1
|
Greifová H, Jambor T, Tokárová K, Knížatová N, Lukáč N. In Vitro Effect of Resveratrol Supplementation on Oxidative Balance and Intercellular Communication of Leydig Cells Subjected to Induced Oxidative Stress. Folia Biol (Praha) 2022. [DOI: 10.3409/fb_70-1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many studies have revealed that oxidative stress is a primary factor in the pathogenesis of male reproductive system dysfunctions. The strong antioxidant and cytoprotective effects of resveratrol have previously been demonstrated, but its effect in the context of the male reproduction
remains unconvincing. To observe the biological activity of resveratrol in protecting the male reproductive function, hydrogen peroxide-induced oxidative stress in Leydig cells was used as a cell model. The aim of the present study was to examine if resveratrol could induce changes in the
gap junction intercellular communication (GJIC), nitric oxide production, total oxidant status (TOS) and total antioxidant capacity (TAC) in TM3 Leydig cells subjected to H2O2. The Leydig cells were exposed to a resveratrol treatment (5, 10, 20, 50 and 100 μM) in the
presence or absence of H2O2 (300/600 μM) during a 24 h in vitro culture. The cell lysates to assess TOS and TAC, NO production were quantified in a culture medium using the Griess method, and the Scrape Loading/Dye Transfer (SL/DT) technique was used for the
determination of GJIC in the exposed TM3 Leydig cells. Treatment with higher doses of resveratrol alone led to a significantly increased TOS (p<0.05 with 100 μM) and NO production (p<0.05 with 50 μM and 100 μM), but significantly reduced TAC (p<0.01 with 100 μM) and GJIC
(p<0.05 with 100 μM), while the SL/DT evaluation in the cells exposed to resveratrol at concentrations 5 μM (p<0.05) and 10 μM (p<0.01) revealed a significant stimulation of GJIC. The most potent cytoprotective or stimulatory effect of resveratrol in the cells co-exposed
to oxidative stress (300 μM H2O2) was observed at a concentration of 10 μM in the case of GJIC, which was manifested by a significant increase in the values (p<0.05) compared to the control group treated with H2O2 alone.
Collapse
Affiliation(s)
- Hana Greifová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Tomáš Jambor
- BioFood Centre, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Katarína Tokárová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Nikola Knížatová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Norbert Lukáč
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
2
|
Applicability of Scrape Loading-Dye Transfer Assay for Non-Genotoxic Carcinogen Testing. Int J Mol Sci 2021; 22:ijms22168977. [PMID: 34445682 PMCID: PMC8396440 DOI: 10.3390/ijms22168977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022] Open
Abstract
Dysregulation of gap junction intercellular communication (GJIC) is recognized as one of the key hallmarks for identifying non-genotoxic carcinogens (NGTxC). Currently, there is a demand for in vitro assays addressing the gap junction hallmark, which would have the potential to eventually become an integral part of an integrated approach to the testing and assessment (IATA) of NGTxC. The scrape loading-dye transfer (SL-DT) technique is a simple assay for the functional evaluation of GJIC in various in vitro cultured mammalian cells and represents an interesting candidate assay. Out of the various techniques for evaluating GJIC, the SL-DT assay has been used frequently to assess the effects of various chemicals on GJIC in toxicological and tumor promotion research. In this review, we systematically searched the existing literature to gather papers assessing GJIC using the SL-DT assay in a rat liver epithelial cell line, WB-F344, after treating with chemicals, especially environmental and food toxicants, drugs, reproductive-, cardio- and neuro-toxicants and chemical tumor promoters. We discuss findings derived from the SL-DT assay with the known knowledge about the tumor-promoting activity and carcinogenicity of the assessed chemicals to evaluate the predictive capacity of the SL-DT assay in terms of its sensitivity, specificity and accuracy for identifying carcinogens. These data represent important information with respect to the applicability of the SL-DT assay for the testing of NGTxC within the IATA framework.
Collapse
|
3
|
Gingrich J, Pu Y, Upham BL, Hulse M, Pearl S, Martin D, Avery A, Veiga-Lopez A. Bisphenol S enhances gap junction intercellular communication in ovarian theca cells. CHEMOSPHERE 2021; 263:128304. [PMID: 33155548 PMCID: PMC7726030 DOI: 10.1016/j.chemosphere.2020.128304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 05/08/2023]
Abstract
Gap junction intercellular communication (GJIC) is necessary for ovarian function, and it is temporospatially regulated during follicular development and ovulation. At outermost layer of the antral follicle, theca cells provide structural, steroidogenic, and vascular support. Inter- and extra-thecal GJIC is required for intrafollicular trafficking of signaling molecules. Because GJIC can be altered by hormones and endocrine disrupting chemicals (EDCs), we tested if any of five common EDCs (bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), perfluorooctanesulfonic acid (PFOS), and triphenyltin chloride (TPT)) can interfere with theca cell GJIC. Since most chemicals are reported to repress GJIC, we hypothesized that all chemicals tested, within environmentally relevant human exposure concentrations, will inhibit theca cell GJICs. To evaluate this hypothesis, we used a scrape loading/dye transfer assay. BPS, but no other chemical tested, enhanced GJIC in a dose- and time-dependent manner in ovine primary theca cells. A signal-protein inhibitor approach was used to explore the GJIC-modulatory pathways involved. Phospholipase C and mitogen-activated protein kinase (MAPK) inhibitors significantly attenuated BPS-induced enhanced GJIC. Human theca cells were used to evaluate translational relevance of these findings. Human primary theca cells had a ∼40% increase in GJIC in response to BPS, which was attenuated with a MAPK inhibitor, suggestive of a conserved mechanism. Upregulation of GJIC could result in hyperplasia of the theca cell layer or prevent ovulation by holding the oocyte in meiotic arrest. Further studies are necessary to understand in vitro to in vivo translatability of these findings on follicle development and fertility outcomes.
Collapse
Affiliation(s)
- Jeremy Gingrich
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Yong Pu
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Brad L Upham
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, 48824, USA
| | - Madeline Hulse
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA
| | - Sarah Pearl
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA
| | - Denny Martin
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA
| | - Anita Avery
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA; Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Almudena Veiga-Lopez
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA; Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
4
|
Leroy K, Pieters A, Tabernilla A, Cooreman A, Van Campenhout R, Cogliati B, Vinken M. Targeting gap junctional intercellular communication by hepatocarcinogenic compounds. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:255-275. [PMID: 32568623 DOI: 10.1080/10937404.2020.1781010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gap junctions in liver, as in other organs, play a critical role in tissue homeostasis. Inherently, these cellular constituents are major targets for systemic toxicity and diseases, including cancer. This review provides an overview of chemicals that compromise liver gap junctions, in particular biological toxins, organic solvents, pesticides, pharmaceuticals, peroxides, metals and phthalates. The focus in this review is placed upon the mechanistic scenarios that underlie these adverse effects. Further, the potential use of gap junctional activity as an in vitro biomarker to identify non-genotoxic hepatocarcinogenic chemicals is discussed.
Collapse
Affiliation(s)
- Kaat Leroy
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| | - Alanah Pieters
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| | - Andrés Tabernilla
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| | - Axelle Cooreman
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Cidade Universitária , São Paulo, Brazil
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| |
Collapse
|
5
|
Lin TC, Wang KH, Chuang KH, Kao AP, Kuo TC. Downregulation of gap junctional intercellular communication and connexin 43 expression by bisphenol A in human granulosa cells. Biotechnol Appl Biochem 2020; 68:676-682. [PMID: 32610363 DOI: 10.1002/bab.1979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Gap junctional intercellular communication (GJIC) is the transfer of ions, metabolites, and second messengers between neighboring cells through intercellular junctions. Connexin 43 (Cx43) was found to be the type of gap junction protein responsible for human granulosa cells (GCs) and oocyte communication, which is required for folliculogenesis and oocyte maturation. Bisphenol A (BPA), an estrogenic-like endocrine-disrupting chemical, is one of the most widely produced chemicals around the world. There are reports that the chemical might cause endometrial tumorigenesis and several female reproductive disorders. This study demonstrated that cell culture medium, containing antioxidants (N-acetyl-l-cysteine and l-ascorbic acid-2-phosphate), was able to enhance the survival and self-renewal of GCs. In addition, we found that BPA at environmentally relevant concentration (10-7 M) reduced Cx43 expression and GJIC in GCs through estrogen receptor and mitogen-activated protein kinase pathways. The results of this study not only reveal the reproductive toxicity of BPA but also provide possible mechanisms by which BPA inhibited GJIC in GCs.
Collapse
Affiliation(s)
- Ta-Chin Lin
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan.,Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan
| | - Kai-Hung Wang
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan.,Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan.,Department of Laboratory Medicine, Kuo General Hospital, Tainan, Taiwan
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - An-Pei Kao
- Stemforce Biotechnology Co., Ltd, Chiayi, Taiwan
| | - Tsung-Cheng Kuo
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan.,Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan
| |
Collapse
|
6
|
Phacharapiyangkul N, Wu LH, Lee WY, Kuo YH, Wu YJ, Liou HP, Tsai YE, Lee CH. The extracts of Astragalus membranaceus enhance chemosensitivity and reduce tumor indoleamine 2, 3-dioxygenase expression. Int J Med Sci 2019; 16:1107-1115. [PMID: 31523173 PMCID: PMC6743273 DOI: 10.7150/ijms.33106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Astragalus membranaceus has been shown to possess anti-inflammation and antitumor properties. Several studies have indicated that extracts of Astragalus membranaceus (PG2) have growth inhibitory effects on tumor. However, the effect of PG2 on enhancing the chemotherapy, modulating tumor immune escape and their mechanism of action is unknown and need further investigation. Connexin (Cx) 43 is ubiquitous in cells and involved in facilitating the passage of chemotherapeutic drugs to bystander tumor cells. The indoleamine 2, 3-dioxygenase (IDO) depletes tryptophan, reduces the active T cell number and destroys immune surveillance. Herein, we provide evidence that the treatment of PG2 induced Cx43 expression, decreases IDO expression and enhances the distribution of chemotherapeutic drug. However, the effects of combination therapy (PG2 plus cisplatin) in animal models significantly retarded tumor growth and prolonged the survival. We believe that the information provided in this study may aid in the design of future therapy of PG2, suggest suitable combinations with chemotherapies.
Collapse
Affiliation(s)
| | - Li-Hsien Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wei-Ya Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yi-Hsuan Kuo
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yueh-Jung Wu
- Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Huei-Pu Liou
- Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Yung-En Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Kumar S, Stokes J, Singh UP, Scissum-Gunn K, Singh R, Manne U, Mishra MK. Prolonged exposure of resveratrol induces reactive superoxide species-independent apoptosis in murine prostate cells. Tumour Biol 2017; 39:1010428317715039. [PMID: 29065794 DOI: 10.1177/1010428317715039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide, a signaling molecule, inhibits mitochondrial respiration by binding with cytochrome c oxidase, resulting in elevated production of reactive superoxide species (reactive oxygen and nitrogen) in the mitochondria and increased susceptibility to cell death. Generation of mitochondrial superoxide species can be suppressed by natural compounds such as resveratrol, a dietary polyphenol found in the skin of red fruits. In various cancer cells, resveratrol shows anti-oxidant and cancer preventive properties. Since, the effect of resveratrol on reactive superoxide species-independent apoptosis in prostate cancer cells is not well illustrated; therefore, we investigated this phenomenon in TRAMP murine prostate cancer cells. To accomplish this, TRAMP cells were incubated with resveratrol, resveratrol + DETA-NONOate, DETA-NONOate (nitric oxide donor), resveratrol + L-NMMA, or L-NMMA (nitric oxide inhibitor) for 48 h, and reactive superoxide species in the mitochondria and culture supernatant were measured. In addition, the mitochondrial membrane potential, cell viability, expression of apoptotic markers (Bax and Bcl2), γ-H2A.x, p53, and caspase-3 was determined. We found that resveratrol suppressed reactive superoxide species such as reactive oxygen species in the mitochondria and nitric oxide in culture supernatant when compared to the DETA-NONOate treatment and disrupted the mitochondrial membrane potential. Resveratrol also reduced cell viability, altered the expression of apoptotic markers (Bax and Bcl2), and increased expression of γ-H2A.x (indicative marker of DNA fragmentation) and p53 (a critical DNA damage response protein). However, there was no appreciable modulation of the caspase-3. Therefore, our data suggest that resveratrol induces superoxide species-independent apoptosis and may act as a therapeutic agent against prostate cancer.
Collapse
Affiliation(s)
- Sanjay Kumar
- 1 Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - James Stokes
- 1 Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Udai P Singh
- 2 Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Karyn Scissum-Gunn
- 1 Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Rajesh Singh
- 3 Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Upender Manne
- 4 Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Manoj K Mishra
- 1 Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| |
Collapse
|
8
|
Trosko JE, Carruba G. "Bad Luck Mutations": DNA Mutations Are not the Whole Answer to Understanding Cancer Risk. Dose Response 2017; 15:1559325817716585. [PMID: 28717349 PMCID: PMC5502948 DOI: 10.1177/1559325817716585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It has been proposed that many human cancers are generated by intrinsic mechanisms that produce "Bad Luck" mutations by the proliferation of organ-specific adult stem cells. There have been serious challenges to this interpretation, including multiple extrinsic factors thought to be correlated with mutations found in cancers associated with these exposures. While support for both interpretations provides some validity, both interpretations ignore several concepts of the multistage, multimechanism process of carcinogenesis, namely, (1) mutations can be generated by both "errors of DNA repair" and "errors of DNA replication," during the "initiation" process of carcinogenesis; (2) "initiated" stem cells must be clonally amplified by nonmutagenic, intrinsic or extrinsic epigenetic mechanisms; (3) organ-specific stem cell numbers can be modified during in utero development, thereby altering the risk to cancer later in life; and (4) epigenetic tumor promoters are characterized by species, individual genetic-, gender-, developmental state-specificities, and threshold levels to be active; sustained and long-term exposures; and exposures in the absence of antioxidant "antipromoters." Because of the inevitability of some of the stem cells generating "initiating" mutations by either "errors of DNA repair" or "errors of DNA replication," a tumor is formed depending on the promotion phase of carcinogenesis. While it is possible to reduce our frequencies of mutagenic "initiated" cells, one can never reduce it to zero. Because of the extended period of the promotion phase of carcinogenesis, strategies to reduce the appearance of cancers must involve the interruption of the promotion of these initiated cells.
Collapse
Affiliation(s)
- James E. Trosko
- Department of Pediatrics/Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Giuseppe Carruba
- ARNAS-Azienda di Rilievo Nationale e di Alta Specializzazione Civico, Di Cristina e Benfratelli-Palermo, Italy
| |
Collapse
|
9
|
Babica P, Zurabian R, Kumar ER, Chopra R, Mianecki MJ, Park JS, Jaša L, Trosko JE, Upham BL. Methoxychlor and Vinclozolin Induce Rapid Changes in Intercellular and Intracellular Signaling in Liver Progenitor Cells. Toxicol Sci 2016; 153:174-85. [PMID: 27413106 DOI: 10.1093/toxsci/kfw114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Methoxychlor (MXC) and vinclozolin (VIN) are well-recognized endocrine disrupting chemicals known to alter epigenetic regulations and transgenerational inheritance; however, non-endocrine disruption endpoints are also important. Thus, we determined the effects of MXC and VIN on the dysregulation of gap junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) in WB-F344 rat liver epithelial cells. Both chemicals induced a rapid dysregulation of GJIC at non-cytotoxic doses, with 30 min EC50 values for GJIC inhibition being 10 µM for MXC and 126 µM for VIN. MXC inhibited GJIC for at least 24 h, while VIN effects were transient and GJIC recovered after 4 h. VIN induced rapid hyperphosphorylation and internalization of gap junction protein connexin43, and both chemicals also activated MAPK ERK1/2 and p38. Effects on GJIC were not prevented by MEK1/2 inhibitor, but by an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), resveratrol, and in the case of VIN, also, by a p38 inhibitor. Estrogen (ER) and androgen receptor (AR) modulators (estradiol, ICI 182,780, HPTE, testosterone, flutamide, VIN M2) did not attenuate MXC or VIN effects on GJIC. Our data also indicate that the effects were elicited by the parental compounds of MXC and VIN. Our study provides new evidence that MXC and VIN dysregulate GJIC via mechanisms involving rapid activation of PC-PLC occurring independently of ER- or AR-dependent genomic signaling. Such alterations of rapid intercellular and intracellular signaling events involved in regulations of gene expression, tissue development, function and homeostasis, could also contribute to transgenerational epigenetic effects of endocrine disruptors.
Collapse
Affiliation(s)
- Pavel Babica
- *Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Brno 60200, Czech Republic; RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic; Department of Pediatrics and Human Development, and Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824;
| | - Rimma Zurabian
- Department of Pediatrics and Human Development, and Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824; Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of Mexico, CdMx, 04510, Mexico
| | - Esha R Kumar
- Department of Pediatrics and Human Development, and Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Rajus Chopra
- Department of Pediatrics and Human Development, and Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Maxwell J Mianecki
- Department of Pediatrics and Human Development, and Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Joon-Suk Park
- Department of Pediatrics and Human Development, and Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824; Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Libor Jaša
- *Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Brno 60200, Czech Republic; RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - James E Trosko
- Department of Pediatrics and Human Development, and Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Brad L Upham
- Department of Pediatrics and Human Development, and Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
10
|
Steuer A, Schmidt A, Labohá P, Babica P, Kolb JF. Transient suppression of gap junctional intercellular communication after exposure to 100-nanosecond pulsed electric fields. Bioelectrochemistry 2016; 112:33-46. [PMID: 27439151 DOI: 10.1016/j.bioelechem.2016.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/18/2022]
Abstract
Gap junctional intercellular communication (GJIC) is an important mechanism that is involved and affected in many diseases and injuries. So far, the effect of nanosecond pulsed electric fields (nsPEFs) on the communication between cells was not investigated. An in vitro approach is presented with rat liver epithelial WB-F344 cells grown and exposed in a monolayer. In order to observe sub-lethal effects, cells were exposed to pulsed electric fields with a duration of 100ns and amplitudes between 10 and 20kV/cm. GJIC strongly decreased within 15min after treatment but recovered within 24h. Gene expression of Cx43 was significantly decreased and associated with a reduced total amount of Cx43 protein. In addition, MAP kinases p38 and Erk1/2, involved in Cx43 phosphorylation, were activated and Cx43 became hyperphosphorylated. Immunofluorescent staining of Cx43 displayed the disassembly of gap junctions. Further, a reorganization of the actin cytoskeleton was observed whereas tight junction protein ZO-1 was not significantly affected. All effects were field- and time-dependent and most pronounced within 30 to 60min after treatment. A better understanding of a possible manipulation of GJIC by nsPEFs might eventually offer a possibility to develop and improve treatments.
Collapse
Affiliation(s)
- Anna Steuer
- Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Anke Schmidt
- Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Petra Labohá
- Leibniz Institute for Plasma Science and Technology, Greifswald, Germany; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Babica
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Juergen F Kolb
- Leibniz Institute for Plasma Science and Technology, Greifswald, Germany.
| |
Collapse
|
11
|
Babica P, Čtveráčková L, Lenčešová Z, Trosko JE, Upham BL. Chemopreventive Agents Attenuate Rapid Inhibition of Gap Junctional Intercellular Communication Induced by Environmental Toxicants. Nutr Cancer 2016; 68:827-37. [PMID: 27266532 DOI: 10.1080/01635581.2016.1180409] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Altered gap junctional intercellular communication (GJIC) has been associated with chemical carcinogenesis, where both chemical tumor promoters and chemopreventive agents (CPAs) are known to conversely modulate GJIC. The aim of this study was to investigate whether attenuation of chemically inhibited GJIC represents a common outcome induced by different CPAs, which could be effectively evaluated using in vitro methods. Rat liver epithelial cells WB-F344 were pretreated with a CPA for either 30 min or 24 h, and then exposed to GJIC-inhibiting concentration of a selected tumor promoter or environmental toxicant [12-O-tetradecanoylphorbol-13-acetate (TPA), lindane, fluoranthene, 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT), perfluorooctanoic acid (PFOA), or pentachlorophenol]. Out of nine CPAs tested, quercetin and silibinin elicited the most pronounced effects, preventing the dysregulation of GJIC by all the GJIC inhibitors, but DDT. Metformin and curcumin attenuated the effects of three GJIC inhibitors, whereas the other CPAs prevented the effects of two (diallyl sulfide, emodin) or one (indole-3-carbinol, thymoquinone) GJIC inhibitor. Significant attenuation of chemically induced inhibition of GJIC was observed in 27 (50%) out of 54 possible combinations of nine CPAs and six GJIC inhibitors. Our data demonstrate that in vitro evaluation of GJIC can be used as an effective screening tool for identification of chemicals with potential chemopreventive activity.
Collapse
Affiliation(s)
- Pavel Babica
- a Department of Experimental Phycology and Ecotoxicology , Institute of Botany of the ASCR , Brno , Czech Republic.,b RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University , Brno , Czech Republic
| | - Lucie Čtveráčková
- a Department of Experimental Phycology and Ecotoxicology , Institute of Botany of the ASCR , Brno , Czech Republic.,b RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University , Brno , Czech Republic
| | - Zuzana Lenčešová
- a Department of Experimental Phycology and Ecotoxicology , Institute of Botany of the ASCR , Brno , Czech Republic.,b RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University , Brno , Czech Republic
| | - James E Trosko
- c Department of Pediatrics and Human Development & Institute for Integrative Toxicology, Michigan State University , Michigan , USA
| | - Brad L Upham
- c Department of Pediatrics and Human Development & Institute for Integrative Toxicology, Michigan State University , Michigan , USA
| |
Collapse
|
12
|
Leischner C, Burkard M, Pfeiffer MM, Lauer UM, Busch C, Venturelli S. Nutritional immunology: function of natural killer cells and their modulation by resveratrol for cancer prevention and treatment. Nutr J 2016; 15:47. [PMID: 27142426 PMCID: PMC4855330 DOI: 10.1186/s12937-016-0167-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells as part of the innate immune system represent the first line of defence against (virus-) infected and malignantly transformed cells. The emerging field of nutritional immunology focuses on compounds featuring immune-modulating activities in particular on NK cells, which e.g. can be exploited for cancer prevention and treatment. The plant-based nutrition resveratrol is a ternary hydroxylated stilbene, which is present in many foods and beverages, respectively. In humans it comprises a large variety of distinct biological activities. Interestingly, resveratrol strongly modulates the immune response including the activity of NK cells. This review will give an overview on NK cell functions and summarize the resveratrol-mediated modulation thereof.
Collapse
Affiliation(s)
- Christian Leischner
- Department of Internal Medicine I, Medical University Hospital, Otfried-Mueller-Str. 27, Tuebingen, Germany
| | - Markus Burkard
- Department of Internal Medicine I, Medical University Hospital, Otfried-Mueller-Str. 27, Tuebingen, Germany.,Division of Dermatologic Oncology, Department of Dermatology and Allergology, University of Tuebingen, Tuebingen, Germany
| | - Matthias M Pfeiffer
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Tuebingen, Germany
| | - Ulrich M Lauer
- Department of Internal Medicine I, Medical University Hospital, Otfried-Mueller-Str. 27, Tuebingen, Germany
| | - Christian Busch
- Division of Dermatologic Oncology, Department of Dermatology and Allergology, University of Tuebingen, Tuebingen, Germany.,Pallas Clinic, Olten, Switzerland
| | - Sascha Venturelli
- Department of Internal Medicine I, Medical University Hospital, Otfried-Mueller-Str. 27, Tuebingen, Germany.
| |
Collapse
|
13
|
Vinken M. Regulation of connexin signaling by the epigenetic machinery. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:262-8. [PMID: 26566120 DOI: 10.1016/j.bbagrm.2015.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022]
Abstract
Connexins and their channels are involved in the control of all aspects of the cellular life cycle, ranging from cell growth to cell death, by mediating extracellular, intercellular and intracellular communication. These multifaceted aspects of connexin-related cellular signaling obviously require strict regulation. While connexin channel activity is mainly directed by posttranslational modifications, connexin expression as such is managed by classical cis/trans mechanisms. Over the past few years, it has become clear that connexin production is equally dictated by epigenetic actions. This paper provides an overview of the role of major determinants of the epigenome, including DNA methylation, histone acetylation and microRNA species, in connexin expression.
Collapse
Affiliation(s)
- Mathieu Vinken
- Vrije Universiteit Brussel, Department of In Vitro Toxicology and Dermato-Cosmetology, Building G, Room G226, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| |
Collapse
|
14
|
Gao K, Chi Y, Zhang X, Zhang H, Li G, Sun W, Takeda M, Yao J. A novel TXNIP-based mechanism for Cx43-mediated regulation of oxidative drug injury. J Cell Mol Med 2015; 19:2469-80. [PMID: 26154105 PMCID: PMC4594688 DOI: 10.1111/jcmm.12641] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/28/2015] [Indexed: 01/28/2023] Open
Abstract
Gap junctions (GJs) play an important role in the regulation of cell response to many drugs. However, little is known about their mechanisms. Using an in vitro model of cytotoxicity induced by geneticin (G418), we explored the potential signalling mechanisms involved. Incubation of cells with G418 resulted in cell death, as indicated by the change in cell morphology, loss of cell viability and activation of caspase-3. Before the onset of cell injury, G418 induced reactive oxygen species (ROS) generation, activated oxidative sensitive kinase P38 and caused a shift of connexin 43 (Cx43) from non-phosphorylated form to hyperphosphorylated form. These changes were largely prevented by antioxidants, suggesting an implication of oxidative stress. Downregulation of Cx43 with inhibitors or siRNA suppressed the expression of thioredoxin-interacting protein (TXNIP), activated Akt and protected cells against the toxicity of G418. Further analysis revealed that inhibition of TXNIP with siRNA activated Akt and reproduced the protective effect of Cx43-inhibiting agents, whereas suppression of Akt sensitized cells to the toxicity of G418. Furthermore, interference of TXNIP/Akt also affected puromycin- and adriamycin-induced cell injury. Our study thus characterized TXNIP as a presently unrecognized molecule implicated in the regulatory actions of Cx43 on oxidative drug injury. Targeting Cx43/TXNIP/Akt signalling cascade might be a promising approach to modulate cell response to drugs.
Collapse
Affiliation(s)
- Kun Gao
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.,Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuan Chi
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Xiling Zhang
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Hui Zhang
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Gang Li
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.,Department of Urology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Wei Sun
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Masayuki Takeda
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Jian Yao
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
15
|
Sovadinova I, Babica P, Böke H, Kumar E, Wilke A, Park JS, Trosko JE, Upham BL. Phosphatidylcholine Specific PLC-Induced Dysregulation of Gap Junctions, a Robust Cellular Response to Environmental Toxicants, and Prevention by Resveratrol in a Rat Liver Cell Model. PLoS One 2015; 10:e0124454. [PMID: 26023933 PMCID: PMC4449167 DOI: 10.1371/journal.pone.0124454] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 03/10/2015] [Indexed: 12/04/2022] Open
Abstract
Dysregulation of gap junctional intercellular communication (GJIC) has been associated with different pathologies, including cancer; however, molecular mechanisms regulating GJIC are not fully understood. Mitogen Activated Protein Kinase (MAPK)-dependent mechanisms of GJIC-dysregulation have been well-established, however recent discoveries have implicated phosphatidylcholine-specific phospholipase C (PC-PLC) in the regulation of GJIC. What is not known is how prevalent these two signaling mechanisms are in toxicant/toxin-induced dysregulation of GJIC, and do toxicants/toxins work through either signaling mechanisms or both, or through alternative signaling mechanisms. Different chemical toxicants were used to assess whether they dysregulate GJIC via MEK or PC-PLC, or both Mek and PC-PLC, or through other signaling pathways, using a pluripotent rat liver epithelial oval-cell line, WB-F344. Epidermal growth factor, 12-O-tetradecanoylphorbol-13-acetate, thrombin receptor activating peptide-6 and lindane regulated GJIC through a MEK1/2-dependent mechanism that was independent of PC-PLC; whereas PAHs, DDT, PCB 153, dicumylperoxide and perfluorodecanoic acid inhibited GJIC through PC-PLC independent of Mek. Dysregulation of GJIC by perfluorooctanoic acid and R59022 required both MEK1/2 and PC-PLC; while benzoylperoxide, arachidonic acid, 18β-glycyrrhetinic acid, perfluorooctane sulfonic acid, 1-monolaurin, pentachlorophenol and alachlor required neither MEK1/2 nor PC-PLC. Resveratrol prevented dysregulation of GJIC by toxicants that acted either through MEK1/2 or PC-PLC. Except for alachlor, resveratrol did not prevent dysregulation of GJIC by toxicants that worked through PC-PLC-independent and MEK1/2-independent pathways, which indicated at least two other, yet unidentified, pathways that are involved in the regulation of GJIC. In conclusion: the dysregulation of GJIC is a contributing factor to the cancer process; however the underlying mechanisms by which gap junction channels are closed by toxicants vary. Thus, accurate assessments of risk posed by toxic agents, and the role of dietary phytochemicals play in preventing or reversing the effects of these agents must take into account the specific mechanisms involved in the cancer process.
Collapse
Affiliation(s)
- Iva Sovadinova
- Department of Pediatrics & Human Development; Center for Integrative Toxicology; and the Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, 48824, United States of America
- Research Centre for Toxic Compounds in the Environment—RECETOX, Masaryk University, Kamenice 5, CZ62500, Brno, Czech Republic
| | - Pavel Babica
- Department of Pediatrics & Human Development; Center for Integrative Toxicology; and the Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, 48824, United States of America
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany ASCR, Lidicka 25/27, CZ60200, Brno, Czech Republic
| | - Hatice Böke
- Department of Pediatrics & Human Development; Center for Integrative Toxicology; and the Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, 48824, United States of America
| | - Esha Kumar
- Department of Pediatrics & Human Development; Center for Integrative Toxicology; and the Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, 48824, United States of America
| | - Andrew Wilke
- Department of Pediatrics & Human Development; Center for Integrative Toxicology; and the Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, 48824, United States of America
| | - Joon-Suk Park
- Department of Pediatrics & Human Development; Center for Integrative Toxicology; and the Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, 48824, United States of America
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - James E. Trosko
- Department of Pediatrics & Human Development; Center for Integrative Toxicology; and the Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, 48824, United States of America
| | - Brad L. Upham
- Department of Pediatrics & Human Development; Center for Integrative Toxicology; and the Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, 48824, United States of America
- * E-mail:
| |
Collapse
|
16
|
Hill T, Osgood RS, Velmurugan K, Alexander CM, Upham BL, Bauer AK. Bronchoalveolar Lavage Fluid Utilized Ex Vivo to Validate In Vivo Findings: Inhibition of Gap Junction Activity in Lung Tumor Promotion is Toll-Like Receptor 4-Dependent. ACTA ACUST UNITED AC 2013; 5. [PMID: 25035812 PMCID: PMC4098145 DOI: 10.4172/2155-9929.1000160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
TLR4 protects against lung tumor promotion and pulmonary inflammation in mice. Connexin 43 (Cx43), a gap junction gene, was increased in Tlr4 wildtype compared to Tlr4-mutant mice in response to promotion, which suggests gap junctional intercellular communication (GJIC) may be compromised. We hypothesized that the early tumor microenvironment, represented by Bronchoalveolar Lavage Fluid (BALF) from Butylated hydroxytoluene (BHT; promoter)-treated mice, would produce TLR4-dependent changes in pulmonary epithelium, including dysregulation of GJIC in the Tlr4-mutant (BALBLps-d) compared to the Tlr4-sufficient (BALB; wildtype) mice. BHT (4 weekly doses) was injected ip followed by BALF collection at 24 h. BALF total protein and total macrophages were significantly elevated in BHT-treated BALBLps-d over BALB mice, similar to previous findings. BALF was then utilized in an ex vivo manner to treat C10 cells, a murine alveolar type II cell line, followed by the scrape-load dye transfer assay (GJIC), Cx43 immunostaining, and quantitative RT-PCR (Mcp-1, monocyte chemotactic protein 1). GJIC was markedly reduced in C10 cells treated with BHT-treated BALBLps-d BALF for 4 and 24 h compared to BALB and control BALF from the respective mice (p < 0.05). Mcp-1, a chemokine, was also significantly increased in the BHT-treated BALBLps-d BALF compared to the BALB mice, and Cx43 protein expression in the cell membrane altered. These novel findings suggest signaling from the BALF milieu is involved in GJIC dysregulation associated with promotion and links gap junctions to pulmonary TLR4 protection in a novel ex vivo model that could assist in future potential tumor promoter screening.
Collapse
Affiliation(s)
- Thomas Hill
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Ross S Osgood
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Kalpana Velmurugan
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Carla-Maria Alexander
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Brad L Upham
- Department of Pediatrics and Human Development, Michigan State University, Lansing, USA
| | - Alison K Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
17
|
Inhibition of Connexin 26/43 and Extracellular-Regulated Kinase Protein Plays a Critical Role in Melatonin Facilitated Gap Junctional Intercellular Communication in Hydrogen Peroxide-Treated HaCaT Keratinocyte Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:589365. [PMID: 23243457 PMCID: PMC3518788 DOI: 10.1155/2012/589365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 09/26/2012] [Indexed: 01/19/2023]
Abstract
Though melatonin was known to regulate gap junctional intercellular communication (GJIC) in chick astrocytes and mouse hepatocytes, the underlying mechanism by melatonin was not elucidated in hydrogen peroxide- (H2O2-) treated HaCaT keratinocyte cells until now. In the current study, though melatonin at 2 mM and hydrogen peroxide (H2O2) at 300 μM showed weak cytotoxicity in HaCaT keratinocyte cells, melatonin significantly suppressed the formation of reactive oxygen species (ROS) in H2O2-treated HaCaT cells compared to untreated controls. Also, the scrape-loading dye-transfer assay revealed that melatonin enhances the intercellular communication by introducing Lucifer Yellow into H2O2-treated cells. Furthermore, melatonin significantly enhanced the expression of connexin 26 (Cx26) and connexin 43 (Cx43) at mRNA and protein levels, but not that of connexin 30 (Cx30) in H2O2-treated HaCaT cells. Of note, melatonin attenuated the phosphorylation of extracellular signal-regulated protein kinases (ERKs) more than p38 MAPK or JNK in H2O2-treated HaCaT cells. Conversely, ERK inhibitor PD98059 promoted the intercellular communication in H2O2-treated HaCaT cells. Furthermore, combined treatment of melatonin (200 μM) and vitamin C (10 μg/mL) significantly reduced ROS production in H2O2-treated HaCaT cells. Overall, these findings support the scientific evidences that melatonin facilitates gap junctional intercellular communication in H2O2-treated HaCaT keratinocyte cells via inhibition of connexin 26/43 and ERK as a potent chemopreventive agent.
Collapse
|
18
|
Rakib MA, Kim YS, Jang WJ, Jang JS, Kang SJ, Ha YL. Preventive effect of t,t-conjugated linoleic acid on 12-O-tetradecanoylphorbol-13-acetate-induced inhibition of gap junctional intercellular communication in human mammary epithelial MCF-10A cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:4164-4170. [PMID: 21391601 DOI: 10.1021/jf1046909] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The anti-tumor promotional effects of t9,t11-conjugated linoleic acid (t9,t11-CLA) and t10,t12-CLA were evaluated on the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inhibition of gap junctional intercellular communication (GJIC) in the human mammary epithelial cell line MCF-10A. The results were compared to those obtained from c9,t11-CLA, which is a more effective anti-tumor promoter on TPA-induced GJIC inhibition in MCF-10A cells than t10,c12-CLA. Cells were treated with 20 μM t9,t11-CLA, t10,t12-CLA, or c9,t11-CLA for 24 h followed by 60 nM TPA for 1 h. Both t9,t11-CLA and t10,t12-CLA equally protected MCF-10A cells from TPA-induced inhibition of GJIC with inferior efficacy to c9,t11-CLA.The protection was due to the ameliorated phosphorylation of connexin43 via suppression of extracellular signal-regulated kinases (ERK1/2) activation. Suppression of TPA-induced reactive oxygen species (ROS) generation by t9,t11-CLA and t10,t12-CLA was less effective, relative to c9,t11-CLA. The results suggest that the anti-promotional activities of t9,t11-CLA and t10,t12-CLA are equal but less potent than c9,t11-CLA in TPA-treated MCF-10A cells. The activity might be mediated by the attenuation of ROS production in MCF-10A cells by preventing the downregulation of GJIC during the cancer promotion stage.
Collapse
Affiliation(s)
- Md Abdur Rakib
- Division of Applied Life Science (BK21 Program), Graduate School, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
19
|
Chloral hydrate decreases gap junction communication in rat liver epithelial cells. Cell Biol Toxicol 2011; 27:207-16. [PMID: 21243523 DOI: 10.1007/s10565-011-9182-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 01/06/2011] [Indexed: 12/16/2022]
|
20
|
Kang KS, Trosko JE. Stem cells in toxicology: fundamental biology and practical considerations. Toxicol Sci 2010; 120 Suppl 1:S269-89. [PMID: 21163910 DOI: 10.1093/toxsci/kfq370] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This "Commentary" has examined the use of human stem cells for detection of toxicities of physical, chemical, and biological toxins/toxicants in response to the challenge posed by the NRC Report, "Toxicity Testing in the 21st Century: A vision and Strategy." Before widespread application of the use of human embryonic, pluripotent, "iPS," or adult stem cells be considered, the basic characterization of stem cell biology should be undertaken. Because no in vitro system can mimic all factors that influence cells in vivo (individual genetic, gender, developmental, immunological and diurnal states; niche conditions; complex intercellular interactions between stem, progenitor, terminal differentiated cells, and the signaling from extracellular matrices, oxygen tensions, etc.), attempts should be made to use both embryonic and adult stem cells, grown in three dimension under "niche-like" conditions. Because many toxins and toxicants work by "epigenetic" mechanisms and that epigenetic mechanisms play important roles in regulating gene expression and in the pathogenesis of many human diseases, epigenetic toxicity must be incorporated in toxicity testing. Because modulation of gap junctional intercellular communication by epigenetic agents plays a major role in homeostatic regulation of both stem and progenitor cells in normal tissues, the modulation of this biological process by both endogenous and endogenous chemicals should be incorporated as an end point to monitor for potential toxicities or chemo-preventive attributes. In addition, modulation of quantity, as well as the quality, of stem cells should be considered as potential source of a chemical's toxic potential in affecting any stem cell-based pathology, such as cancer.
Collapse
Affiliation(s)
- Kyung-Sun Kang
- Adult Stem Cell Research Center, Laboratory for Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Sillim-Dong, Seoul 151-742, Korea
| | | |
Collapse
|
21
|
Rakib MA, Kim YS, Jang WJ, Choi BD, Kim JO, Kong IK, Ha YL. Attenuation of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced gap junctional intercellular communication (GJIC) inhibition in MCF-10A cells by c9,t11-conjugated linoleic acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:12022-12030. [PMID: 21028875 DOI: 10.1021/jf103205c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The protective effect of c9,t11-conjugated linoleic acid (CLA) on the inhibition of gap junctional intercellular communication (GJIC) was examined in a human mammary epithelial cell line (MCF-10A) treated with 12-O-tetradecanoylphorbol-13-acetate (TPA), relative to t10,c12-CLA isomer. TPA inhibited GJIC in a dose-dependent and reversible manner and was associated with connexin 43 phosphorylation. Pretreatment of 20 μM c9,t11-CLA for 24 h prior to 60 nM TPA for 1 h prevented the inhibition of GJIC by reducing the phosphorylation of connexin 43 via suppressing extracellular signal-regulated kinases (ERK1/2) activation. Reactive oxygen species (ROS) accumulation by TPA was attenuated by c9,t11-CLA. The efficacy of c9,t11-CLA in protecting inhibition of GJIC, connexin 43 phosphorylation, and ROS production was superior to that of t10,c12-CLA. These results suggest that c9,t11-CLA, including t10,c12-CLA, prevents the carcinogenesis of MCF-10A cells by protecting down-regulation of GJIC during the cancer promotion stage, and lack of their toxicities could be an excellent indicator for the chemoprevention of breast cancer.
Collapse
Affiliation(s)
- Md Abdur Rakib
- Division of Applied Life Science (BK21 Program), Graduate School, and Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Leone A, Zefferino R, Longo C, Leo L, Zacheo G. Supercritical CO(2)-extracted tomato Oleoresins enhance gap junction intercellular communications and recover from mercury chloride inhibition in keratinocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4769-4778. [PMID: 20235579 DOI: 10.1021/jf1001765] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A nutritionally relevant phytochemical such as lycopene, found in tomatoes and other fruits, has been proposed to have health-promoting effects by modulating hormonal and immune systems, metabolic pathways, and gap junction intercellular communication (GJIC). This work analyzes lycopene extracts, obtained from tomato and tomato added with grape seeds by using a safe and environmentally friendly extraction process, based on supercritical carbon dioxide technology (S-CO(2)). Analysis of the innovative S-CO(2)-extracted oleoresins showed peculiar chemical composition with high lycopene concentration and the presence of other carotenoids, lipids, and phenol compounds. The oleoresins showed a higher in vitro antioxidant activity compared with pure lycopene and beta-carotene and the remarkable ability to enhance the GJIC and to increase cx43 expression in keratinocytes. The oleoresins, (0.9 microM lycopene), were also able to overcome, completely, the GJIC inhibition induced by 10 nM HgCl(2), mercury(II) chloride, suggesting a possible action mechanism.
Collapse
Affiliation(s)
- Antonella Leone
- National Research Council, Institute of Science of Food Production (CNR, ISPA), Lecce, Italy.
| | | | | | | | | |
Collapse
|
23
|
Kim JH, Choi SH, Kim J, Lee BK, Lee KW, Lee HJ. Differential regulation of the hydrogen-peroxide-induced inhibition of gap-junction intercellular communication by resveratrol and butylated hydroxyanisole. Mutat Res 2009; 671:40-44. [PMID: 19720069 DOI: 10.1016/j.mrfmmm.2009.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 08/22/2009] [Accepted: 08/24/2009] [Indexed: 05/28/2023]
Abstract
The present study was performed to evaluate the effects of two different phenolic antioxidants, resveratrol (3,5,4'-trihydroxystilbene) and butylated hydroxyanisole (BHA), on the hydrogen peroxide (H2O2)-induced inhibition of gap-junction intercellular communication (GJIC) in WB-F344 rat liver epithelial cells (WB-F344). Resveratrol is a naturally occurring polyphenolic antioxidant; on the other hand, BHA is a synthetic phenolic compound. We found that only resveratrol protects WB-F344 cells from H2O2-induced inhibition of GJIC, and BHA has no effect. The extracellular-signal-regulated protein kinase 1/2 (ERK1/2)-connexin 43 (Cx43) signaling pathway is crucial for the regulation of GJIC in rat liver epithelial cells, and resveratrol, but not BHA, blocked the H2O2-induced phosphorylation of Cx43, a critical regulator of GJIC, and ERK1/2 in WB-F344 cells. Resveratrol appears to attenuate the H2O2-mediated ERK1/2-Cx43 signaling pathway and consequently reverses H2O2-mediated inhibition of GJIC. DPPH and ABTS radical-scavenging assays revealed that the protective effect of resveratrol on the H2O2-mediated inhibition of GJIC was not mediated through its free radical-scavenging activity.
Collapse
Affiliation(s)
- Jong Hun Kim
- Major in Biomodulation, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, 599 Gwangak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | | | | | | | | | | |
Collapse
|
24
|
Bishayee A, Politis T, Darvesh AS. Resveratrol in the chemoprevention and treatment of hepatocellular carcinoma. Cancer Treat Rev 2009; 36:43-53. [PMID: 19910122 DOI: 10.1016/j.ctrv.2009.10.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/08/2009] [Accepted: 10/09/2009] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and lethal diseases in the world. Although the majority of HCC cases occur in developing countries of Asia and Africa, the prevalence of liver cancer has risen considerably in Japan, Western Europe as well as the United States. HCC most commonly develops in patients with chronic liver disease, the etiology of which includes viral hepatitis (B and C), alcohol, obesity, iron overload and dietary carcinogens, including aflatoxins and nitrosamines. The current treatment modalities, including surgical resection and liver transplantation, have been found to be mostly ineffective. Hence, there is an obvious critical need to develop alternative strategies for the chemoprevention and treatment of HCC. Oxidative stress as well as inflammation has been implicated in the development and progression of hepatic neoplasia. Using naturally occurring phytochemicals and dietary compounds endowed with potent antioxidant and antiinflammatory properties is a novel approach to prevent and control HCC. One such compound, resveratrol, present in grapes, berries, peanuts as well as red wine, has emerged as a promising molecule that inhibits carcinogenesis with a pleiotropic mode of action. This review examines the current knowledge on mechanism-based in vitro and in vivo studies on the chemopreventive and chemotherapeutic potential of resveratrol in liver cancer. Pre-clinical and clinical toxicity studies as well as pharmacokinetic data of resveratrol have also been highlighted in this review. Future directions and challenges involved in the use of resveratrol for the prevention and treatment of HCC are also discussed.
Collapse
Affiliation(s)
- Anupam Bishayee
- Department of Pharmaceutical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, 44272, USA
| | | | | |
Collapse
|
25
|
Vinken M, Doktorova T, Decrock E, Leybaert L, Vanhaecke T, Rogiers V. Gap junctional intercellular communication as a target for liver toxicity and carcinogenicity. Crit Rev Biochem Mol Biol 2009; 44:201-22. [PMID: 19635038 DOI: 10.1080/10409230903061215] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Direct communication between hepatocytes, mediated by gap junctions, constitutes a major regulatory platform in the control of liver homeostasis, ranging from hepatocellular proliferation to hepatocyte cell death. Inherent to this pivotal task, gap junction functionality is frequently disrupted upon impairment of the homeostatic balance, as occurs during liver toxicity and carcinogenicity. In the present paper, the deleterious effects of a number of chemical and biological toxic compounds on hepatic gap junctions are discussed, including environmental pollutants, biological toxins, organic solvents, pesticides, pharmaceuticals, peroxides, metals and phthalates. Particular attention is paid to the molecular mechanisms that underlie the abrogation of gap junction functionality. Since hepatic gap junctions are specifically targeted by tumor promoters and epigenetic carcinogens, both in vivo and in vitro, inhibition of gap junction functionality is considered as a suitable indicator for the detection of nongenotoxic hepatocarcinogenicity.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Toxicology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
26
|
Bláha L, Babica P, Hilscherová K, Upham BL. Inhibition of gap-junctional intercellular communication and activation of mitogen-activated protein kinases by cyanobacterial extracts--indications of novel tumor-promoting cyanotoxins? Toxicon 2009; 55:126-34. [PMID: 19619572 DOI: 10.1016/j.toxicon.2009.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 07/09/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022]
Abstract
Toxicity and liver tumor promotion of cyanotoxins microcystins have been extensively studied. However, recent studies document that other metabolites present in the complex cyanobacterial water blooms may also have adverse health effects. In this study we used rat liver epithelial stem-like cells (WB-F344) to examine the effects of cyanobacterial extracts on two established markers of tumor promotion, inhibition of gap-junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) - ERK1/2. Extracts of cyanobacteria (laboratory cultures of Microcystis aeruginosa and Aphanizomenon flos-aquae and water blooms dominated by these species) inhibited GJIC and activated MAPKs in a dose-dependent manner (effective concentrations ranging 0.5-5mgd.w./mL). Effects were independent of the microcystin content and the strongest responses were elicited by the extracts of Aphanizomenon sp. Neither pure microcystin-LR nor cylindrospermopsin inhibited GJIC or activated MAPKs. Modulations of GJIC and MAPKs appeared to be specific to cyanobacterial extracts since extracts from green alga Chlamydomonas reinhardtii, heterotrophic bacterium Klebsiella terrigena, and isolated bacterial lipopolysaccharides had no comparable effects. Our study provides the first evidence on the existence of unknown cyanobacterial toxic metabolites that affect in vitro biomarkers of tumor promotion, i.e. inhibition of GJIC and activation of MAPKs.
Collapse
Affiliation(s)
- Ludĕk Bláha
- Institute of Botany, Academy of Sciences, Lidická 25/27, CZ65720 Brno, Czech Republic
| | | | | | | |
Collapse
|
27
|
Upham BL, Park JS, Babica P, Sovadinova I, Rummel AM, Trosko JE, Hirose A, Hasegawa R, Kanno J, Sai K. Structure-activity-dependent regulation of cell communication by perfluorinated fatty acids using in vivo and in vitro model systems. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:545-51. [PMID: 19440492 PMCID: PMC2679597 DOI: 10.1289/ehp.11728] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 10/23/2008] [Indexed: 05/24/2023]
Abstract
BACKGROUND Perfluoroalkanoates, [e.g., perfluorooctanoate (PFOA)], are known peroxisome proliferators that induce hepatomegaly and hepatocarcinogenesis in rodents, and are classic non-genotoxic carcinogens that inhibit in vitro gap-junctional intercellular communication (GJIC). This inhibition of GJIC is known to be a function of perfluorinated carbon lengths ranging from 7 to 10. OBJECTIVES The aim of this study was to determine if the inhibition of GJIC by PFOA but not perfluoropentanoate (PFPeA) observed in F344 rat liver cells in vitro also occurs in F344 rats in vivo and to determine mechanisms of PFOA dysregulation of GJIC using in vitro assay systems. METHODS We used an incision load/dye transfer technique to assess GJIC in livers of rats exposed to PFOA and PFPeA. We used in vitro assays with inhibitors of cell signaling enzymes and antioxidants known to regulate GJIC to identify which enzymes regulated PFOA-induced inhibition of GJIC. RESULTS PFOA inhibited GJIC and induced hepatomegaly in rat livers, whereas PFPeA had no effect on either end point. Serum biochemistry of liver enzymes indicated no cytotoxic response to these compounds. In vitro analysis of mitogen-activated protein kinase (MAPK) indicated that PFOA, but not PFPeA, can activate the extracellular receptor kinase (ERK). Inhibition of GJIC, in vitro, by PFOA depended on the activation of both ERK and phosphatidylcholine-specific phospholipase C (PC-PLC) in the dysregulation of GJIC in an oxidative-dependent mechanism. CONCLUSIONS The in vitro analysis of GJIC, an epigenetic marker of tumor promoters, can also predict the in vivo activity of PFOA, which dysregulated GJIC via ERK and PC-PLC.
Collapse
Affiliation(s)
- Brad L Upham
- Department of Pediatrics and Human Development, National Food Safety and Toxicology Center, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Upham BL, Trosko JE. Oxidative-dependent integration of signal transduction with intercellular gap junctional communication in the control of gene expression. Antioxid Redox Signal 2009; 11:297-307. [PMID: 18834329 PMCID: PMC2933147 DOI: 10.1089/ars.2008.2146] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Research on oxidative stress focused primarily on determining how reactive oxygen species (ROS) damage cells by indiscriminate reactions with their macromolecular machinery, particularly lipids, proteins, and DNA. However, many chronic diseases are not always a consequence of tissue necrosis, DNA, or protein damage, but rather to altered gene expression. Gene expression is highly regulated by the coordination of cell signaling systems that maintain tissue homeostasis. Therefore, much research has shifted to the understanding of how ROS reversibly control gene expression through cell signaling mechanisms. However, most research has focused on redox regulation of signal transduction within a cell, but we introduce a more comprehensive-systems biology approach to understanding oxidative signaling that includes gap junctional intercellular communication, which plays a role in coordinating gene expression between cells of a tissue needed to maintain tissue homeostasis. We propose a hypothesis that gap junctions are critical in modulating the levels of second messengers, such as low molecular weight reactive oxygen, needed in the transduction of an external signal to the nucleus in the expression of genes. Thus, any comprehensive-systems biology approach to understanding oxidative signaling must also include gap junctions, in which aberrant gap junctions have been clearly implicated in many human diseases.
Collapse
Affiliation(s)
- Brad L Upham
- Department of Pediatrics and Human Development, National Food Safety and Toxicology Center, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
29
|
Pterostilbene from Vitis coignetiae protect H2O2-induced inhibition of gap junctional intercellular communication in rat liver cell line. Food Chem Toxicol 2009; 47:404-9. [DOI: 10.1016/j.fct.2008.11.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/18/2008] [Accepted: 11/25/2008] [Indexed: 11/18/2022]
|
30
|
Vinken M, De Rop E, Decrock E, De Vuyst E, Leybaert L, Vanhaecke T, Rogiers V. Epigenetic regulation of gap junctional intercellular communication: More than a way to keep cells quiet? Biochim Biophys Acta Rev Cancer 2009; 1795:53-61. [DOI: 10.1016/j.bbcan.2008.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/14/2008] [Accepted: 08/18/2008] [Indexed: 02/07/2023]
|
31
|
Hwang JW, Jung JW, Lee YS, Kang KS. Indole-3-carbinol prevents H(2)O(2)-induced inhibition of gap junctional intercellular communication by inactivation of PKB/Akt. J Vet Med Sci 2008; 70:1057-63. [PMID: 18981661 DOI: 10.1292/jvms.70.1057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Indole-3-carbinol (I3C) is a phytochemical found in cruciferous vegetables and possesses a variety of biological and biochemical effects. Despite a wealth of data about the chemopreventive properties of I3C, its effects on gap junctional intercellular communication (GJIC), which is associated with the promotion and progression phases of the multi-stage process of carcinogenesis, has not been studied. In this study, we examined the ability of I3C to prevent H(2)O(2)-induced inhibition of GJIC in WB-F344 rat liver epithelial cells (WB cells). The cells were preincubated with I3C for 48 hr, and then treated with 1 mM H(2)O(2) for 1 hr. We found that I3C could prevent the H(2)O(2)-induced inhibition of GJIC through prevention of the phosphorylated state of gap junction protein connexin 43 (Cx43) phosphorylation. Prevention of GJIC by I3C was dependent upon inactivation of Akt, but not MAPK, although inhibition of GJIC by H(2)O(2) leads to activation of both. Similar to I3C, modulation of Akt activation through the phosphoinositide-3 kinase inhibitor, LY294002, could also prevent H(2)O(2)-induced inhibition of GJIC and phosphorylation of Cx43. Our results suggest that I3C might exert its dietary chemopreventive effects by interfering with the Akt signaling pathway, which appears to be linked to modulating GJIC, a cellular mechanisms regulating cell proliferation, differentiation and apoptosis.
Collapse
Affiliation(s)
- Jae-Woong Hwang
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | | | | | | |
Collapse
|