primates are therefore considered an ideal preclinical model to replicate various aspects of human stroke. Ischemia stroke models in nonhuman primates can better fit the physiological symptoms and changes in humans after cerebral ischemia. Currently, various construction methods and neurological evaluation methods have been developed and applied to stroke models of nonhuman primates, including craniectomy models, endovascular stroke models, autologous thrombus models and intraluminal filament models. Meanwhile, new innovative methods have emerged, such as the endothelin-1 model and photothrombosis model. In the past thirty years, these model studies have explored various mechanisms that are initiated in the first minutes, hours, and days after a stroke. Permanent and temporary middle cerebral artery occlusion models have been trying to simulate the complex situation of human stroke. However, a comprehensive comparison of the above methods, including their advantages and disadvantages, difficulty and application fields, is limited. Here, we introduce various modeling methods that are currently available for nonhuman primate stroke models, compare the differences between these different preparation methods, and analyze the advantages and disadvantages of the various methods and the fields of application. The imaging detection methods of nonhuman primates after cerebral ischemia and the neurological evaluation methods after stroke are also discussed briefly. Methods are sorted and compared so that scholars can choose appropriate modeling methods and evaluation methods to establish nonhuman primate stroke models.
Collapse
|
9
|
Chen J, Zhao H, Huang Y, Li Y, Fan J, Wang R, Han Z, Yang Z, Wu L, Wu D, Luo Y, Ji X. Dysregulation of Principal Circulating miRNAs in Non-human Primates Following Ischemic Stroke. Front Neurosci 2021; 15:738576. [PMID: 34539341 PMCID: PMC8441133 DOI: 10.3389/fnins.2021.738576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Despite the recent interest in plasma microRNA (miRNA) biomarkers in acute ischemic stroke patients, there is limited knowledge about the miRNAs directly related to stroke itself due to the multiple complications in patients, which has hindered the research progress of biomarkers and therapeutic targets of ischemic stroke. Therefore, in this study, we compared the differentially expressed miRNA profiles in the plasma of three rhesus monkeys pre- and post-cerebral ischemia. After cerebral ischemia, Rfam sequence category revealed increased ribosomic RNA (rRNA) and decreased transfer RNAs (tRNAs) in plasma. Of the 2049 miRNAs detected after cerebral ischemia, 36 were upregulated, and 76 were downregulated (fold change ≥2.0, P < 0.05). For example, mml-miR-191-5p, miR-421, miR-409-5p, and let-7g-5p were found to be significantly overexpressed, whereas mml-miR-128a-5p_R − 2, miR-431_R − 1, and let-7g-3p_1ss22CT were significantly downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that these differentially expressed miRNAs were implicated in the regulation of ubiquitin-mediated proteolysis and signaling pathways in cancer, glioma, chronic myeloid leukemia, and chemokine signaling. miRNA clustering analysis showed that mml-let-7g-5p and let-7g-3p_1ss22CT, which share three target genes [RB1-inducible coiled-coil 1 (RB1CC1), G-protein subunit γ 5 (GNG5), and chemokine (C-X-C motif) receptor 4 (CXCR4)], belong to one cluster, were altered in opposite directions following ischemia. These data suggest that circulating mml-let-7g may serve as a therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurosurgery, Institute of Cerebrovascular Diseases Research, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haiping Zhao
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Yuyou Huang
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Yuqian Li
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Junfen Fan
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Rongliang Wang
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Ziping Han
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Zhenhong Yang
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Longfei Wu
- Department of Neurosurgery, Institute of Cerebrovascular Diseases Research, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Yumin Luo
- Beijing Institute for Brain Disorders, Beijing, China
| | - Xunming Ji
- Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
10
|
Wu L, Huber M, Wu D, Chen J, Li M, Ding Y, Ji X. Intra-arterial Cold Saline Infusion in Stroke: Historical Evolution and Future Prospects. Aging Dis 2020; 11:1527-1536. [PMID: 33269105 PMCID: PMC7673854 DOI: 10.14336/ad.2020.0325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/25/2020] [Indexed: 01/04/2023] Open
Abstract
Acute ischemic stroke (AIS) is a perpetual threat to life and functionality due to its high morbidity and mortality. In the past several decades, therapeutic hypothermia has garnered interest as an effective neuroprotective method in the setting of AIS. However, traditional hypothermic methods have been criticized for their low cooling efficiency and side effects. Intra-arterial cold saline infusion (IA-CSI), as a novel hypothermic method, not only minimizes these side effects, but is also perfectly integrated with widely accepted recanalization modalities in AIS, thereby serving as a promising prospect for clinical translation. In this article, we review the historical development of IA-CSI, summarize major studies of IA-CSI in rodents, large animals, and humans to date, and suggest insight into future development prospects in the field of AIS. We hope that this article will provide inspiration for the future application of hypothermia in AIS patients.
Collapse
Affiliation(s)
- Longfei Wu
- 1Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mitchell Huber
- 2Department of Emergency Medicine, Ascension St. John Hospital, Detroit, MI, USA
| | - Di Wu
- 1Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jian Chen
- 3Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ming Li
- 1Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- 4Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xunming Ji
- 3Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Wu D, Fu Y, Wu L, Huber M, Chen J, Yao T, Zhang M, Wu C, Song M, He X, Li S, Zhang Y, Li S, Ding Y, Ji X. Reperfusion plus Selective Intra-arterial Cooling (SI-AC) Improve Recovery in a Nonhuman Primate Model of Stroke. Neurotherapeutics 2020; 17:1931-1939. [PMID: 32710291 PMCID: PMC7851312 DOI: 10.1007/s13311-020-00895-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Early reperfusion is increasingly prioritized in ischemic stroke care, but outcomes remain suboptimal. Therefore, there is an urgent need to find neuroprotective approaches that can be combined with reperfusion to maximize efficacy. Here, the neuroprotective mechanisms behind therapeutic hypothermia were evaluated in a monkey model of ischemic stroke. Focal ischemia was induced in adult rhesus monkeys by placing autologous clots in the middle cerebral artery. Monkeys were treated with tissue plasminogen activator (t-PA) alone or t-PA plus selective intra-arterial cooling (SI-AC). Serial MRI scans and functional deficit were evaluated after ischemia. Histopathology and immunohistochemistry analysis were performed after the final MRI scan. t-PA plus SI-AC treatment led to a higher rate of MRI tissue rescue, and significantly improved neurologic deficits and daily activity scores compared with t-PA alone. In peri-infarct areas, higher fractional anisotropy values and greater fiber numbers were observed in models receiving t-PA plus SI-AC. Histological findings indicated that myelin damage, spheroids, and spongiosis were significantly ameliorated in models receiving SI-AC treatment. White matter integrity was also improved by SI-AC based on immunochemical staining. Our study demonstrates that SI-AC can be effectively combined with t-PA to improve both structural and functional recovery in a monkey model of focal ischemia. These findings provide proof-of-concept that it may be feasible to add neuroprotective agents as adjunctive treatments to reperfusion therapy for stroke.
Collapse
Affiliation(s)
- Di Wu
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Yongjuan Fu
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Longfei Wu
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Mitchell Huber
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Tianqi Yao
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Mo Zhang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Chuanjie Wu
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ming Song
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Xiaoduo He
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Yongbiao Zhang
- Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shengli Li
- Department of Laboratory Animal Science, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xunming Ji
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
12
|
Wu D, Chen J, Hussain M, Wu L, Shi J, Wu C, Ma Y, Zhang M, Yang Q, Fu Y, Duan Y, Ma C, Yan F, Zhu Z, He X, Yao T, Song M, Zhi X, Wang C, Cai L, Li C, Li S, Zhang Y, Ding Y, Ji X. Selective intra-arterial brain cooling improves long-term outcomes in a non-human primate model of embolic stroke: Efficacy depending on reperfusion status. J Cereb Blood Flow Metab 2020; 40:1415-1426. [PMID: 32126876 PMCID: PMC7308521 DOI: 10.1177/0271678x20903697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nearly all stroke neuroprotection modalities, including selective intra-arterial cooling (SI-AC), have failed to be translated from bench to bed side. Potentially overlooked reasons may be biological gaps, inadequate attention to reperfusion states and mismatched attention to neurological benefits. To advance stroke translation, we describe a novel thrombus-based stroke model in adult rhesus macaques. Intra-arterial thrombolysis with tissue plasminogen activator leads to three clinically relevant outcomes - complete, partial, and no recanalization based on digital subtraction angiography. We also find reperfusion as a prerequisite for SI-AC-induced benefits, in which models with complete or partial reperfusion exhibit significantly reduced infarct volumes, mitigated neurological deficits, improved upper limb motor dysfunction in both acute and chronic stages; however, no further neuroprotection is observed in those without reperfusion. In summary, we discover reperfusion as a crucial regulator of SI-AC-induced neuroprotection and provide insights of long-term functional benefits in behavior and imaging levels. Our findings could be important not only for the translational prerequisite and potential molecular targets, but also for this thrombus-thrombolysis model in monkeys as a powerful tool for further translational stroke studies.
Collapse
Affiliation(s)
- Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mohammed Hussain
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Longfei Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Jingfei Shi
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Yanhui Ma
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mo Zhang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Yang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongjuan Fu
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunxia Duan
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cui Ma
- Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Feng Yan
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zixin Zhu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoduo He
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianqi Yao
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ming Song
- Interdisciplinary Innovation Institute of Medicine and Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xinglong Zhi
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chunxiu Wang
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lipeng Cai
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chuanhui Li
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shengli Li
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongbiao Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yuchuan Ding
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
13
|
Link TW, Santillan A, Patsalides A. Intra-arterial neuroprotective therapy as an adjunct to endovascular intervention in acute ischemic stroke: A review of the literature and future directions. Interv Neuroradiol 2020; 26:405-415. [PMID: 32423272 DOI: 10.1177/1591019920925677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mechanical thrombectomy for acute ischemic stroke due to large vessel occlusion has been shown to significantly improve outcomes. However, despite efficient rates of recanalization (60-90%), the rates of functional independence remain suboptimal (14-58%), most likely due to pathways of cell death in the brain that have already committed despite successful reperfusion. Pharmacologic neuroprotection provides a potential means of preventing this inevitable damage through targeting excitotoxicity, reactive oxygen species, cellular apoptosis, and inflammation. Numerous clinical trials using various neuroprotective agents have failed, but the majority of these trials did not include endovascular reperfusion, and thus the drugs were not reaching the therapeutic target. Intra-arterial delivery of neuroprotective agents via the guide catheter already in place for mechanical thrombectomy could provide a way to deliver high doses directly to the affected territory while limiting systemic exposure. Agents that have shown promise via the intra-arterial route in preclinical as well as some clinical models include magnesium sulfate, verapamil, cold saline, stem cells, and various combined approaches. Targeted hypothermia, achieved with intra-carotid infusion of cold saline, may provide an effective means of achieving hypothermia of the ischemic tissue while avoiding the systemic effects that have limited its use previously. Combination therapy of targeted hypothermia and a cocktail of drugs that provide anti-excitotoxic, anti-oxidant, anti-apopototic, and anti-inflammatory effects may provide an ideal approach that deserves further study in clinical trials.
Collapse
Affiliation(s)
- Thomas W Link
- Department of Neurosurgery, Weill Cornell Medical Institution New York Presbyterian Hospital, New York, NY, USA
| | - Alejandro Santillan
- Department of Neurosurgery, Weill Cornell Medical Institution New York Presbyterian Hospital, New York, NY, USA
| | - Athos Patsalides
- Department of Neurology, Weill Cornell Medical Institution New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
14
|
Wu L, Wu D, Yang T, Xu J, Chen J, Wang L, Xu S, Zhao W, Wu C, Ji X. Hypothermic neuroprotection against acute ischemic stroke: The 2019 update. J Cereb Blood Flow Metab 2020; 40:461-481. [PMID: 31856639 PMCID: PMC7026854 DOI: 10.1177/0271678x19894869] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
Acute ischemic stroke is a leading cause of death and disability worldwide. Therapeutic hypothermia has long been considered as one of the most robust neuroprotective strategies. Although the neuroprotective effects of hypothermia have only been confirmed in patients with global cerebral ischemia after cardiac arrest and in neonatal hypoxic ischemic encephalopathy, establishing standardized protocols and strictly controlling the key parameters may extend its application in other brain injuries, such as acute ischemic stroke. In this review, we discuss the potential neuroprotective effects of hypothermia, its drawbacks evidenced in previous studies, and its potential clinical application for acute ischemic stroke especially in the era of reperfusion. Based on the different conditions between bench and bedside settings, we demonstrate the importance of vascular recanalization for neuroprotection of hypothermia by analyzing numerous literatures regarding hypothermia in focal cerebral ischemia. Then, we make a thorough analysis of key parameters of hypothermia and introduce novel hypothermic therapies. We advocate in favor of the process of clinical translation of intra-arterial selective cooling infusion in the era of reperfusion and provide insights into the prospects of hypothermia in acute ischemic stroke.
Collapse
Affiliation(s)
- Longfei Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jin Xu
- Department of Library, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Luling Wang
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuaili Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Huber C, Huber M, Ding Y. Evidence and opportunities of hypothermia in acute ischemic stroke: Clinical trials of systemic versus selective hypothermia. Brain Circ 2019; 5:195-202. [PMID: 31950095 PMCID: PMC6950508 DOI: 10.4103/bc.bc_25_19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/28/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022] Open
Abstract
Stroke is the second leading cause of death globally and the third leading cause disability. Acute ischemic stroke (AIS), resulting from occlusion of major vessels in the brain, accounts for approximately 87% of strokes. Despite this large majority, current treatment options for AIS are severely limited and available to only a small percentage of patients. Therapeutic hypothermia (TH) has been widely used for neuroprotection in the setting of global ischemia postcardiac arrest, and recent evidence suggests that hypothermia may be the neuroprotective agent that stroke patients desperately need. Several clinical trials using systemic or selective cooling for TH have been published, reporting the safety and feasibility of these methods. Here, we summarize the major clinical trials of TH for AIS and provide recommendations for future studies.
Collapse
Affiliation(s)
- Christian Huber
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mitchell Huber
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
16
|
Wu C, Huber C, Huber M, Xu S, Ji X. Regional cerebral infusion for acute ischemic stroke. Brain Circ 2019; 5:241-243. [PMID: 31950101 PMCID: PMC6950507 DOI: 10.4103/bc.bc_61_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023] Open
Affiliation(s)
- Chuanjie Wu
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Christian Huber
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mitchell Huber
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shuaili Xu
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Mattingly TK, Lownie SP. Cold blood perfusion for selective hypothermia in acute ischemic stroke. Brain Circ 2019; 5:187-194. [PMID: 31950094 PMCID: PMC6950509 DOI: 10.4103/bc.bc_17_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/28/2019] [Accepted: 11/25/2019] [Indexed: 11/04/2022] Open
Abstract
Hypothermia is the most reliably effective neuroprotectant, and yet systemic complications limit application. A large body of animal data suggests that hypothermia is effective for focal cerebral ischemia, namely acute ischemic stroke. In order to apply hypothermia effectively, a selective approach is required to maximize the effect on the brain while minimizing systemic side effects. Due to poor transferability of promising findings in rodent models to human clinical trials for neuroprotection, the focus of this review is large animal gyrencephalic models. Unlike rodent data which favor mild hypothermia, the majority of large animal studies on selective hypothermia support moderate-to-deep hypothermia (<30°C). Cold blood perfusion produces the rapid rate of temperature reduction and depth of hypothermia required to produce meaningful neuroprotection. Further studies of selective hypothermia in acute ischemic stroke require attention to duration and rate of cooling to optimize the neuroprotection offered by this technique.
Collapse
Affiliation(s)
- Thomas K Mattingly
- Department of Neurosurgery, Division of Cerebrovascular Surgery, University of Rochester, Rochester, NY, USA
| | - Stephen P Lownie
- Department of Neurosurgery, Otolaryngology and Imaging Sciences, London Health Sciences Centre, Western University, London, ON, Canada
| |
Collapse
|
18
|
Neuroprotection for ischemic stroke in the endovascular era: A brief report on the future of intra-arterial therapy. J Clin Neurosci 2019; 69:289-291. [DOI: 10.1016/j.jocn.2019.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/05/2019] [Indexed: 01/05/2023]
|
19
|
Caroff J, King RM, Mitchell JE, Marosfoi M, Licwinko JR, Gray-Edwards HL, Puri AS, Merrill TL, Gounis MJ. Focal cooling of brain parenchyma in a transient large vessel occlusion model: proof-of-concept. J Neurointerv Surg 2019; 12:209-213. [PMID: 31363042 DOI: 10.1136/neurintsurg-2019-015179] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The neuroprotective benefit of therapeutic hypothermia (TH) has been demonstrated, but systemic side effects and time required to achieve effective TH in acute ischemic stroke (AIS) care limits clinical use. We investigate rapid and localized cooling using a novel insulated catheter in an ischemia-reperfusion model. METHODS In phase I (n=4), cold saline was delivered to the canine internal carotid artery via an insulated catheter. Temperature was measured using intracerebral thermocouples. The coolant flow rate was varied to meet a target temperature of 31-32°C in the hemisphere infused. In phase II (n=8), a temporary middle cerebral artery occlusion was created. Five dogs underwent localized TH at the optimal flow rate from phase I, and the remaining animals were untreated controls. Cooling was initiated 5 min before recanalization and continued for an additional 20 min following 45 min of occlusion duration. The outcome was infarct volume and neurological function. RESULTS Ipsilateral tissue cooling rates were 2.2±2.5°C/min at a flow rate of 20-40 mL/min with an observed minimum of 23.8°C. Tissue cooling was localized to the ipsilateral side of the infusion with little impact on temperatures of the core or contralateral hemisphere of the brain. In phase II, animals tolerated TH with minimal systemic impact. Infarct volume in treated animals was 0.2±0.2 cm3, which was smaller than in sham animals (3.8±1.0 cm3) as well as six untreated historical control animals (4.0±2.8 cm3) (p=0.013). CONCLUSIONS Proof-of-concept data show that localised brain TH can be quickly and safely achieved through a novel insulated catheter. The small infarct volumes suggest potential benefit for this approach.
Collapse
Affiliation(s)
- Jildaz Caroff
- Interventional Neuroradiology, NEURI Center, Bicêtre Hospital, Le Kremlin- Bicêtre, France
| | - Robert M King
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | - Miklos Marosfoi
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Heather L Gray-Edwards
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ajit S Puri
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Thomas L Merrill
- FocalCool, Mullica Hill, New Jersey, USA.,Department of Mechanical Engineering, Rowan University, Glassboro, NJ, USA
| | - Matthew J Gounis
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
20
|
Duan H, Huber M, Ding JN, Huber C, Geng X. Local endovascular infusion and hypothermia in stroke therapy: A systematic review. Brain Circ 2019; 5:68-73. [PMID: 31334359 PMCID: PMC6611196 DOI: 10.4103/bc.bc_9_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/03/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide, but there are no effective, widely applicable stroke therapies. Systemic hypothermia is an international mainstay of postcardiac arrest care, and the neuroprotective benefits of systemic hypothermia following cerebral ischemia have been proven in clinical trials, but logistical issues hinder clinical acceptance. As a novel solution to these logistical issues, the application of local endovascular infusion of cold saline directly to the infarct site using a microcatheter has been put forth. In small animal models, the procedure has shown incredible neuroprotective promise on the biochemical, structural, and functional levels, and preliminary trials in large animals and humans have been similarly encouraging. In addition, the procedure would be relatively cost-effective and widely applicable. The administration of local endovascular hypothermia in humans is relatively simple, as this is a normal part of endovascular intervention for neuroendovascular surgeons. Therefore, it is expected that this new therapy could easily be added to an angiography suite. However, the neuroprotective efficacy in humans has yet to be determined, which is an end goal of researchers in the field. Given the potentially massive benefits, ease of induction, and cost-effective nature, it is likely that local endovascular hypothermia will become an integral part of endovascular treatment following ischemic stroke. This review outlines relevant research, discusses neuroprotective mechanisms, and discusses possibilities for future directions.
Collapse
Affiliation(s)
- Honglian Duan
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Mitchell Huber
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jessie N Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Christian Huber
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
21
|
Inflammatory cytokines are involved in dihydrocapsaicin (DHC) and regional cooling infusion (RCI)-induced neuroprotection in ischemic rat. Brain Res 2018; 1710:173-180. [PMID: 30584925 DOI: 10.1016/j.brainres.2018.12.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The combination of pharmacological hypothermia - dihydrocapsaicin (DHC) and intra-arterial regional cooling infusions (RCI) was found to enhance the efficiency of hypothermia and efficacy of hypothermia-induced neuroprotection in acute ischemic stroke. The aim of this study was to explore whether the combination could induce a long-term neuroprotective effects, as well as the underlying mechanism. METHODS Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h using intraluminal hollow filament. The ischemic rats were randomized to receive pharmacological hypothermia by intraperitoneal (i.p.) injection of DHC, physical hypothermia by RCI of 6 ml cold saline (4 °C), the combination, and no treatment. Over a 21-day period, brain damage was determined by infarct volume with MRI, and neurological deficit with grid-walking and beam balance tests. Blood brain barrier (BBB) was assessed by Evans-Blue (EB) contents. Inflammatory cytokines were determined in peri-infarct area by antibody array and ELISA. RESULTS The combination of DHC and RCI reduced (p < 0.05) infarct volume and neurologic deficit after stroke. BBB leakage and pro-inflammatory cytokines (IFN-γ, IL-2, and TNF-α) were significantly decreased (p < 0.05) because of the combination, while protective cytokines (IL-4 and IL-10) were increased (p < 0.05) in the peri-infarct area. CONCLUSIONS The combination approach enhanced the efficacy of hypothermia-induced neuroprotection following ischemic stroke. Our findings provide a hint to translate the combination method from bench to bedside.
Collapse
|
22
|
Incontri Abraham D, Gonzales M, Ibarra A, Borlongan CV. Stand alone or join forces? Stem cell therapy for stroke. Expert Opin Biol Ther 2018; 19:25-33. [PMID: 30477353 DOI: 10.1080/14712598.2019.1551872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Stroke is a major cause of mortality and disability with a narrow therapeutic window. Stem cell therapy may enhance the stroke recovery. AREAS COVERE Regenerative medicine via stem cells stands as a novel therapy for stroke. In particular, bone marrow-derived mesenchymal stem cells (MSCs) have neuroprotective and anti-inflammatory properties that improve brain function after stroke. Here, we discuss the safety, efficacy, and mechanism of action underlying the therapeutic effects of bone marrow-derived MSCs. We also examine the discrepant transplant protocols between preclinical studies and clinical trials. Laboratory studies show the safety and efficacy of bone marrow-derived MSCs in stroke models. However, while safe, MSCs remain to be fully evaluated as effective in clinical trials. Furthermore, recognizing the multiple cell death processes associated with stroke, we next discuss the potential therapeutic benefits of a combination therapy. With preliminary results and on-going clinical trials, a careful assessment of dosing, timing, and delivery route regimens will further direct the future of stem cell therapy for neurological disorders, including stroke. EXPERT OPINION Bone marrow-derived MSCs appear to be the optimal stem cell source for stroke therapy. Optimizing dosing, timing, and delivery route should guide the clinical application of bone marrow-derived MSCs.
Collapse
Affiliation(s)
- Diego Incontri Abraham
- a Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA.,b Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud , Universidad Anáhuac México Campus Norte , Huixquilucan, Edo. de Mexico , México
| | - Melissa Gonzales
- a Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA
| | - Antonio Ibarra
- b Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud , Universidad Anáhuac México Campus Norte , Huixquilucan, Edo. de Mexico , México.,c Faculty of Health Sciences , Proyecto CAMINA A.C , Ciudad de México , México
| | - Cesar V Borlongan
- a Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA
| |
Collapse
|
23
|
Jingwen J, Han J, Yu Z, Xiaojun H, Junpeng Z, Fanxia S, Jianrong L. Quality of life among patients during subacute phase following stroke during hospitalisation period in Shanghai. Int J Psychiatry Clin Pract 2018; 22:296-303. [PMID: 29457918 DOI: 10.1080/13651501.2018.1432763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objective: This study aimed to investigate the factors influencing the quality of life of in-hospital subacute stroke patients. Methods: The patients of subacute stroke (within four weeks) in our institution between 2015 and 2016 were recruited. Patients' characteristics and QOL were obtained from medical charts and stroke-specific quality of life scale (SS-QOL). Associations of each domain in SS-QOL with socio-demographic, clinical factors and patient satisfaction were investigated using the linear regression models. Results: Among the 203 subjects, 60 were diagnosed as large artery atherosclerosis (LAA), 80 were small-artery occlusion (SAO), 28 were cardioembolism (CE) and 35 were intracranial haemorrhage (ICH). The ICH group had the worst self-care ability and upper extremity function. Worse severity of stroke was associated with lower levels of language ability, mobility, mood status and upper-extremity function. Participants who had better satisfaction had high levels of capability of conducting family roles, positive emotions, personality consistency, self-care ability and capacity of conducting social roles. Conclusions: The level of patient satisfaction, duration of hospitalisation and the severity of stroke were found to be the three important factors associated with SS-QOL at hospital discharge, indicating doctors might assist patients adjust to the consequences of stroke and improve the QOL of subacute stroke.
Collapse
Affiliation(s)
- Jiang Jingwen
- a Department of Neurology , Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine , Shanghai , PR China
| | - Jin Han
- b Centre for Mental Health Research , The Australian National University , Canberra , Australia
| | - Zhang Yu
- a Department of Neurology , Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine , Shanghai , PR China
| | - Huang Xiaojun
- a Department of Neurology , Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine , Shanghai , PR China
| | - Zhuang Junpeng
- a Department of Neurology , Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine , Shanghai , PR China
| | - Shen Fanxia
- a Department of Neurology , Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine , Shanghai , PR China
| | - Liu Jianrong
- a Department of Neurology , Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine , Shanghai , PR China
| |
Collapse
|
24
|
Leung LY, Cardiff K, Yang X, Srambical Wilfred B, Gilsdorf J, Shear D. Selective Brain Cooling Reduces Motor Deficits Induced by Combined Traumatic Brain Injury, Hypoxemia and Hemorrhagic Shock. Front Neurol 2018; 9:612. [PMID: 30123177 PMCID: PMC6085442 DOI: 10.3389/fneur.2018.00612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/09/2018] [Indexed: 11/13/2022] Open
Abstract
Selective brain cooling (SBC) can potentially maximize the neuroprotective benefits of hypothermia for traumatic brain injury (TBI) patients without the complications of whole body cooling. We have previously developed a method that involved extraluminal cooling of common carotid arteries, and demonstrated the feasibility, safety and efficacy for treating isolated TBI in rats. The present study evaluated the neuroprotective effects of 4-h SBC in a rat model of penetrating ballistic-like brain injury (PBBI) combined with hypoxemic and hypotensive insults (polytrauma). Rats were randomly assigned into two groups: PBBI+polytrauma without SBC (PHH) and PBBI+polytrauma with SBC treatment (PHH+SBC). All animals received unilateral PBBI, followed by 30-min hypoxemia (fraction of inspired oxygen = 0.1) and then 30-min hemorrhagic hypotension (mean arterial pressure = 40 mmHg). Fluid resuscitation was given immediately following hypotension. SBC was initiated 15 min after fluid resuscitation and brain temperature was maintained at 32-33°C (core temperature at ~36.5°C) for 4 h under isoflurane anesthesia. The PHH group received the same procedures minus the cooling. At 7, 10, and 21 days post-injury, motor function was assessed using the rotarod task. Cognitive function was assessed using the Morris water maze at 13-17 days post-injury. At 21 days post-injury, blood samples were collected and the animals were transcardially perfused for subsequent histological analyses. SBC transiently augmented cardiovascular function, as indicated by the increase in mean arterial pressure and heart rate during cooling. Significant improvement in motor functions were detected in SBC-treated polytrauma animals at 7, 10, and 21 days post-injury compared to the control group (p < 0.05). However, no significant beneficial effects were detected on cognitive measures following SBC treatment in the polytrauma animals. In addition, the blood serum and plasma levels of cytokines interleukin-1 and -10 were comparable between the two groups. Histological results also did not reveal any between-group differences in subacute neurodegeneration and astrocyte/ microglial activation. In summary, 4-h SBC delivered through extraluminal cooling of the common carotid arteries effectively ameliorated motor deficits induced by PBBI and polytrauma. Improving cognitive function or mitigating subacute neurodegeneration and neuroinflammation might require a different cooling regimen such as extended cooling, a slow rewarming period and a lower temperature.
Collapse
Affiliation(s)
- Lai Yee Leung
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Katherine Cardiff
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Xiaofang Yang
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Bernard Srambical Wilfred
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Janice Gilsdorf
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Deborah Shear
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
25
|
An H, Duan Y, Wu D, Yip J, Elmadhoun O, Wright JC, Shi W, Liu K, He X, Shi J, Jiang F, Ji X, Ding Y. Phenothiazines Enhance Mild Hypothermia-induced Neuroprotection via PI3K/Akt Regulation in Experimental Stroke. Sci Rep 2017; 7:7469. [PMID: 28785051 PMCID: PMC5547051 DOI: 10.1038/s41598-017-06752-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/26/2017] [Indexed: 11/09/2022] Open
Abstract
Physical hypothermia has long been considered a promising neuroprotective treatment of ischemic stroke, but the treatment's various complications along with the impractical duration and depth of therapy significantly narrow its clinical scope. In the present study, the model of reversible right middle cerebral artery occlusion (MCAO) for 2 h was used. We combined hypothermia (33-35 °C for 1 h) with phenothiazine neuroleptics (chlorpromazine & promethazine) as additive neuroprotectants, with the aim of augmenting its efficacy while only using mild temperatures. We also investigated its therapeutic effects on the Phosphatidylinositol 3 kinase/Protein kinase B (PI3K/Akt) apoptotic pathway. The combination treatment achieved reduction in ischemic rat temperatures in the rectum, cortex and striatum significantly (P < 0.01) faster than hypothermia alone, accompanied by more obvious (P < 0.01) reduction of brain infarct volume and neurological deficits. The combination treatment remarkably (P < 0.05) increased expression of p-Akt and anti-apoptotic proteins (Bcl-2 and Bcl-xL), while reduced expression of pro-apoptotic proteins (AIF and Bax). Finally, the treatment's neuroprotective effects were blocked by a p-Akt inhibitor. By combining hypothermia with phenothiazines, we significantly enhanced the neuroprotective effects of mild hypothermia. This study also sheds light on the possible molecular mechanism for these effects which involves the PI3K/Akt signaling and apoptotic pathway.
Collapse
Affiliation(s)
- Hong An
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunxia Duan
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - James Yip
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Omar Elmadhoun
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Joshua C Wright
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Wenjuan Shi
- Cerebrovascular Diseases Research Institute, Xuanwu hospital, Capital Medical University, Beijing, China
| | - Kaiyin Liu
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaoduo He
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jingfei Shi
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fang Jiang
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Yuchuan Ding
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
26
|
Wu D, Shi J, Elmadhoun O, Duan Y, An H, Zhang J, He X, Meng R, Liu X, Ji X, Ding Y. Dihydrocapsaicin (DHC) enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat. Brain Res 2017; 1671:18-25. [PMID: 28684048 DOI: 10.1016/j.brainres.2017.06.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Hypothermia has demonstrated neuroprotection following ischemia in preclinical studies while its clinical application is still very limited. The aim of this study was to explore whether combining local hypothermia in ischemic territory achieved by intra-arterial cold infusions (IACIs) with pharmacologically induced hypothermia enhances therapeutic outcomes, as well as the underlying mechanism. METHODS Sprague-Dawley rats were subjected to right middle cerebral artery occlusion (MCAO) for 2h using intraluminal hollow filament. The ischemic rats were randomized to receive: 1) pharmacological hypothermia by intraperitoneal (i.p.) injection of dihydrocapsaicin (DHC); 2) physical hypothermia by IACIs for 10min; or 3) the combined treatments. Extent of brain injury was determined by neurological deficit, infarct volume, and apoptotic cell death at 24h and/or 7d following reperfusion. ATP and ROS levels were measured. Expression of p-Akt, cleaved Caspase-3, pro-apoptotic (AIF, Bax) and anti-apoptotic proteins (Bcl-2, Bcl-xL) was evaluated at 24h. Finally, PI3K inhibitor was used to determine the effect of p-Akt. RESULTS DHC or IACIs each exhibited hypothermic effect and neuroprotection in rat MCAO models. The combination of pharmacological and physical approaches led to a faster and sustained reduction in brain temperatures and improved ischemia-induced injury than either alone (P<0.01). Furthermore, the combination treatment favorably increased the expression of anti-apoptotic proteins and decreased pro-apoptotic protein levels (P<0.01 or 0.05). This neuroprotective effect was largely blocked by p-Akt inhibition, indicating a potential role of Akt pathway in this mechanism (P<0.01 or 0.05). CONCLUSIONS The combination approach is able to enhance the efficiency of hypothermia and efficacy of hypothermia-induced neuroprotection following ischemic stroke. The findings here move us a step closer towards translating this long recognized TH from bench to bedside.
Collapse
Affiliation(s)
- Di Wu
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Jingfei Shi
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Omar Elmadhoun
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yunxia Duan
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hong An
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jun Zhang
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoduo He
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Meng
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiangrong Liu
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
| | - Yuchuan Ding
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|