1
|
Ranard KM, Erdman JW. Effects of dietary RRR α-tocopherol vs all-racemic α-tocopherol on health outcomes. Nutr Rev 2019; 76:141-153. [PMID: 29301023 DOI: 10.1093/nutrit/nux067] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Of the 8 vitamin E analogues, RRR α-tocopherol likely has the greatest effect on health outcomes. Two sources of α-tocopherol, naturally sourced RRR α-tocopherol and synthetic all-racemic α-tocopherol, are commonly consumed from foods and dietary supplements in the United States. A 2016 US Food and Drug Administration ruling substantially changed the RRR to all-racemic α-tocopherol ratio of biopotency from 1.36:1 to 2:1 for food-labeling purposes, but the correct ratio is still under debate in the literature. Few studies have directly compared the 2 α-tocopherol sources, and existing studies do not compare the efficacy of either source for preventing or treating disease in humans. To help close this gap, this review evaluates studies that investigated the effects of either RRR α-tocopherol or all-racemic α-tocopherol on health outcomes, and compares the overall findings. α-Tocopherol has been used to prevent and/or treat cancer and diseases of the central nervous system, the immune system, and the cardiovascular system, so these diseases are the focus of the review. No firm conclusions about the relative effects of the α-tocopherol sources on health outcomes can be made. Changes to α-tocopherol-relevant policies have proceeded without adequate scientific support. Additional research is needed to assemble the pieces of the α-tocopherol puzzle and to determine the RRR to all-racemic α-tocopherol ratio of biopotency for health outcomes.
Collapse
Affiliation(s)
- Katherine M Ranard
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Borel P, Desmarchelier C. Bioavailability of Fat-Soluble Vitamins and Phytochemicals in Humans: Effects of Genetic Variation. Annu Rev Nutr 2019; 38:69-96. [PMID: 30130464 DOI: 10.1146/annurev-nutr-082117-051628] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent data have shown that interindividual variability in the bioavailability of vitamins A (β-carotene), D, and E, and carotenoids (lutein and lycopene), as well as that of phytosterols, is modulated by single nucleotide polymorphisms (SNPs). The identified SNPs are in or near genes involved in intestinal uptake or efflux of these compounds, as well as in genes involved in their metabolism and transport. The phenotypic effect of each SNP is usually low, but combinations of SNPs can explain a significant part of the variability. Nevertheless, results from these studies should be considered preliminary since they have not been validated in other cohorts. Guidelines for future studies are provided to ensure that sound associations are elucidated that can be used to build consolidated genetic scores that may allow recommended dietary allowances to be tailored to individuals or groups by taking into account the multiloci genotypic signature of people of different ethnic origin or even of individuals.
Collapse
Affiliation(s)
- Patrick Borel
- C2VN, INRA, INSERM, Aix Marseille Université, 13005 Marseille, France; ,
| | | |
Collapse
|
3
|
Malik A, Eggersdorfer M, Trilok-Kumar G. Vitamin E status in healthy population in Asia: A review of current literature. INT J VITAM NUTR RES 2019; 91:356-369. [PMID: 31124407 DOI: 10.1024/0300-9831/a000590] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vitamin E is a lipid soluble antioxidant which mainly circulates as α-tocopherol in the human plasma. Its deficiency is associated with ataxia, neuropathy, anaemia and several other health conditions. Although substantial data on vitamin E status has been published worldwide, there is paucity of data on the extent of deficiency from most Asian countries, including India. Part of the problem is lack of validated biomarkers for vitamin E and no consensus on cut offs for defining deficiency and sufficiency. Thus, interpretation of the data on the vitamin E status is difficult. Limited available data from 31 studies on vitamin E status in healthy people from Asia, the most populated continent, has been collated for the purpose of this review. Broadly, the results suggest inadequate vitamin E status in most age groups, with the prevalence of deficiency reaching 67%, 80%, 56% and 72% in infants, children and adolescents, adults, elderly and pregnant women, respectively, based on varying cut offs. The findings are not surprising as both, vitamin E intakes and its status have not received too much attention in the past. Lack of conclusive data accentuates the need for more research on the vitamin E status across all age groups and to define age, gender and physiological state specific cut offs for vitamin E levels.
Collapse
Affiliation(s)
- Anku Malik
- Institute of Home Economics, University of Delhi, India
| | | | | |
Collapse
|
4
|
Abstract
The hydrophobicity of vitamin E poses transport and metabolic challenges to regulate its bioavailability and to prevent its accumulation in lipid-rich tissues such as adipose tissue, brain, and liver. Water-soluble precursors of vitamin E (α-tocopherol, αT), such as its esters with acetate (αTA), succinate (αTS), or phosphate (αTP), have increased solubility in water and stability against reaction with free radicals, but they are rapidly converted during their uptake into the lipid-soluble vitamin E. Therefore, the bioavailability of these precursors as intact molecules is low; nevertheless, at least for αTS and αTP, the recent research has revealed unique regulatory effects on signal transduction and gene expression and the modulation of cellular events ranging from proliferation, survival/apoptosis, lipid uptake and metabolism, phagocytosis, long term potentiation, cell migration, telomere maintenance, and angiogenesis. Moreover, water-soluble derivatives of vitamin E including some based on αTP are increasingly used as components of nanocarriers for enhanced and targeted delivery of drugs and other molecules (vitamins, including αT and αTP itself, vitamin D3, carnosine, caffeine, docosahexaenoic acid (DHA), insulin) and cofactors such as coenzyme Q10. In this review, the chemical characteristics, transport, metabolic pathways, and molecular mechanisms of action of αTP in cells and tissues are summarized and put into perspective with its possible role in the prevention of a number of diseases.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Miller School of Medicine, University of Miami, Miami, FL, United States.
| |
Collapse
|
5
|
Aresta A, Zambonin C. Determination of α-Tocopherol in Olive Oil by Solid-Phase Microextraction and Gas Chromatography–Mass Spectrometry. ANAL LETT 2017. [DOI: 10.1080/00032719.2016.1238922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Antonella Aresta
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
| | - Carlo Zambonin
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
6
|
Galli F, Azzi A, Birringer M, Cook-Mills JM, Eggersdorfer M, Frank J, Cruciani G, Lorkowski S, Özer NK. Vitamin E: Emerging aspects and new directions. Free Radic Biol Med 2017; 102:16-36. [PMID: 27816611 DOI: 10.1016/j.freeradbiomed.2016.09.017] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/11/2016] [Accepted: 09/22/2016] [Indexed: 12/30/2022]
Abstract
The discovery of vitamin E will have its 100th anniversary in 2022, but we still have more questions than answers regarding the biological functions and the essentiality of vitamin E for human health. Discovered as a factor essential for rat fertility and soon after characterized for its properties of fat-soluble antioxidant, vitamin E was identified to have signaling and gene regulation effects in the 1980s. In the same years the cytochrome P-450 dependent metabolism of vitamin E was characterized and a first series of studies on short-chain carboxyethyl metabolites in the 1990s paved the way to the hypothesis of a biological role for this metabolism alternative to vitamin E catabolism. In the last decade other physiological metabolites of vitamin E have been identified, such as α-tocopheryl phosphate and the long-chain metabolites formed by the ω-hydroxylase activity of cytochrome P-450. Recent findings are consistent with gene regulation and homeostatic roles of these metabolites in different experimental models, such as inflammatory, neuronal and hepatic cells, and in vivo in animal models of acute inflammation. Molecular mechanisms underlying these responses are under investigation in several laboratories and side-glances to research on other fat soluble vitamins may help to move faster in this direction. Other emerging aspects presented in this review paper include novel insights on the mechanisms of reduction of the cardiovascular risk, immunomodulation and antiallergic effects, neuroprotection properties in models of glutamate excitotoxicity and spino-cerebellar damage, hepatoprotection and prevention of liver toxicity by different causes and even therapeutic applications in non-alcoholic steatohepatitis. We here discuss these topics with the aim of stimulating the interest of the scientific community and further research activities that may help to celebrate this anniversary of vitamin E with an in-depth knowledge of its action as vitamin.
Collapse
Affiliation(s)
- Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Laboratory of Clinical Biochemistry and Nutrition, Via del Giochetto, 06126 Perugia, Italy.
| | - Angelo Azzi
- USDA-HNRCA at Tufts University, 711 Washington St., Boston, MA 02111, United States.
| | - Marc Birringer
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany.
| | - Joan M Cook-Mills
- Allergy/Immunology Division, Northwestern University, 240 E Huron, Chicago, IL 60611, United States.
| | | | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany.
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy.
| | - Stefan Lorkowski
- Institute of Nutrition, Friedrich Schiller University Jena, Dornburger Str. 25, 07743 Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany.
| | - Nesrin Kartal Özer
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
7
|
Genetic Variations Involved in Vitamin E Status. Int J Mol Sci 2016; 17:ijms17122094. [PMID: 27983595 PMCID: PMC5187894 DOI: 10.3390/ijms17122094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/30/2016] [Accepted: 12/09/2016] [Indexed: 02/07/2023] Open
Abstract
Vitamin E (VE) is the generic term for four tocopherols and four tocotrienols that exhibit the biological activity of α-tocopherol. VE status, which is usually estimated by measuring fasting blood VE concentration, is affected by numerous factors, such as dietary VE intake, VE absorption efficiency, and VE catabolism. Several of these factors are in turn modulated by genetic variations in genes encoding proteins involved in these factors. To identify these genetic variations, two strategies have been used: genome-wide association studies and candidate gene association studies. Each of these strategies has its advantages and its drawbacks, nevertheless they have allowed us to identify a list of single nucleotide polymorphisms associated with fasting blood VE concentration and α-tocopherol bioavailability. However, much work remains to be done to identify, and to replicate in different populations, all the single nucleotide polymorphisms involved, to assess the possible involvement of other kind of genetic variations, e.g., copy number variants and epigenetic modifications, in order to establish a reliable list of genetic variations that will allow us to predict the VE status of an individual by knowing their genotype in these genetic variations. Yet, the potential usefulness of this area of research is exciting with regard to personalized nutrition and for future clinical trials dedicated to assessing the biological effects of the various isoforms of VE.
Collapse
|
8
|
Yanamala N, Kapralov AA, Djukic M, Peterson J, Mao G, Klein-Seetharaman J, Stoyanovsky DA, Stursa J, Neuzil J, Kagan VE. Structural re-arrangement and peroxidase activation of cytochrome c by anionic analogues of vitamin E, tocopherol succinate and tocopherol phosphate. J Biol Chem 2014; 289:32488-98. [PMID: 25278024 DOI: 10.1074/jbc.m114.601377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cytochrome c is a multifunctional hemoprotein in the mitochondrial intermembrane space whereby its participation in electron shuttling between respiratory complexes III and IV is alternative to its role in apoptosis as a peroxidase activated by interaction with cardiolipin (CL), and resulting in selective CL peroxidation. The switch from electron transfer to peroxidase function requires partial unfolding of the protein upon binding of CL, whose specific features combine negative charges of the two phosphate groups with four hydrophobic fatty acid residues. Assuming that other endogenous small molecule ligands with a hydrophobic chain and a negatively charged functionality may activate cytochrome c into a peroxidase, we investigated two hydrophobic anionic analogues of vitamin E, α-tocopherol succinate (α-TOS) and α-tocopherol phosphate (α-TOP), as potential inducers of peroxidase activity of cytochrome c. NMR studies and computational modeling indicate that they interact with cytochrome c at similar sites previously proposed for CL. Absorption spectroscopy showed that both analogues effectively disrupt the Fe-S(Met(80)) bond associated with unfolding of cytochrome c. We found that α-TOS and α-TOP stimulate peroxidase activity of cytochrome c. Enhanced peroxidase activity was also observed in isolated rat liver mitochondria incubated with α-TOS and tBOOH. A mitochondria-targeted derivative of TOS, triphenylphosphonium-TOS (mito-VES), was more efficient in inducing H2O2-dependent apoptosis in mouse embryonic cytochrome c(+/+) cells than in cytochrome c(-/-) cells. Essential for execution of the apoptotic program peroxidase activation of cytochrome c by α-TOS may contribute to its known anti-cancer pharmacological activity.
Collapse
Affiliation(s)
- Naveena Yanamala
- From the Center for Free Radical and Antioxidant Health, the Departments of Environmental and Occupational Health
| | - Alexander A Kapralov
- From the Center for Free Radical and Antioxidant Health, the Departments of Environmental and Occupational Health
| | - Mirjana Djukic
- From the Center for Free Radical and Antioxidant Health, the Departments of Environmental and Occupational Health
| | - Jim Peterson
- the Departments of Environmental and Occupational Health
| | - Gaowei Mao
- From the Center for Free Radical and Antioxidant Health, the Departments of Environmental and Occupational Health
| | - Judith Klein-Seetharaman
- the Division of Metabolic and Vascular Health, Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Detcho A Stoyanovsky
- From the Center for Free Radical and Antioxidant Health, the Departments of Environmental and Occupational Health
| | - Jan Stursa
- the Biomedical Research Center, University Hospital, Hradec Kralove 569810, Czech Republic
| | - Jiri Neuzil
- the Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic, and the School of Medical Science, Griffith University, Southport, Queensland 4222, Australia
| | - Valerian E Kagan
- From the Center for Free Radical and Antioxidant Health, the Departments of Environmental and Occupational Health, Pharmacology and Chemical Biology, Radiation Oncology, and Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
9
|
Samoylenko A, Hossain JA, Mennerich D, Kellokumpu S, Hiltunen JK, Kietzmann T. Nutritional countermeasures targeting reactive oxygen species in cancer: from mechanisms to biomarkers and clinical evidence. Antioxid Redox Signal 2013; 19:2157-96. [PMID: 23458328 PMCID: PMC3869543 DOI: 10.1089/ars.2012.4662] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 02/08/2013] [Accepted: 03/01/2013] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) exert various biological effects and contribute to signaling events during physiological and pathological processes. Enhanced levels of ROS are highly associated with different tumors, a Western lifestyle, and a nutritional regime. The supplementation of food with traditional antioxidants was shown to be protective against cancer in a number of studies both in vitro and in vivo. However, recent large-scale human trials in well-nourished populations did not confirm the beneficial role of antioxidants in cancer, whereas there is a well-established connection between longevity of several human populations and increased amount of antioxidants in their diets. Although our knowledge about ROS generators, ROS scavengers, and ROS signaling has improved, the knowledge about the direct link between nutrition, ROS levels, and cancer is limited. These limitations are partly due to lack of standardized reliable ROS measurement methods, easily usable biomarkers, knowledge of ROS action in cellular compartments, and individual genetic predispositions. The current review summarizes ROS formation due to nutrition with respect to macronutrients and antioxidant micronutrients in the context of cancer and discusses signaling mechanisms, used biomarkers, and its limitations along with large-scale human trials.
Collapse
Affiliation(s)
- Anatoly Samoylenko
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Jubayer Al Hossain
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Daniela Mennerich
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sakari Kellokumpu
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Thomas Kietzmann
- Department of Biochemistry, Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|