1
|
Xie R, Luo Y, Bao B, Wu X, Guo J, Wang J, Qu X, Che X, Zheng C. The Role of Fatty Acid Metabolism, the Related Potential Biomarkers, and Targeted Therapeutic Strategies in Gastrointestinal Cancers. Drug Dev Res 2024; 85:e70014. [PMID: 39527665 DOI: 10.1002/ddr.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Gastrointestinal cancer has emerged as a significant global health concern due to its high incidence and mortality, limited effectiveness of early detection, suboptimal treatment outcomes, and poor prognosis. Metabolic reprogramming is a prominent feature of cancer, and fatty acid metabolism assumes a pivotal role in bridging glucose metabolism and lipid metabolism. Fatty acids play important roles in cellular structural composition, energy supply, signal transduction, and other lipid-related processes. Changes in the levels of fatty acid metabolite may indicate the malignant transformation of gastrointestinal cells, which have an impact on the prognosis of patients and can be used as a marker to monitor the efficacy of anticancer therapy. Therefore, targeting key enzymes involved in fatty acid metabolism, either as monotherapy or in combination with other agents, is a promising strategy for anticancer treatment. This article reviews the potential mechanisms of fatty acid metabolism disorders in the occurrence and development of gastrointestinal tumors, and summarizes the related potential biomarkers and anticancer strategies.
Collapse
Affiliation(s)
- Ruixi Xie
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Luo
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bowen Bao
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinshu Wu
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jia Guo
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jin Wang
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiujuan Qu
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaofang Che
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chunlei Zheng
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Oncology, Shanghai Electric Power Hospital, Shanghai, China
| |
Collapse
|
2
|
Aldoori J, Zulyniak MA, Toogood GJ, Hull MA. Fish oil supplement use modifies the relationship between dietary oily fish intake and plasma n-3 PUFA levels: an analysis of the UK Biobank. Br J Nutr 2024; 131:1608-1618. [PMID: 38220216 PMCID: PMC11043909 DOI: 10.1017/s0007114524000138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Observational evidence linking dietary n-3 PUFA intake and health outcomes is limited by a lack of robust validation of dietary intake using blood n-3 PUFA levels and potential confounding by fish oil supplement (FOS) use. We investigated the relationship between oily fish intake, FOS use and plasma n-3 PUFA levels in 121 650 UK Biobank (UKBB) participants. Ordinal logistic regression models, adjusted for clinical and lifestyle factors, were used to quantify the contribution of dietary oily fish intake and FOS use to plasma n-3 PUFA levels (measured by NMR spectroscopy). Oily fish intake and FOS use were reported by 38 % and 31 % of participants, respectively. Increasing oily fish intake was associated with a higher likelihood of FOS use (P < 0·001). Oily fish intake ≥ twice a week was the strongest predictor of high total n-3 PUFA (OR 6·7 (95 % CI 6·3, 7·1)) and DHA levels (6·6 (6·3, 7·1). FOS use was an independent predictor of high plasma n-3 PUFA levels (2·0 (2·0, 2·1)) with a similar OR to that associated with eating oily fish < once a week (1·9 (1·8, 2·0)). FOS use was associated with plasma n-3 PUFA levels that were similar to individuals in the next highest oily fish intake category. In conclusion, FOS use is more common in frequent fish consumers and modifies the relationship between oily fish intake and plasma n-3 PUFA levels in UKBB participants. If unaccounted for, FOS use may confound the relationship between dietary n-3 PUFA intake, blood levels of n-3 PUFAs and health outcomes.
Collapse
Affiliation(s)
- Joanna Aldoori
- Leeds Institute of Medical Research, University of Leeds, LeedsLS9 7TF, UK
- St James’s University Hospital, Leeds Teaching Hospitals NHS Trust, LeedsLS9 7TF, UK
| | | | - Giles J. Toogood
- Leeds Institute of Medical Research, University of Leeds, LeedsLS9 7TF, UK
- St James’s University Hospital, Leeds Teaching Hospitals NHS Trust, LeedsLS9 7TF, UK
| | - Mark A. Hull
- Leeds Institute of Medical Research, University of Leeds, LeedsLS9 7TF, UK
| |
Collapse
|
3
|
Ahmad A, Mahmood N, Raza MA, Mushtaq Z, Saeed F, Afzaal M, Hussain M, Amjad HW, Al-Awadi HM. Gut microbiota and their derivatives in the progression of colorectal cancer: Mechanisms of action, genome and epigenome contributions. Heliyon 2024; 10:e29495. [PMID: 38655310 PMCID: PMC11035079 DOI: 10.1016/j.heliyon.2024.e29495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Gut microbiota interacts with host epithelial cells and regulates many physiological functions such as genetics, epigenetics, metabolism of nutrients, and immune functions. Dietary factors may also be involved in the etiology of colorectal cancer (CRC), especially when an unhealthy diet is consumed with excess calorie intake and bad practices like smoking or consuming a great deal of alcohol. Bacteria including Fusobacterium nucleatum, Enterotoxigenic Bacteroides fragilis (ETBF), and Escherichia coli (E. coli) actively participate in the carcinogenesis of CRC. Gastrointestinal tract with chronic inflammation and immunocompromised patients are at high risk for CRC progression. Further, the gut microbiota is also involved in Geno-toxicity by producing toxins like colibactin and cytolethal distending toxin (CDT) which cause damage to double-stranded DNA. Specific microRNAs can act as either tumor suppressors or oncogenes depending on the cellular environment in which they are expressed. The current review mainly highlights the role of gut microbiota in CRC, the mechanisms of several factors in carcinogenesis, and the role of particular microbes in colorectal neoplasia.
Collapse
Affiliation(s)
- Awais Ahmad
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nasir Mahmood
- Department of Zoology, University of Central Punjab Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ahtisham Raza
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zarina Mushtaq
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hafiz Wasiqe Amjad
- International Medical School, Jinggangshan University, Ji'an, Jiangxi, China
| | | |
Collapse
|
4
|
Yu YM, Li GF, Ren YL, Xu XY, Xu ZH, Geng Y, Mao Y. A Free Amino Acid Diet Alleviates Colorectal Tumorigenesis through Modulating Gut Microbiota and Metabolites. Nutrients 2024; 16:1040. [PMID: 38613073 PMCID: PMC11013359 DOI: 10.3390/nu16071040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Colorectal cancer (CRC), a major global health concern, may be influenced by dietary protein digestibility impacting gut microbiota and metabolites, which is crucial for cancer therapy effectiveness. This study explored the effects of a casein protein diet (CTL) versus a free amino acid (FAA)-based diet on CRC progression, gut microbiota, and metabolites using carcinogen-induced (AOM/DSS) and spontaneous genetically induced (ApcMin/+ mice) CRC mouse models. Comprehensive approaches including 16s rRNA gene sequencing, transcriptomics, metabolomics, and immunohistochemistry were utilized. We found that the FAA significantly attenuated CRC progression, evidenced by reduced colonic shortening and histopathological alterations compared to the CTL diet. Notably, the FAA enriched beneficial gut bacteria like Akkermansia and Bacteroides and reversed CRC-associated dysbiosis. Metabolomic analysis highlighted an increase in ornithine cycle metabolites and specific fatty acids, such as Docosapentaenoic acid (DPA), in FAA-fed mice. Transcriptomic analysis revealed that FAA up-regulated Egl-9 family hypoxia inducible factor 3 (Egln 3) and downregulated several cancer-associated pathways including Hippo, mTOR, and Wnt signaling. Additionally, DPA was found to significantly induce EGLN 3 expression in CRC cell lines. These results suggest that FAA modulate gut microbial composition, enhance protective metabolites, improve gut barrier functions, and inhibit carcinogenic pathways.
Collapse
Affiliation(s)
- Yang-Meng Yu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China; (Y.-M.Y.); (G.-F.L.); (X.-Y.X.)
| | - Gui-Fang Li
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China; (Y.-M.Y.); (G.-F.L.); (X.-Y.X.)
| | - Yi-Lin Ren
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China;
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xin-Yi Xu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China; (Y.-M.Y.); (G.-F.L.); (X.-Y.X.)
| | - Zheng-Hong Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China;
| | - Yan Geng
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China;
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yong Mao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China; (Y.-M.Y.); (G.-F.L.); (X.-Y.X.)
| |
Collapse
|
5
|
Seyyedsalehi MS, Hadji M, Collatuzzo G, Rashidian H, Sasanfar B, Huybrechts I, Chajes V, Boffetta P, Zendehdel K. Role of dietary intake of specific polyunsaturated fatty acids (PUFAs) on colorectal cancer risk in Iran. Lipids 2024; 59:41-53. [PMID: 38287648 DOI: 10.1002/lipd.12386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/31/2024]
Abstract
High-fat diets have been associated with colorectal cancer (CRC) risk, and the role of polyunsaturated fatty acids (PUFAs) has been reported to vary based on the length of PUFAs. We explored the association between dietary omega-6 and omega-3 PUFAs intake and CRC. We analyzed 865 CRC patients and 3206 controls from a case-control study of Iran (IROPICAN study). We used multivariate logistic regression models to calculate the odds ratios (OR) and 95% confidence intervals (CI) for the association between PUFAs intake and CRC risk. Our results showed that gamma-linolenic acid (18:3 n-6, GLA), arachidonic acid (20:4n-6, ARA), a-linolenic acid (Cis-18:3n-3, ALA), eicosapentaenoic acid (20:5n-3, EPA), docosahexaenoic acid (22:6n-3, DHA) consumption was not associated with the risk of CRC. However, the OR of linoleic acid (18: 2n-6, LA) intake was 1.47 (95% CI 1.01-2.14, p = 0.04) for proximal colon and that of docosapentaenoic acid (22:5n-3, DPA) intake was 1.33 (95% CI 1.05-1.69, p = 0.01) for rectum. This study indicates a high level of LA is associated with an increased risk of proximal colon cancer, and DPA intake was positively associated with rectum cancer risk. Furthermore, our study noted a high intake of n-6 (from vegetable oils) compared to n-3 PUFAs (from fish and seafood) in this population. Public awareness and government support is needed to increase fish and seafood production and consumption in Iran.
Collapse
Affiliation(s)
- Monireh Sadat Seyyedsalehi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Hadji
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- Health Sciences Unit, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Giulia Collatuzzo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Hamideh Rashidian
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Sasanfar
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, Iran
| | | | | | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Kazem Zendehdel
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Biology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Tojjari A, Choucair K, Sadeghipour A, Saeed A, Saeed A. Anti-Inflammatory and Immune Properties of Polyunsaturated Fatty Acids (PUFAs) and Their Impact on Colorectal Cancer (CRC) Prevention and Treatment. Cancers (Basel) 2023; 15:4294. [PMID: 37686570 PMCID: PMC10487099 DOI: 10.3390/cancers15174294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Colorectal cancer (CRC) remains a leading cause of death from cancer worldwide, with increasing incidence in the Western world. Diet has become the focus of research as a significant risk factor for CRC occurrence, and the role of dietary polyunsaturated fatty acids (PUFAs) has become an area of interest given their potential role in modulating inflammation, particularly in the pro-carcinogenic inflammatory environment of the colon. This work reviews the main types of PUFAs, their characteristics, structure, and physiologic role. We then highlight their potential role in preventing CRC, their signaling function vis-à-vis tumorigenic signaling, and their subsequent potential role in modulating response to different treatment modalities. We review pre-clinical and clinical data and discuss their potential use as adjunct therapies to currently existing treatment modalities. Given our understanding of PUFAs' immune and inflammation modulatory effects, we explore the possible combination of PUFAs with immune checkpoint inhibitors and other targeted therapies.
Collapse
Affiliation(s)
- Alireza Tojjari
- Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA;
| | - Khalil Choucair
- Division of Hematology and Oncology, Department of Medicine, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA;
| | - Arezoo Sadeghipour
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modarres University, Tehran 14115-175, Iran;
| | - Azhar Saeed
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Anwaar Saeed
- Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA;
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
7
|
Hajipour A, Ardekanizadeh NH, Roumi Z, Shekari S, Aminnezhad Kavkani B, Shalmani SHM, Bahar B, Tajadod S, Ajami M, Tabesh GA, Gholamalizadeh M, Doaei S. The effect of FTO gene rs9939609 polymorphism on the association between colorectal cancer and different types of dietary fat intake: a case-control study. J Physiol Anthropol 2023; 42:17. [PMID: 37543622 PMCID: PMC10404375 DOI: 10.1186/s40101-023-00333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/17/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common cancers in the world. Some dietary factors such as fat intake have been identified as the risk factors for CRC. This study aimed to investigate the effect of fat mass and obesity-associated (FTO) gene rs9939609 polymorphism on the association between CRC and different types of dietary fats. METHODS This case-control study was performed on 135 CRC cases and 294 healthy controls in Tehran, Iran. Data on demographic factors, anthropometric measurements, physical activity, the intake of different types of dietary fats, and FTO gene rs9939609 polymorphism was collected from all participants. The association between cancer and dietary fat intake in individuals with different FTO genotypes was assessed using different models of logistic regression. RESULTS Oleic acid intake was higher in the case group compared to the control group in both people with TT (7.2±3.46 vs. 5.83±3.06 g/d, P=0.02) and AA/AT genotypes (8.7±6.23 vs. 5.57 ±3.2 g/d, P<0.001). Among carriers of AA/AT genotypes of FTO rs9939609 polymorphism, a positive association was found between CRC and higher intakes of oleic acid (OR=1.12, CI95% 1.03-1.21, P=0.01) and cholesterol (OR=1.01, CI95% 1.00-1.02; P=0.01) after adjusting for age, sex, physical activity, alcohol use, smoking, calorie intake, and body mass index. CONCLUSION Higher intakes of cholesterol and oleic acid were associated with a higher risk of CRC in FTO-risk allele carriers. The association of CRC and dietary fat may be influenced by the FTO genotype. Further longitudinal studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Azadeh Hajipour
- School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Zahra Roumi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Soheila Shekari
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, UK
| | - Shirin Tajadod
- Department of Nutrition, School of Public Health, International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Ajami
- Department of Food and Nutrition Policy and Planning National Nutrition and Food Technology Research Institute School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Azizi Tabesh
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeid Doaei
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Lepore Signorile M, Grossi V, Fasano C, Simone C. Colorectal Cancer Chemoprevention: A Dream Coming True? Int J Mol Sci 2023; 24:ijms24087597. [PMID: 37108756 PMCID: PMC10140862 DOI: 10.3390/ijms24087597] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the deadliest forms of cancer worldwide. CRC development occurs mainly through the adenoma-carcinoma sequence, which can last decades, giving the opportunity for primary prevention and early detection. CRC prevention involves different approaches, ranging from fecal occult blood testing and colonoscopy screening to chemoprevention. In this review, we discuss the main findings gathered in the field of CRC chemoprevention, focusing on different target populations and on various precancerous lesions that can be used as efficacy evaluation endpoints for chemoprevention. The ideal chemopreventive agent should be well tolerated and easy to administer, with low side effects. Moreover, it should be readily available at a low cost. These properties are crucial because these compounds are meant to be used for a long time in populations with different CRC risk profiles. Several agents have been investigated so far, some of which are currently used in clinical practice. However, further investigation is needed to devise a comprehensive and effective chemoprevention strategy for CRC.
Collapse
Affiliation(s)
- Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology-IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology-IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology-IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology-IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
9
|
Arai J, Suzuki N, Niikura R, Ooki D, Kawahara T, Honda T, Hasatani K, Yoshida N, Nishida T, Sumiyoshi T, Kiyotoki S, Ikeya T, Arai M, Ishibashi R, Aoki T, Tsuji Y, Yamamichi N, Hayakawa Y, Fujishiro M. Chemoprevention for Colorectal Cancers: Are Chemopreventive Effects Different Between Left and Right Sided Colorectal Cancers? Dig Dis Sci 2022; 67:5227-5238. [PMID: 35230578 DOI: 10.1007/s10620-022-07431-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/30/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS Recent studies have suggested that right- and left-sided colorectal cancers (CRCs) are molecularly distinct. In this study, we examined the association between the risk of right- and left-sided CRC and drug use to estimate their chemopreventive effects METHODS: This multicenter retrospective cohort study was conducted using the data of hospitalized patients between 2014 and 2019 from nine hospital databases. The primary outcomes were right- and left-sided CRC. We evaluated the association of CRCs with drug use and clinical factors. Odds ratios adjusted for age, sex, Charlson Comorbidity Index scores, and smoking status were calculated. We also compared the transcriptional profiling in precancerous lesions, including sessile serrated lesions (SSLs) RESULTS: A total of 307,938 patients, including 2745 with right-sided CRC and 4819 with left-sided CRC, were analyzed. The use of nonsteroidal anti-inflammatory drugs (NSAIDs), aspirin, cyclooxygenase-2 inhibitors, and steroids was associated with a lower risk of both right- and left-sided CRCs. In contrast, statins, other lipid-lowering agents, and metformin were associated with a lower risk of left-sided CRC. Transcriptomic analysis showed that SSL, which predominantly develops in the right colon, was associated with a lower expression of lipid metabolism-related genes. CONCLUSIONS Targeting lipid metabolism may be useful for chemoprevention of left-sided CRCs, while development of right-sided CRCs may be independent of this pathway.
Collapse
Affiliation(s)
- Junya Arai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Nobumi Suzuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ryota Niikura
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Daisuke Ooki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takuya Kawahara
- Clinical Research Promotion Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Tetsuro Honda
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki-shi, Nagasaki, Japan
| | - Kenkei Hasatani
- Department of Gastroenterology, Fukui Prefectural Hospital, Fukui-shi, Fukui, Japan
| | - Naohiro Yoshida
- Department of Gastroenterology, Ishikawa Prefectural Central Hospital, Kanazawa-shi, Ishikawa, Japan
| | - Tsutomu Nishida
- Department of Gastroenterology, Toyonaka Municipal Hospital, Toyonaka-shi, Osaka, Japan
| | - Tetsuya Sumiyoshi
- Department of Gastroenterology, Tonan Hospital, Sapporo-shi, Hokkaido, Japan
| | - Shu Kiyotoki
- Department of Gastroenterology, Shuto General Hospital, Yanai-shi, Yamaguchi, Japan
| | - Takashi Ikeya
- Department of Gastroenterology, St. Luke's International Hospital, Chuo-ku, Tokyo, Japan
| | - Masahiro Arai
- Department of Gastroenterology, Nerima Hikarigaoka Hospital, Nerima-ku, Tokyo, Japan
| | - Rei Ishibashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tomonori Aoki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yosuke Tsuji
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Nobutake Yamamichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
10
|
Shekari S, Fathi S, Roumi Z, Akbari ME, Tajadod S, Afsharfar M, Hasanpour Ardekanizadeh N, Bourbour F, Keshavarz SA, Sotoudeh M, Gholamalizadeh M, Nemat Gorgani S, Shafaei Kachaei H, Alizadeh A, Doaei S. Association between dietary intake of fatty acids and colorectal cancer, a case-control study. Front Nutr 2022; 9:856408. [PMID: 36263307 PMCID: PMC9576465 DOI: 10.3389/fnut.2022.856408] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background The association of dietary fat and colorectal cancer (CRC) was frequently reported. However, few studies assessed the effects of different types of dietary fats on CRC. This study aimed to investigate the association between intakes of different types of dietary fatty acids with colorectal cancer risk. Methods This case-control study was conducted on 480 participants including 160 CRC cases and 320 healthy controls in Firoozgar Hospital, Tehran, Iran. The intake of dietary fatty acids of the participants was assessed using a semi quantitative food frequency questionnaire (FFQ). Results The mean intake of cholesterol (273.07 ± 53.63 vs. 254.17 ± 61.12, P = 0.001), polyunsaturated fatty acids (PUFA) (16.54 ± 4.20 vs. 15.41 ± 4.44, P = 0.012), and calorie (2,568.76 ± 404.48 vs. 2,493.38 ± 176.03, P = 0.006) was higher and the mean intake of oleic acid (5.59 ± 3.17 vs. 8.21 ± 5.46) and linoleic acid (6.03 ± 3.44 vs. 7.02 ± 4.08, P = 0.01) was lower in the case group compared to the control group. An inverse association was found between colorectal cancer (CRC) and dietary intake of oleic acid (OR: 0.85, CI 95% 0.80–0.90, P = 0.001), linoleic acid (OR: 0.85, CI 95% 0.78–0.93, P = 0.001), and α-linolenic acid (OR: 0.75, CI 95% 0.57–0.98, P = 0.04). The association remained significant after adjusting for age and sex, sleep, smoking, and alcohol consumption, and BMI. Conclusions The results of this study support a protective effect of oleic acid, linoleic acid, and α-linolenic acid against CRC. Further longitudinal studies are warranted to confirm these results.
Collapse
Affiliation(s)
- Soheila Shekari
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Soroor Fathi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Roumi
- Department of Nutrition, Electronic Health and Statistics Surveillance Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Shirin Tajadod
- Department of Nutrition, School of Public Health, International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Afsharfar
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Naeemeh Hasanpour Ardekanizadeh
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Bourbour
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Keshavarz
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetic, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahtab Sotoudeh
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Nemat Gorgani
- Department of Clinical Nutrition and Dietetics, Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Atiyeh Alizadeh
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Saeid Doaei
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Saeid Doaei
| |
Collapse
|
11
|
Fadaee M, Abbasi H, Maralbashi S, Baradaran B, Shanehbandi D, Dinevari MF, Kazemi T. Docosahexaenoic acid may inhibit immune evasion of colorectal cancer cells through targeting immune checkpoint and immunomodulator genes and their controlling microRNAs. Biofactors 2022; 48:1137-1144. [PMID: 35533068 DOI: 10.1002/biof.1842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022]
Abstract
Colorectal cancer is one of the major concerns in both developed and developing societies. Because of the serious side effects of the current treatments, novel therapy agents have been developed that target immune checkpoint and immunomodulatory molecules in the tumor environment. Therefore, this study investigates the effect of docosahexaenoic acid (DHA) fatty acid on the expression of immune checkpoint molecule, PD-L1, and immunomodulatory molecules, CD47 and CD39, and their controlling miRNAs in the colorectal cancer cell lines. Human colorectal cell lines HT-29 and Caco-2 were treated with 100 μM DHA and 50 μM LA for 24 h under the normoxic and hypoxic conditions. Total RNA was extracted and the qRT-PCR was performed to analyze the expression of the studied genes and miRNAs. The western blotting technique was also used for validation. The qRT-PCR results showed that DHA treatment decreased the expression of the PD-L1, CD47, and CD39 genes, but decreases these genes controlling miRNAs, mir-424, mir-133a, and mir-142, respectively. Western blotting analysis demonstrated that PD-L1 protein expression decreased after DHA treatment. LA administration had no inhibitory effect on the studied genes. This study showed that DHA may have anti-cancer properties by downregulation of proteins involved in the immune evasion of colorectal tumors. DHA could be used as a potential immune checkpoint inhibitor for the treatment of colorectal cancers.
Collapse
Affiliation(s)
- Manouchehr Fadaee
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Hajar Abbasi
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Maralbashi
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Dariush Shanehbandi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Masood Faghih Dinevari
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
12
|
Liu Y, Ren X, Fan C, Wu W, Zhang W, Wang Y. Health Benefits, Food Applications, and Sustainability of Microalgae-Derived N-3 PUFA. Foods 2022; 11:1883. [PMID: 35804698 PMCID: PMC9265382 DOI: 10.3390/foods11131883] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 01/27/2023] Open
Abstract
Today's consumers are increasingly aware of the beneficial effects of n-3 PUFA in preventing, delaying, and intervening various diseases, such as coronary artery disease, hypertension, diabetes, inflammatory and autoimmune disorders, neurodegenerative diseases, depression, and many other ailments. The role of n-3 PUFA on aging and cognitive function is also one of the hot topics in basic research, product development, and clinical applications. For decades, n-3 PUFA, especially EPA and DHA, have been supplied by fish oil and seafood. With the continuous increase of global population, awareness about the health benefits of n-3 PUFA, and socioeconomic improvement worldwide, the supply chain is facing increasing challenges of insufficient production. In this regard, microalgae have been well considered as promising sources of n-3 PUFA oil to mitigate the supply shortages. The use of microalgae to produce n-3 PUFA-rich oils has been explored for over two decades and some species have already been used commercially to produce n-3 PUFA, in particular EPA- and/or DHA-rich oils. In addition to n-3 PUFA, microalgae biomass contains many other high value biomolecules, which can be used in food, dietary supplement, pharmaceutical ingredient, and feedstock. The present review covers the health benefits of n-3 PUFA, EPA, and DHA, with particular attention given to the various approaches attempted in the nutritional interventions using EPA and DHA alone or combined with other nutrients and bioactive compounds towards improved health conditions in people with mild cognitive impairment and Alzheimer's disease. It also covers the applications of microalgae n-3 PUFA in food and dietary supplement sectors and the economic and environmental sustainability of using microalgae as a platform for n-3 PUFA-rich oil production.
Collapse
Affiliation(s)
- Yanjun Liu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (W.W.)
| | - Xiang Ren
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (W.W.)
| | - Chao Fan
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (W.W.)
| | - Wenzhong Wu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (W.W.)
| | - Wei Zhang
- DeOxiTech Consulting, 30 Cloverfield Court, Dartmouth, NS B2W 0B3, Canada;
| | - Yanwen Wang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
13
|
Aldoori J, Cockbain AJ, Toogood GJ, Hull MA. Omega-3 polyunsaturated fatty acids: moving towards precision use for prevention and treatment of colorectal cancer. Gut 2022; 71:822-837. [PMID: 35115314 DOI: 10.1136/gutjnl-2021-326362] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022]
Abstract
Data from experimental studies have demonstrated that marine omega-3 polyunsaturated fatty acids (O3FAs) have anti-inflammatory and anticancer properties. In the last decade, large-scale randomised controlled trials of pharmacological delivery of O3FAs and prospective cohort studies of dietary O3FA intake have continued to investigate the relationship between O3FA intake and colorectal cancer (CRC) risk and mortality. Clinical data suggest that O3FAs have differential anti-CRC activity depending on several host factors (including pretreatment blood O3FA level, ethnicity and systemic inflammatory response) and tumour characteristics (including location in the colorectum, histological phenotype (eg, conventional adenoma or serrated polyp) and molecular features (eg, microsatellite instability, cyclooxygenase expression)). Recent data also highlight the need for further investigation of the effect of O3FAs on the gut microbiota as a possible anti-CRC mechanism, when used either alone or in combination with other anti-CRC therapies. Overall, these data point towards a precision approach to using O3FAs for optimal prevention and treatment of CRC based on mechanistic understanding of host, tumour and gut microbiota factors that predict anticancer activity of O3FAs.
Collapse
Affiliation(s)
- Joanna Aldoori
- Gastrointestinal & Surgical Sciences, Leeds Institute of Medical Research, University of Leeds, Leeds, UK.,Hepatobiliary Surgery, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Andrew J Cockbain
- Hepatobiliary Surgery, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Giles J Toogood
- Hepatobiliary Surgery, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Mark A Hull
- Gastrointestinal & Surgical Sciences, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| |
Collapse
|
14
|
Fish Consumption and Colorectal Cancer Risk: Meta-Analysis of Prospective Epidemiological Studies and Review of Evidence from Animal Studies. Cancers (Basel) 2022; 14:cancers14030640. [PMID: 35158907 PMCID: PMC8833371 DOI: 10.3390/cancers14030640] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 01/03/2023] Open
Abstract
Background: Epidemiological studies on the association between fish consumption and colorectal cancer (CRC) risk have yielded inconsistent results, despite evidence from preclinical studies that long-chain ω-3 polyunsaturated fatty acids inhibit colorectal carcinogenesis. We conducted a meta-analysis of prospective epidemiological studies investigating the association between fish consumption and CRC risk among humans and reviewed studies examining the link between fish components and colorectal carcinogenesis in animal models. Methods: We included studies published until November 2020. We calculated the summary risk ratio (SRR) and 95% confidence intervals (CI) through random effects meta-analysis models in order to summarize evidence from studies among humans. Results: Twenty-five prospective epidemiological studies encompassing 25,777 CRC cases were included. Individuals in the highest (vs. lowest) category of fish consumption had a significantly reduced risk of CRC (SRR 0.94, 95%CI 0.89-0.99). In dose-response meta-analysis, a 50-g increment in the daily consumption of fish was associated with a statistically significant 4% reduction in CRC risk (SRR 0.96, 95%CI 0.92-0.99). Preclinical studies (n = 25) identified multiple mechanisms of action of fish and fish components on colorectal carcinogenesis. Conclusions: Dietary recommendations for cancer prevention should take into account the evidence from epidemiological and preclinical studies that increasing fish consumption may be effective in preventing CRC.
Collapse
|
15
|
El Asri A, Ouldim K, Bouguenouch L, Sekal M, Moufid FZ, Kampman E, Huybrechts I, Gunter MJ, Abbaoui S, Znati K, Karkouri M, Kinany KE, Hatime Z, Deoula MMS, Chbani L, Zarrouq B, El Rhazi K. Dietary Fat Intake and KRAS Mutations in Colorectal Cancer in a Moroccan Population. Nutrients 2022; 14:318. [PMID: 35057499 PMCID: PMC8779768 DOI: 10.3390/nu14020318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 01/27/2023] Open
Abstract
Epidemiologic data support an association between diet and mutations in the Kirsten-ras (KRAS) gene involved in colorectal cancer (CRC) development. This study aimed to explore the associations between fat intake and KRAS mutations in codons 12 and 13 in cases of CRC in the Moroccan population. A multicenter case-series study nested in a large-scale Moroccan CRC case-control study was conducted. Among all CRC cases recruited, 151 specimens were available for the DNA mutation analysis. Logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (Cis) for KRAS mutation status according to the fat intake variables. A KRAS mutation was detected in the CRC tumor of 34.4% of the patients among whom 65.4% had a single mutation at codon 12 and 34.6% had a single mutation at codon 13. Compared to low levels of consumption, a positive association was observed between high polyunsaturated fatty acids (PUFA) consumption (>16.9 g/day) and prevalence of KRAS mutations (OR = 2.15, 95% CI = 1.01-4.59). No statistically significant associations were observed for total fat, monounsaturated fatty acids, saturated fatty acids and KRAS mutations. The results of this study suggest that PUFA may be relevant in the etiology of CRC, possibly through the generation of G > A transitions at the KRAS oncogene. Further studies are needed to verify and explain this finding.
Collapse
Affiliation(s)
- Achraf El Asri
- Laboratory of Epidemiology and Research in Health Sciences, Department of Epidemiology and Public Health, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (K.E.K.); (Z.H.); (M.M.S.D.); (B.Z.); (K.E.R.)
| | - Karim Ouldim
- Medical Genetics and Oncogenetics Unit, Hassan II University Hospital, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (K.O.); (L.B.); (F.Z.M.)
- Cancer Research Institute, Fez 20192, Morocco
| | - Laila Bouguenouch
- Medical Genetics and Oncogenetics Unit, Hassan II University Hospital, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (K.O.); (L.B.); (F.Z.M.)
| | - Mohammed Sekal
- Department of Anatomy and Cytopathology, Hassan II University Hospital, Sidi Mohammed Ben Abdallah University, Fez 30000, Morocco; (M.S.); (L.C.)
| | - Fatima Zahra Moufid
- Medical Genetics and Oncogenetics Unit, Hassan II University Hospital, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (K.O.); (L.B.); (F.Z.M.)
| | - Ellen Kampman
- Division of Human Nutrition and Health, Wageningen University and Research, 69000 Wageningen, The Netherlands;
| | - Inge Huybrechts
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 69372 Lyon, France; (I.H.); (M.J.G.)
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, 69372 Lyon, France; (I.H.); (M.J.G.)
| | - Sanae Abbaoui
- Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir 80035, Morocco;
| | - Kaoutar Znati
- Department of Pathology, Ibn Sina University Hospital, Mohammed V University, Rabat 10001, Morocco;
| | - Mehdi Karkouri
- Pathologic Anatomy and Cytology Laboratory, Ibn Rochd University Hospital, Casablanca 20360, Morocco;
| | - Khaoula El Kinany
- Laboratory of Epidemiology and Research in Health Sciences, Department of Epidemiology and Public Health, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (K.E.K.); (Z.H.); (M.M.S.D.); (B.Z.); (K.E.R.)
| | - Zineb Hatime
- Laboratory of Epidemiology and Research in Health Sciences, Department of Epidemiology and Public Health, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (K.E.K.); (Z.H.); (M.M.S.D.); (B.Z.); (K.E.R.)
| | - Meimouna Mint Sidi Deoula
- Laboratory of Epidemiology and Research in Health Sciences, Department of Epidemiology and Public Health, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (K.E.K.); (Z.H.); (M.M.S.D.); (B.Z.); (K.E.R.)
| | - Laila Chbani
- Department of Anatomy and Cytopathology, Hassan II University Hospital, Sidi Mohammed Ben Abdallah University, Fez 30000, Morocco; (M.S.); (L.C.)
| | - Btissame Zarrouq
- Laboratory of Epidemiology and Research in Health Sciences, Department of Epidemiology and Public Health, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (K.E.K.); (Z.H.); (M.M.S.D.); (B.Z.); (K.E.R.)
- Department of Biology and Geology, Teachers Training College (Ecole Normale Superieure), Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Karima El Rhazi
- Laboratory of Epidemiology and Research in Health Sciences, Department of Epidemiology and Public Health, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (K.E.K.); (Z.H.); (M.M.S.D.); (B.Z.); (K.E.R.)
| |
Collapse
|
16
|
Abstract
Cancer is a leading cause of death worldwide. Sex influences cancer in a bewildering variety of ways. In some cancer types, it affects prevalence; in others, genomic profiles, response to treatment, or mortality. In some, sex seems to have little or no influence. How and when sex influences cancer initiation and progression remain a critical gap in our understanding of cancer, with direct relevance to precision medicine. Here, we note several factors that complicate our understanding of sex differences: representativeness of large cohorts, confounding with features such as ancestry, age, obesity, and variability in clinical presentation. We summarize the key resources available to study molecular sex differences and suggest some likely directions for improving our understanding of how patient sex influences cancer behavior.
Collapse
Affiliation(s)
- Chenghao Zhu
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Dalal N, Jalandra R, Bayal N, Yadav AK, Sharma M, Makharia GK, Kumar P, Singh R, Solanki PR, Kumar A. Gut microbiota-derived metabolites in CRC progression and causation. J Cancer Res Clin Oncol 2021; 147:3141-3155. [PMID: 34273006 DOI: 10.1007/s00432-021-03729-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/04/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Based on recent research reports, dysbiosis and improper concentrations of microbial metabolites in the gut may result into the carcinogenesis of colorectal cancer. Recent advancement also highlights the involvement of bacteria and their secreted metabolites in the cancer causation. Gut microbial metabolites are functional output of the host-microbiota interactions and produced by anaerobic fermentation of food components in the diet. They contribute to influence variety of biological mechanisms including inflammation, cell signaling, cell-cycle disruption which are majorly disrupted in carcinogenic activities. PURPOSE In this review, we intend to discuss recent updates and possible molecular mechanisms to provide the role of bacterial metabolites, gut bacteria and diet in the colorectal carcinogenesis. Recent evidences have proposed the role of bacteria, such as Fusobacterium nucleaturm, Streptococcus bovis, Helicobacter pylori, Bacteroides fragilis and Clostridium septicum, in the carcinogenesis of CRC. Metagenomic study confirmed that these bacteria are in increased abundance in CRC patient as compared to healthy individuals and can cause inflammation and DNA damage which can lead to development of cancer. These bacteria produce metabolites, such as secondary bile salts from primary bile salts, hydrogen sulfide, trimethylamine-N-oxide (TMAO), which are likely to promote inflammation and subsequently cancer development. CONCLUSION Recent studies suggest that gut microbiota-derived metabolites have a role in CRC progression and causation and hence, could be implicated in CRC diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Nishu Dalal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
- Department of Environmental Science, Satyawati College, Delhi University, Delhi, 110052, India
| | - Rekha Jalandra
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, India
| | - Nitin Bayal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Amit K Yadav
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Minakshi Sharma
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, India
| | - Govind K Makharia
- Department of Gastroenterology and Human Nutrition, AIIMS, New Delhi, 110029, India
| | - Pramod Kumar
- Sri Aurobindo College, Delhi University, New Delhi, 110067, India
| | - Rajeev Singh
- Department of Environmental Science, Satyawati College, Delhi University, Delhi, 110052, India
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India.
| |
Collapse
|
18
|
Liu C, Ralston NVC. Seafood and health: What you need to know? ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:275-318. [PMID: 34311902 DOI: 10.1016/bs.afnr.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Seafood, including fish and shellfish, provides an ideal package of nutrients and is an important part of a healthy diet. Strong evidence has shown that eating fish and other seafoods improve brain, eye, and heart health. The new 2020-2025 Dietary Guidelines for Americans (DGA) recommend that Americans of all ages should eat more seafood-at least twice a week-particularly pregnant women and young children. However, less than one in five Americans heed that advice. About one-third of Americans eat seafood once a week, while nearly half eat fish only occasionally or not at all. This calls for a drastic shift in the American diet to vary protein sources and include more seafood products in order to receive the most health benefits. This chapter covers (1) seafood nutrition and health benefits, (2) seafood's protective effects against mercury toxicity, (3) selenium health benefit values (HBVs), and (4) challenges and opportunities for seafood production, demand and sustainability. This chapter aims to convey recent advances in science-based information to increase public awareness of seafood safety, nutrition and health benefits of seafood as part of a healthy diet, and to advocate healthy eating with smart food choices by promoting two servings of seafood per week. This will support the healthy eating patterns and promotes a minimum two to three servings of seafood recommended by the current DGA.
Collapse
Affiliation(s)
- Chengchu Liu
- University of Maryland-UME Sea Grant Extension Program, Center for Food Science and Technology, Princess Anne, MD, United States.
| | - Nicholas V C Ralston
- Earth System Science and Policy, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
19
|
Pfister E, Smith R, Lane MA. N-3 Polyunsaturated fatty acid ethyl esters decrease the invasion, but not the proliferation, of human colorectal cancer cells via a PI3K-dependent mechanism in vitro. Prostaglandins Leukot Essent Fatty Acids 2021; 167:102273. [PMID: 33812216 DOI: 10.1016/j.plefa.2021.102273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/18/2021] [Accepted: 03/22/2021] [Indexed: 01/16/2023]
Abstract
N-3 polyunsaturated fatty acid (PUFA) ethyl esters have been approved by the FDA for the treatment of dyslipidemia and are promising cancer therapeutics. The study objectives were to determine if and how n-3 PUFA ethyl esters affected the proliferation and invasion of colorectal cancer cells. SW620 and HCT-116 parental and HCT-116 mutant cells isogenic for constitutively active PI3K were treated with free or ethyl esterified n-3 PUFAs and counted 72 h later. Cells were also administered n-3 PUFA ethyl esters to determine if these compounds decreased invasion through Boyden chambers and PI3K activity via western blot analysis of phosphorylated Akt. Free and n-3 PUFA ethyl esters decreased the proliferation of all cell lines. The invasion and Akt phosphorylation of both parental cell lines was decreased following treatment but this did not occur in mutant cells. The ability of n-3 PUFA ethyl esters to decrease proliferation and invasion in vitro indicates these compounds may be effective in vivo.
Collapse
Affiliation(s)
- Eric Pfister
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX, USA, 78666
| | - Rebecca Smith
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX, USA, 78666
| | - Michelle A Lane
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX, USA, 78666.
| |
Collapse
|
20
|
Shen Y, Sen A, Turgeon DK, Ren J, Graifman G, Ruffin MT, Smith WL, Brenner DE, Djuric Z. Changes in Serum, Red Blood Cell, and Colonic Fatty Acids in a Personalized Omega-3 Fatty Acid Supplementation Trial. Nutr Cancer 2021; 74:565-578. [PMID: 33757398 DOI: 10.1080/01635581.2021.1903950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study evaluated changes in fatty acids from sera, red blood cells, and colonic biopsies from a phase Ib clinical trial of personalized ω-3 fatty acid dosing in 47 healthy volunteers. The trial aimed to reduce colonic prostaglandin E2 (PGE2), a pro-inflammatory product of arachidonic acid (AA) oxidation. The personalized doses ranged 2-10 grams/day (54% eicosapentaenoic acid, EPA, 24% other ω-3 fatty acids). In colon, increases in ω-3 highly unsaturated fatty acids (HUFA) and EPA:AA ratios each were correlated with decreases in PGE2. Changes in either colonic EPA:AA ratios or ω-3 HUFA were significantly correlated with changes in the same fatty acid measures in red blood cells or serum. The only blood-based measure significantly correlated with changes in colonic PGE2 was change in red blood cell ω-3 HUFA (ρ = -0.39), and the increase in red blood cell ω-3 HUFA was significantly greater in participants who had at least a median reduction in colonic PGE2 vs. those who did not. In summary, fatty acid changes in blood did reflect fatty acid changes in the colon, but additional factors will be needed for optimizing dosing models that seek to predict the anti-inflammatory effects of ω-3 fatty acids on the colon.
Collapse
Affiliation(s)
- Yifan Shen
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA.,Department of Family Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Ananda Sen
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA.,Department of Family Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - D Kim Turgeon
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jianwei Ren
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA.,Department of Family Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gillian Graifman
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA.,Department of Family Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mack T Ruffin
- Department of Family and Community Medicine, Penn State, Hershey, Pennsylvania, USA
| | - William L Smith
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Dean E Brenner
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Zora Djuric
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA.,Department of Family Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Alfio VG, Manzo C, Micillo R. From Fish Waste to Value: An Overview of the Sustainable Recovery of Omega-3 for Food Supplements. Molecules 2021; 26:molecules26041002. [PMID: 33668684 PMCID: PMC7918619 DOI: 10.3390/molecules26041002] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
The disposal of food waste is a current and pressing issue, urging novel solutions to implement sustainable waste management practices. Fish leftovers and their processing byproducts represent a significant portion of the original fish, and their disposal has a high environmental and economic impact. The utilization of waste as raw materials for the production of different classes of biofuels and high-value chemicals, a concept known as "biorefinery", is gaining interest in a vision of circular economy and zero waste policies. In this context, an interesting route of valorization is the extraction of omega-3 fatty acids (ω-3 FAs) for nutraceutical application. These fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have received attention over the last decades due to their beneficial effects on human health. Their sustainable production is a key process for matching the increased market demand while reducing the pressure on marine ecosystems and lowering the impact of waste production. The high resale value of the products makes this waste a powerful tool that simultaneously protects the environment and benefits the global economy. This review aims to provide a complete overview of the sustainable exploitation of fish waste to recover ω-3 FAs for food supplement applications, covering composition, storage, and processing of the raw material.
Collapse
|
22
|
Nguyen S, Li H, Yu D, Cai H, Gao J, Gao Y, Luu H, Tran H, Xiang YB, Zheng W, Shu XO. Dietary fatty acids and colorectal cancer risk in men: A report from the Shanghai Men's Health Study and a meta-analysis. Int J Cancer 2021; 148:77-89. [PMID: 32638381 PMCID: PMC11067784 DOI: 10.1002/ijc.33196] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
Abstract
Evidence from animal models suggests that dietary fatty acids have both anticancer and tumor-promoting effects. Whether dietary fatty acids are associated with colorectal cancer (CRC) in humans remains inconclusive. We investigated associations between dietary fatty acids and risk of CRC among 59 986 men who participated in the Shanghai Men's Health Study (SMHS), an ongoing population-based prospective cohort study. We identified 876 incident CRC cases in the SMHS during a mean follow-up of 9.8 years. Associations between dietary fatty acid intake and CRC risk were evaluated by Cox proportional hazard regression analyses. Consumption of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) was not significantly associated with CRC risk. Multivariate hazard ratios (HRs) and respective 95% confidence intervals (CIs) for Quartile 4 vs Quartile 1 were 0.92 (0.74-1.14; Ptrend = 0.47) for SFA, 0.95 (0.79-1.16; Ptrend = 0.74) for MUFA and 1.18 (0.95-1.46; Ptrend = 0.21) for PUFA. No significant associations were found for total n-6 PUFA or total n-3 PUFA. Additionally, we performed a meta-analysis to summarize results from the present study and 28 reports from 26 additional cohorts, which supported the overall null association between dietary fatty acid intake and CRC risk among men. Docosahexanoic acid and eicosapentaenoic acid were associated with 11% to 12% reduced risk, and linoleic acid a 19% increased risk, of CRC in the meta-analysis of combined sexes. In conclusion, this population-based prospective study and meta-analysis of cohort studies found little evidence that dietary fatty acid intake was associated with risk of CRC in men.
Collapse
Affiliation(s)
- Sang Nguyen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Honglan Li
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Danxia Yu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jing Gao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, No.227 South Chongqing Road, Shanghai 200025, PR China
| | - Yutang Gao
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Hung Luu
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center and Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Huong Tran
- Hanoi Medical University, Vietnam National Cancer Institute, Hanoi, Vietnam
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
23
|
Vacante M, Ciuni R, Basile F, Biondi A. Gut Microbiota and Colorectal Cancer Development: A Closer Look to the Adenoma-Carcinoma Sequence. Biomedicines 2020; 8:E489. [PMID: 33182693 PMCID: PMC7697438 DOI: 10.3390/biomedicines8110489] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022] Open
Abstract
There is wide evidence that CRC could be prevented by regular physical activity, keeping a healthy body weight, and following a healthy and balanced diet. Many sporadic CRCs develop via the traditional adenoma-carcinoma pathway, starting as premalignant lesions represented by conventional, tubular or tubulovillous adenomas. The gut bacteria play a crucial role in regulating the host metabolism and also contribute to preserve intestinal barrier function and an effective immune response against pathogen colonization. The microbiota composition is different among people, and is conditioned by many environmental factors, such as diet, chemical exposure, and the use of antibiotic or other medication. The gut microbiota could be directly involved in the development of colorectal adenomas and the subsequent progression to CRC. Specific gut bacteria, such as Fusobacterium nucleatum, Escherichia coli, and enterotoxigenic Bacteroides fragilis, could be involved in colorectal carcinogenesis. Potential mechanisms of CRC progression may include DNA damage, promotion of chronic inflammation, and release of bioactive carcinogenic metabolites. The aim of this review was to summarize the current knowledge on the role of the gut microbiota in the development of CRC, and discuss major mechanisms of microbiota-related progression of the adenoma-carcinoma sequence.
Collapse
Affiliation(s)
- Marco Vacante
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (R.C.); (F.B.); (A.B.)
| | | | | | | |
Collapse
|
24
|
Tu M, Wang W, Zhang G, Hammock BD. ω-3 Polyunsaturated Fatty Acids on Colonic Inflammation and Colon Cancer: Roles of Lipid-Metabolizing Enzymes Involved. Nutrients 2020; 12:nu12113301. [PMID: 33126566 PMCID: PMC7693568 DOI: 10.3390/nu12113301] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
Substantial human and animal studies support the beneficial effects of ω-3 polyunsaturated fatty acids (PUFAs) on colonic inflammation and colorectal cancer (CRC). However, there are inconsistent results, which have shown that ω-3 PUFAs have no effect or even detrimental effects, making it difficult to effectively implement ω-3 PUFAs for disease prevention. A better understanding of the molecular mechanisms for the anti-inflammatory and anticancer effects of ω-3 PUFAs will help to clarify their potential health-promoting effects, provide a scientific base for cautions for their use, and establish dietary recommendations. In this review, we summarize recent studies of ω-3 PUFAs on colonic inflammation and CRC and discuss the potential roles of ω-3 PUFA-metabolizing enzymes, notably the cytochrome P450 monooxygenases, in mediating the actions of ω-3 PUFAs.
Collapse
Affiliation(s)
- Maolin Tu
- Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA; (M.T.); (G.Z.)
- Department of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Weicang Wang
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA;
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA; (M.T.); (G.Z.)
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01002, USA
| | - Bruce D. Hammock
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA;
- Correspondence: ; Tel.: +1-530-752-7519
| |
Collapse
|
25
|
Ungaro F, D’Alessio S, Danese S. The Role of Pro-Resolving Lipid Mediators in Colorectal Cancer-Associated Inflammation: Implications for Therapeutic Strategies. Cancers (Basel) 2020; 12:cancers12082060. [PMID: 32722560 PMCID: PMC7463689 DOI: 10.3390/cancers12082060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a recognized hallmark of cancer that contributes to the development and progression of colorectal cancer (CRC). Anti-inflammatory drugs currently used for the treatment of CRC show many adverse side effects that prompted researchers to propose the polyunsaturated fatty acids-derived specialized pro-resolving mediators (SPMs) as promoters of resolution of cancer-associated inflammation. SPMs were found to inhibit the CRC-associated pro-inflammatory milieu via specific G-coupled protein receptors, although clinical data are still lacking. This review aims to summarize the state-of-the-art in this field, ultimately providing insights for the development of innovative anti-CRC therapies that promote the endogenous lipid-mediated resolution of CRC-associated inflammation.
Collapse
Affiliation(s)
- Federica Ungaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy; (S.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milan, Italy
- Correspondence:
| | - Silvia D’Alessio
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy; (S.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milan, Italy
| | - Silvio Danese
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy; (S.D.); (S.D.)
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20089 Milan, Italy
| |
Collapse
|
26
|
Liu J, Li X, Hou J, Sun J, Guo N, Wang Z. Dietary Intake of N-3 and N-6 Polyunsaturated Fatty Acids and Risk of Cancer: Meta-Analysis of Data from 32 Studies. Nutr Cancer 2020; 73:901-913. [PMID: 32530319 DOI: 10.1080/01635581.2020.1779321] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Large epidemiological studies have yielded conflicting results regarding the relationship between polyunsaturated fatty acids (PUFAs) and cancers. Here, we performed a meta-analysis to examine the link between dietary intake of n-3 and n-6 PUFAs and cancer risk. MATERIALS AND METHODS We performed a search on PubMed, EMBASE, and the Cochrane Library. Studies that reported adjusted relative risk (RR) estimates with 95% confidence intervals (CI) for the associations of interest were included. RESULTS Thirty-two studies involving 1,445,732 participants were included. Colorectal, breast and prostate cancer had been analyzed in our study. Specifically, for colorectal cancer, total n-3 PUFAs, marine n-3 PUFAs, α-linolenic acids (ALA) and n-6 PUFAs were not associated with the risk of it (RR 1.04, 95%CI 0.85-1.28; RR 0.99, 95%CI 0.89-1.09; RR 1.05, 95%CI 0.93-1.19; RR 1.02, 95%CI 0.94-1.11, respectively). For breast cancer, only marine n-3 PUFAs, but not total n-3 PUFAs, ALA, and n-6 PUFAs, was associated with a lower risk of it (RR 0.70, 95%CI 0.55-0.91). For prostate cancer, ALA and n-6 PUFAs also have no association with the risk of it. CONCLUSIONS Most subtypes of PUFAs are probably not related to cancers. However, additional high-quality trials are warranted to corroborate the findings of this meta-analysis.
Collapse
Affiliation(s)
- Jian Liu
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianqing Li
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinfei Hou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nengqiang Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Yurko-Mauro K, Van Elswyk M, Teo L. A Scoping Review of Interactions between Omega-3 Long-Chain Polyunsaturated Fatty Acids and Genetic Variation in Relation to Cancer Risk. Nutrients 2020; 12:nu12061647. [PMID: 32498320 PMCID: PMC7352171 DOI: 10.3390/nu12061647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
This scoping review examines the interaction of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) and genetic variants of various types of cancers. A comprehensive search was performed to identify controlled and observational studies conducted through August 2017. Eighteen unique studies were included: breast cancer (n = 2), gastric cancer (n = 1), exocrine pancreatic cancer (n = 1), chronic lymphocytic leukemia (n = 1), prostate cancer (n = 7) and colorectal cancer (n = 6). An additional 13 studies that focused on fish intake or at-risk populations were summarized to increase readers’ understanding of the topic based on this review, DHA and EPA interact with certain genetic variants to decrease breast, colorectal and prostate cancer risk, although data was limited and identified polymorphisms were heterogeneous. The evidence to date demonstrates that omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) may decrease cancer risk by affecting genetic variants of inflammatory pathways, oxidative stress and tumor apoptosis. Collectively, data supports the notion that once a genetic variant is identified, the benefits of a targeted, personalized therapeutic regimen that includes DHA and/or EPA should be considered.
Collapse
Affiliation(s)
- Karin Yurko-Mauro
- Pharma Segment, DSM Nutritional Products, Columbia, MD 21045, USA
- Correspondence:
| | | | - Lynn Teo
- Teo Research Consulting, Silver Spring, MD, 20910, USA;
| |
Collapse
|
28
|
Wang J, Zhang Y, Zhao L. Omega-3 PUFA intake and the risk of digestive system cancers: A meta-analysis of observational studies. Medicine (Baltimore) 2020; 99:e20119. [PMID: 32384489 PMCID: PMC7440169 DOI: 10.1097/md.0000000000020119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND A growing number of epidemiological studies have suggested a possible association between long-chain omega-3 polyunsaturated fatty acid (PUFA) intake and the risk of cancers, but the results have been inconsistent. We aimed to conduct a meta-analysis to assess the association of omega-3 PUFA consumption with digestive system cancers. METHODS Relevant observational studies were identified through a comprehensive search of PubMed, Embase, and the Web of Science through December 2019 and by reviewing the references of the retrieved articles. The relative risks (RRs) of digestive system cancers associated with omega-3 PUFA intake were estimated using a random-effect model and were stratified by region, sex, study design, type of omega-3 PUFAs, smoking status, alcohol consumption, BMI, and physical activity. RESULTS Twenty-five studies (8 case-control studies and 17 cohort studies) involving 1,247,271 participants and 23,173 patients with digestive system cancers were included in this analysis. The risk of digestive system cancers decreased by 17% in individuals who consumed omega-3 PUFAs (RR = 0.83, 95% confidence interval (CI), 0.76-0.91). The risk estimates of digestive system cancers varied by cancer sites, study location, study design, type of omega-3 PUFAs, and other confounders (smoking, alcohol consumption, body mass index, and physical activity). Visual inspection of funnel plots and the Begg's and Egger's tests revealed no evidence of publication bias. CONCLUSION The findings show that omega-3 PUFAs should be as a healthy dietary component for the prevention of digestive system cancers. Cancer incidence decreases with increasing omega-3 PUFAs intake for most digestive system cancer sites. The relation between omega-3 PUFAs and digestive system cancers RR is similar among different populations.
Collapse
|
29
|
Abstract
Diet is an important risk factor for colorectal cancer (CRC), and several dietary constituents implicated in CRC are modified by gut microbial metabolism. Microbial fermentation of dietary fiber produces short-chain fatty acids, e.g., acetate, propionate, and butyrate. Dietary fiber has been shown to reduce colon tumors in animal models, and, in vitro, butyrate influences cellular pathways important to cancer risk. Furthermore, work from our group suggests that the combined effects of butyrate and omega-3 polyunsaturated fatty acids (n-3 PUFA) may enhance the chemopreventive potential of these dietary constituents. We postulate that the relatively low intakes of n-3 PUFA and fiber in Western populations and the failure to address interactions between these dietary components may explain why chemoprotective effects of n-3 PUFA and fermentable fibers have not been detected consistently in prospective cohort studies. In this review, we summarize the evidence outlining the effects of n-3 long-chain PUFA and highly fermentable fiber with respect to alterations in critical pathways important to CRC prevention, particularly intrinsic mitochondrial-mediated programmed cell death resulting from the accumulation of lipid reactive oxygen species (ferroptosis), and epigenetic programming related to lipid catabolism and beta-oxidation-associated genes.
Collapse
|
30
|
Katona BW, Weiss JM. Chemoprevention of Colorectal Cancer. Gastroenterology 2020; 158:368-388. [PMID: 31563626 PMCID: PMC6981249 DOI: 10.1053/j.gastro.2019.06.047] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
Abstract
Although colorectal cancer (CRC) screening has reduced the incidence of and mortality from CRC, chemoprevention strategies have the potential to further reduce CRC incidence and mortality. Chemoprevention agents might be used for average-risk as well as high-risk groups, and to prevent CRC recurrence after therapy. CRC chemoprevention agents that have been studied include aspirin, nonaspirin nonsteroidal anti-inflammatory drugs, statins, agents that target metabolic pathways, and vitamins and minerals. We review the prospect of chemoprevention of CRC, results from preclinical and human studies, challenges, and future directions.
Collapse
Affiliation(s)
- Bryson W. Katona
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jennifer M. Weiss
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
31
|
Kim Y, Kim J. Intake or Blood Levels of n-3 Polyunsaturated Fatty Acids and Risk of Colorectal Cancer: A Systematic Review and Meta-analysis of Prospective Studies. Cancer Epidemiol Biomarkers Prev 2019; 29:288-299. [PMID: 31767566 DOI: 10.1158/1055-9965.epi-19-0931] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/01/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Previous results of the association between n-3 polyunsaturated fatty acids (PUFA) and colorectal cancer were inconsistent. We conducted a systematic review and meta-analysis of prospective studies. METHODS The PubMed and Embase databases were searched through July 10, 2019, followed by a manual search. A random-effects model was used. RESULTS Twenty prospective studies, including 18,102 cases and 1,360,046 participants, were included. The pooled RR of colorectal cancer for the highest versus lowest category of n-3 PUFA intake was 0.97 [95% confidence interval (CI), 0.90-1.04]. Regarding the type of n-3 PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) intakes were inversely associated with 11% (RR = 0.89; 95% CI, 0.80-0.99) and 12% (RR = 0.88; 95% CI, 0.81-0.96) lower colorectal cancer risks, respectively, in the comparison of the highest versus lowest category. Increments of 0.1 g/day of EPA (RR = 0.95; 95% CI, 0.92-0.98) and DHA (RR = 0.97; 95% CI, 0.95-0.99) intakes were associated with a lower colorectal cancer risk. Regarding the blood levels of n-3 PUFAs, the pooled RR of colorectal cancer for the highest versus lowest category of blood levels of n-3 PUFAs was 0.79 (95% CI, 0.64-0.98). The risk of colorectal cancer decreased by 4% for every 1% increase in blood n-3 PUFA levels (RR = 0.96; 95% CI, 0.92-1.00). CONCLUSIONS High blood n-3 PUFA levels are inversely associated with colorectal cancer risk, and high n-3 PUFA intake is suggestively associated with lower colorectal cancer risk. IMPACT Our findings suggest that high blood n-3 PUFA levels may be associated with reduced colorectal cancer risk, but further studies are needed.
Collapse
Affiliation(s)
- Youngyo Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, South Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, South Korea.
| |
Collapse
|
32
|
Irún P, Lanas A, Piazuelo E. Omega-3 Polyunsaturated Fatty Acids and Their Bioactive Metabolites in Gastrointestinal Malignancies Related to Unresolved Inflammation. A Review. Front Pharmacol 2019; 10:852. [PMID: 31427966 PMCID: PMC6687876 DOI: 10.3389/fphar.2019.00852] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammation takes part in the pathogenesis of some malignancies of the gastrointestinal tract including colorectal (CRC), gastric, and esophageal cancers. The use of ω3 polyunsaturated fatty acid (ω3-PUFA) supplements for chemoprevention or adjuvant therapy of gastrointestinal cancers is being investigated in recent years. Most evidence has been reported in CRC, although their protective role has also been reported for Helicobacter pylori-induced gastric cancer or Barrett’s esophagus-derived adenocarcinoma. Studies based on ω3-PUFA supplementation in animal models of familial adenomatous polyposis (FAP) and CRC revealed positive effects on cancer prevention, reducing the number and size of tumors, down-regulating arachidonic acid-derived eicosanoids, upregulating anti-oxidant enzymes, and reducing lipid peroxidation, whereas contradictory results have been found in induced colitis and colitis-associated cancer. Beneficial effects have also been found in FAP and ulcerative colitis patients. Of special interest is their positive effect as adjuvants on radio- and chemo-sensitivity, specificity, and prevention of treatment complications. Some controversial results obtained in CRC might be justified by different dietary sources, extraction and preparation procedures of ω3-PUFAs, difficulties on filling out food questionnaires, daily dose and type of PUFAs, adenoma subtype, location of CRC, sex differences, and genetic factors. Studies using animal models of inflammatory bowel disease have confirmed that exogenous administration of active metabolites derived from PUFAs called pro-resolving mediators like lipoxin A4, arachidonic acid-derived, resolvins derived from eicosapentaenoic (EPA), docosahexaenoic (DHA), and docosapentaenoic (DPA) acids as well as maresin 1 and protectins DHA- and DPA-derived improve disease and inflammatory outcomes without causing immunosuppression or other side effects.
Collapse
Affiliation(s)
- Pilar Irún
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Angel Lanas
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain.,Department of Gastroenterology, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.,Departamento de Medicina, Psiquiatría y Dermatología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Elena Piazuelo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Zaragoza, Spain.,Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain.,Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain.,Departamento de Farmacología y Fisiología. Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
33
|
Role of bioactive lipofishins in prevention of inflammation and colon cancer. Semin Cancer Biol 2019; 56:175-184. [DOI: 10.1016/j.semcancer.2017.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023]
|
34
|
Abstract
The majority of evidence linking anti-colorectal cancer (CRC) activity with omega-3 polyunsaturated fatty acids (O3FAs) has focussed on decreased CRC risk (prevention). More recently, preclinical data and human observational studies have begun to make the case for adjuvant treatment of advanced CRC. Herein, we review latest data regarding the effect of O3FAs on post-diagnosis CRC outcomes, including mechanistic preclinical data, evidence that O3FAs have beneficial effects on efficacy and tolerability of CRC chemotherapy, and human epidemiological data linking dietary O3FA intake with CRC outcomes. We also highlight ongoing randomised controlled trials of O3FAs with CRC endpoints and discuss critical gaps in the evidence base, which include limited understanding of the effects of O3FAs on the tumour microenvironment, the host immune response to CRC, and the intestinal microbiome.
Collapse
Affiliation(s)
- Milene Volpato
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds, LS9 7TF, UK
| | - Mark A Hull
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds, LS9 7TF, UK.
| |
Collapse
|
35
|
Kim M, Park K. Dietary Fat Intake and Risk of Colorectal Cancer: A Systematic Review and Meta-Analysis of Prospective Studies. Nutrients 2018; 10:nu10121963. [PMID: 30545042 PMCID: PMC6315498 DOI: 10.3390/nu10121963] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
Dietary fat intake is associated with the risk of colorectal cancer (CRC); however, the results of epidemiological studies on this are controversial. Therefore, this study aimed to summarize the available scientific evidence regarding the association between dietary fat and the risk of CRC. We conducted a systematic search of PubMed, Web of Science, and the Cochrane library for articles related to dietary fat and the risk of CRC. The summary relative risks with 95% confidence intervals (CI) were calculated via a random effect model. Begg’s test was used to detect publication bias. A total of 18 articles were identified. The pooled relative risk with 95% CI for the risk of CRC were 1.00 (95% CI: 0.90–1.12), 0.97 (95% CI: 0.86–1.10), 1.08 (95% CI: 0.92–1.26), and 0.99 (95% CI: 0.93–1.04) for total fat, saturated fatty acid, monounsaturated fatty acid, and polyunsaturated fatty acid, respectively. No significant associations were found in subgroup analyses. Begg’s test for all exposures revealed no publication bias (total fat, p = 0.3; saturated fatty acid, p = 0.1; monounsaturated fatty acid, p = 0.08; polyunsaturated fatty acid, p = 0.2). The studies included in this review and meta-analysis revealed that dietary fats and fatty acids had no effects on the risk of CRC.
Collapse
Affiliation(s)
- Minkyeong Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.
| | - Kyong Park
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.
| |
Collapse
|
36
|
The impact of polyunsaturated fatty acids on DNA methylation and expression of DNMTs in human colorectal cancer cells. Biomed Pharmacother 2018; 101:94-99. [PMID: 29477476 DOI: 10.1016/j.biopha.2018.02.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/05/2018] [Accepted: 02/19/2018] [Indexed: 12/14/2022] Open
Abstract
Growing evidence suggests a role of polyunsaturated fatty acids (PUFA) in the prevention of various types of malignancy, including colorectal cancer (CRC). No published studies have yet examined the direct effect of PUFA treatment on DNA methylation in CRC cells. In this study, 5 human CRC cells were treated with 100 μM DHA, EPA, and LA for 6 days and changes in their global- and gene-specific DNA methylation status as well as expression of DNA methyl transferases (DNMT) were investigated. Cell-type specific differences in DNA methylation and expression of DNMTs were observed in PUFA-treated cells. DHA and EPA treatment induced global hypermethylation in HT29/219 and HCT116 cells, but reduced methylation in Caco2 cells (p < 0.05). Among 10 tumor related genes tested in 5 CRC cell lines, DHA and EPA induced promoter demethylation of Cox2 in HT29/219, p14 and PPARγ in HCT116, and ECAD in SW742 cells. Cell-type specific differences in expression of DNMT1, DNMT3a, and 3b genes were also observed between PUFA-treated and control cells (p < 0.05). Overall, treatment of PUFAs coordinately induced the expression of DNMTs in HT29/219, but suppressed in other 4 cell lines investigated in this study.
Collapse
|
37
|
Jolanta B, Joanna B, Diana HZ, Krystyna S. Composition and Concentration of Serum Fatty Acids of Phospholipids Depend on Tumour Location and Disease Progression in Colorectal Patients. J Med Biochem 2018; 37:39-45. [PMID: 30581340 PMCID: PMC6294105 DOI: 10.1515/jomb-2017-0031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Polyunsaturated fatty acids (PUFAs) play a role in the development/progression of colon cancer. The aim of the study was to assess the relation between serum phospholipids PUFAs, colorectal tumour localization and disease progression. METHODS A total of 67 patients (18 with proximal colon, 17 with distal colon and 32 with rectal tumour localization) as well as 16 controls were studied. One year after surgery, 33 patients had disease progression. Serum levels of C16:1(n-7), C18:1(n-9), C18:3(n-3), C20:5(n-3), C22:6(n- 3), C18:2(n-6), C20:2(n-6), C20:4(n-6) fatty acids of se - rum phospholipids were quantitatively measured before surgery by gas-chromatography. RESULTS Significantly higher mean value of C18:2, as compared to control, has been noted only for patients with proximal (p<0.05) and distal tumour (p<0.03) localization. The lower mean level of C20:5 and unsaturation index (UI) were observed in colorectal cancer patients regardless the tumour localization, but the statistical difference was noted only for patients with proximal tumours (p<0.05, p<0.03). In patients with proximal tumours, significantly lower mean level of C20:4 and UI were noted in patients with disease progression, as compared to patients with proximal tumours without disease progression (p<0.05). CONCLUSION The evaluation of PUFAs as a risk/prognostic factor in colorectal cancer patients should take into account tumour localization as a dependent variable.
Collapse
Affiliation(s)
- Bugajska Jolanta
- Clinical Biochemistry Department, IP, Jagiellonian University College of Medicine, Krakow, Poland
| | - Berska Joanna
- Clinical Biochemistry Department, IP, Jagiellonian University College of Medicine, Krakow, Poland
| | | | - Sztefko Krystyna
- Clinical Biochemistry Department, IP, Jagiellonian University College of Medicine, Krakow, Poland
| |
Collapse
|
38
|
Fuentes NR, Salinas ML, Kim E, Chapkin RS. Emerging role of chemoprotective agents in the dynamic shaping of plasma membrane organization. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2017; 1859:1668-1678. [PMID: 28342710 PMCID: PMC5501766 DOI: 10.1016/j.bbamem.2017.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 12/22/2022]
Abstract
In the context of an organism, epithelial cells by nature are designed to be the defining barrier between self and the outside world. This is especially true for the epithelial cells that form the lining of the digestive tract, which absorb nutrients and serve as a barrier against harmful substances. These cells are constantly bathed by a complex mixture of endogenous (bile acids, mucus, microbial metabolites) and exogenous (food, nutrients, drugs) bioactive compounds. From a cell biology perspective, this type of exposure would directly impact the plasma membrane, which consists of a myriad of complex lipids and proteins. The plasma membrane not only functions as a barrier but also as the medium in which cellular signaling complexes form and function. This property is mediated by the organization of the plasma membrane, which is exquisitely temporally (nanoseconds to minutes) and spatially (nanometers to micrometers) regulated. Since numerous bioactive compounds found in the intestinal lumen can directly interact with lipid membranes, we hypothesize that the dynamic reshaping of plasma membrane organization underlies the chemoprotective effect of select membrane targeted dietary bioactives (MTDBs). This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA
| | - Michael L Salinas
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA
| | - Eunjoo Kim
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Molecular and Cellular Medicine, Texas A&M University, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA; Center for Translational Environmental Health Research, Texas A&M University, USA.
| |
Collapse
|
39
|
Stanley EG, Jenkins BJ, Walker CG, Koulman A, Browning L, West AL, Calder PC, Jebb SA, Griffin JL. Lipidomics Profiling of Human Adipose Tissue Identifies a Pattern of Lipids Associated with Fish Oil Supplementation. J Proteome Res 2017; 16:3168-3179. [PMID: 28587463 DOI: 10.1021/acs.jproteome.7b00161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To understand the interaction between diet and health, biomarkers that accurately reflect consumption of foods of perceived health relevance are needed. The aim of this investigation was to use direct infusion-mass spectrometry (DI-MS) lipidomics to determine the effects of fish oil supplementation on lipid profiles of human adipose tissue. Adipose tissue samples from an n-3 polyunsaturated fatty acid (PUFA) supplementation study (n = 66) were analyzed to compare the pattern following supplementation equivalent to zero or four portions of oily fish per week. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were incorporated into highly unsaturated (≥5 double bonds) triglycerides (TGs), phosphocholines, and phosphoethanolamines as well as being detected directly as the nonesterified fatty acid forms. Multivariate statistics demonstrated that phospholipids were the most accurate and sensitive lipids for the assessing EPA and DHA incorporation into adipose tissue. Potential confounding factors (adiposity, age, and sex of the subject) were also considered in the analysis, and adiposity was also associated with an increase in highly unsaturated TGs as a result of incorporation of the n-6 PUFA arachidonic acid. DI-MS provides a high-throughput analysis of fatty acid status that can monitor oily fish consumption, suitable for use in cohort studies.
Collapse
Affiliation(s)
- Elizabeth G Stanley
- MRC Human Nutrition Research, Elsie Widdowson Laboratory , Cambridge CB1 9NL, United Kingdom
| | - Benjamin J Jenkins
- MRC Human Nutrition Research, Elsie Widdowson Laboratory , Cambridge CB1 9NL, United Kingdom
| | - Celia G Walker
- MRC Human Nutrition Research, Elsie Widdowson Laboratory , Cambridge CB1 9NL, United Kingdom
| | - Albert Koulman
- MRC Human Nutrition Research, Elsie Widdowson Laboratory , Cambridge CB1 9NL, United Kingdom
| | - Lucy Browning
- MRC Human Nutrition Research, Elsie Widdowson Laboratory , Cambridge CB1 9NL, United Kingdom
| | - Annette L West
- Faculty of Medicine, University of Southampton , Southampton SO16 6YD, United Kingdom
| | - Philip C Calder
- Faculty of Medicine, University of Southampton , Southampton SO16 6YD, United Kingdom.,NIHR Southampton Biomedical Research Centre, University Hospital NHS Foundation Trust and University of Southampton , Southampton SO16 6YD, United Kingdom
| | - Susan A Jebb
- MRC Human Nutrition Research, Elsie Widdowson Laboratory , Cambridge CB1 9NL, United Kingdom.,Nuffield Department of Primary Care Health Sciences, University of Oxford , Radcliffe Observatory Quarter, Oxford OX2 6GG, United Kingdom
| | - Julian L Griffin
- MRC Human Nutrition Research, Elsie Widdowson Laboratory , Cambridge CB1 9NL, United Kingdom.,Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge , Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
40
|
Callahan CL, Vena JE, Green J, Swanson M, Mu L, Bonner MR. Consumption of Lake Ontario sport fish and the incidence of colorectal cancer in the New York State Angler Cohort Study (NYSACS). ENVIRONMENTAL RESEARCH 2017; 154:86-92. [PMID: 28040638 PMCID: PMC5328926 DOI: 10.1016/j.envres.2016.12.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/16/2016] [Accepted: 12/26/2016] [Indexed: 05/11/2023]
Abstract
Fish consumption is hypothesized to reduce the risk of colorectal cancer. Nonetheless, consuming sport fish from the Great Lakes increases exposure to certain persistent organic pollutants, namely polychlorinated biphenyls (PCBs) and organochlorine insecticides, which may increase the risk of cancer. Evidence that exposure to persistent organic pollutants is associated with colorectal cancer is sparse. We examined colorectal cancer incidence in the New York State Angler Cohort Study (NYSACS), a prospective cohort of 17,110 anglers and spouses age 18-40 years at enrollment. In 1991, participants completed a mailed self-administered questionnaire that ascertained the number of years that fish from Lake Ontario were consumed, as well as potential confounders. Forty-one histologically confirmed first primary incident colorectal cancers diagnosed as of December 31, 2008 were identified via the New York State Cancer Registry. Vital status was ascertained by linkage with the Social Security Administration Death File. Rate ratios (RR) and 95% confidence intervals (CI) were calculated with Poisson regression, adjusting for age, pack-years of smoking, and sex. Compared with never consumers, colorectal cancer incidence was statistically non-significantly lower among consumers of Lake Ontario sport fish (RR=0.66; 95% CI: 0.35; 1.24). Incidence of colon cancer was lower among Lake Ontario sport fish consumers (RR=0.45, 95%CI: 0.20; 1.00). We did not observe any evidence of effect measure modification by sex or age. Although consumption of Lake Ontario sport fish may have an inverse association with colorectal cancer risk, inferences are complicated by a small number of cases and a lack of information regarding potential confounders including other dietary factors. However, our results do not provide support for the hypothesis that consumption of contaminated sport fish increases the risk of colorectal cancer.
Collapse
Affiliation(s)
- Catherine L. Callahan
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214
- Author to whom correspondence should be addressed: 9609 Medical Center Drive, Rockville, MD 20850, Phone: (240) 276-5040,
| | - John E. Vena
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425
| | | | - Mya Swanson
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214
| | - Matthew R. Bonner
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214
- Author to whom correspondence should be addressed: 9609 Medical Center Drive, Rockville, MD 20850, Phone: (240) 276-5040,
| |
Collapse
|
41
|
Song M, Nishihara R, Cao Y, Chun E, Qian ZR, Mima K, Inamura K, Masugi Y, Nowak JA, Nosho K, Wu K, Wang M, Giovannucci E, Garrett WS, Fuchs CS, Ogino S, Chan AT. Marine ω-3 Polyunsaturated Fatty Acid Intake and Risk of Colorectal Cancer Characterized by Tumor-Infiltrating T Cells. JAMA Oncol 2017; 2:1197-206. [PMID: 27148825 DOI: 10.1001/jamaoncol.2016.0605] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IMPORTANCE Marine ω-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid, docosahexaenoic acid, and docosapentaenoic acid, possess potent immunomodulatory activity and may protect against cancer development. However, evidence relating marine ω-3 PUFAs to colorectal cancer (CRC) risk remains inconclusive. OBJECTIVE To test the hypothesis that marine ω-3 PUFA intake may be associated with lower risk of CRC subsets characterized by immune infiltrate. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study was conducted among participants in the Nurses' Health Study (1984-2010) and Health Professionals Follow-up Study (1986-2010). EXPOSURES Intake of marine ω-3 PUFAs. MAIN OUTCOMES AND MEASURES Incidence of CRC characterized by CD3+, CD8+, CD45RO (PTPRC)+, or FOXP3+ T-cell densities in tumor tissue, measured by immunohistochemical and computer-assisted image analysis. RESULTS Among 173 229 predominantly white participants, 125 172 with 2 895 704 person-years of follow-up provided data about marine ω-3 PUFA intake every 4 years through a validated food frequency questionnaire and followed up for incident CRC evaluation. Of 2504 CRC cases, we documented 614 (252 men, 362 women) from which we could assess T-cell infiltration in the tumor microenvironment. The inverse association of marine ω-3 PUFAs intake with CRC risk differed according to FOXP3+ T-cell infiltration: compared with intake of less than 0.15 g/d of marine ω-3 PUFAs, intake of at least 0.35 g/d was associated with a multivariable hazard ratio (HR) of 0.57 (95% CI, 0.40-0.81; P < .001 for trend) for FOXP3+ T-cell-high tumors. In contrast, the HR for FOXP3+ T-cell-low tumors was 1.14 (95% CI, 0.8-1.60) (P = .77 for trend; P = .01 for heterogeneity). No statistically significant differential association was found for high-density tumors (compared with low-density tumors) according to CD3+, CD8+, or CD45RO+ cell density (P ≥ .34 for heterogeneity for all comparisons). In functional assays, the suppressive activity of regulatory T cells was approximately 2-fold lower (T-effector-cell proliferation, ≥64% vs 38%) when preincubated with docosahexaenoic acid at 50μM, 100μM, and 200μM concentrations than without docosahexaenoic acid (P < .001 for all comparisons). CONCLUSIONS AND RELEVANCE High marine ω-3 PUFA intake was associated with lower risk of CRC with high-level, but not low-level, FOXP3+ T-cell density, suggesting a potential role of ω-3 PUFAs in cancer immunoprevention through modulation of regulatory T cells.
Collapse
Affiliation(s)
- Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston2Division of Gastroenterology, Massachusetts General Hospital, Boston3Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Reiko Nishihara
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts4Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts5Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts6Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Yin Cao
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston2Division of Gastroenterology, Massachusetts General Hospital, Boston3Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Eunyoung Chun
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts8Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Kosuke Mima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Kentaro Inamura
- Division of Pathology, Cancer Institute, Japanese Foundation For Cancer Research, Tokyo, Japan
| | - Yohei Masugi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jonathan A Nowak
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Katsuhiko Nosho
- Department of Gastroenterology, Rheumatology, and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts6Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Edward Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts5Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts12Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wendy S Garrett
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts7Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts8Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts13Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge
| | - Charles S Fuchs
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts12Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts5Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts10Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston2Division of Gastroenterology, Massachusetts General Hospital, Boston12Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts13Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge
| |
Collapse
|
42
|
Navarro SL, Neuhouser ML, Cheng TYD, Tinker LF, Shikany JM, Snetselaar L, Martinez JA, Kato I, Beresford SAA, Chapkin RS, Lampe JW. The Interaction between Dietary Fiber and Fat and Risk of Colorectal Cancer in the Women's Health Initiative. Nutrients 2016; 8:E779. [PMID: 27916893 PMCID: PMC5188434 DOI: 10.3390/nu8120779] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 12/14/2022] Open
Abstract
Combined intakes of specific dietary fiber and fat subtypes protect against colon cancer in animal models. We evaluated associations between self-reported individual and combinations of fiber (insoluble, soluble, and pectins, specifically) and fat (omega-6, omega-3, and docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), specifically) and colorectal cancer (CRC) risk in the Women's Health Initiative prospective cohort (n = 134,017). During a mean 11.7 years (1993-2010), 1952 incident CRC cases were identified. Cox regression models computed multivariate adjusted hazard ratios to estimate the association between dietary factors and CRC risk. Assessing fiber and fat individually, there was a modest trend for lower CRC risk with increasing intakes of total and insoluble fiber (p-trend 0.09 and 0.08). An interaction (p = 0.01) was observed between soluble fiber and DHA + EPA, with protective effects of DHA + EPA with lower intakes of soluble fiber and an attenuation at higher intakes, however this association was no longer significant after correction for multiple testing. These results suggest a modest protective effect of higher fiber intake on CRC risk, but not in combination with dietary fat subtypes. Given the robust results in preclinical models and mixed results in observational studies, controlled dietary interventions with standardized intakes are needed to better understand the interaction of specific fat and fiber subtypes on colon biology and ultimately CRC susceptibility in humans.
Collapse
Affiliation(s)
- Sandi L Navarro
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Marian L Neuhouser
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98105, USA.
| | - Ting-Yuan David Cheng
- Division of Cancer Prevention and Population Sciences, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Lesley F Tinker
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - James M Shikany
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Linda Snetselaar
- Department of Epidemiology, University of Iowa, Iowa City, IA 52242, USA.
| | - Jessica A Martinez
- Department of Nutritional Sciences, University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Ikuko Kato
- Department of Oncology and Pathology, Wayne State University, Detroit, MI 48201, USA.
| | - Shirley A A Beresford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98105, USA.
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA.
| | - Johanna W Lampe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
43
|
Basson A, Trotter A, Rodriguez-Palacios A, Cominelli F. Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Front Immunol 2016; 7:290. [PMID: 27531998 PMCID: PMC4970383 DOI: 10.3389/fimmu.2016.00290] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
Numerous reviews have discussed gut microbiota composition changes during inflammatory bowel diseases (IBD), particularly Crohn’s disease (CD). However, most studies address the observed effects by focusing on studying the univariate connection between disease and dietary-induced alterations to gut microbiota composition. The possibility that these effects may reflect a number of other interconnected (i.e., pantropic) mechanisms, activated in parallel, particularly concerning various bacterial metabolites, is in the process of being elucidated. Progress seems, however, hampered by various difficult-to-study factors interacting at the mucosal level. Here, we highlight some of such factors that merit consideration, namely: (1) the contribution of host genetics and diet in altering gut microbiome, and in turn, the crosstalk among secondary metabolic pathways; (2) the interdependence between the amount of dietary fat, the fatty acid composition, the effects of timing and route of administration on gut microbiota community, and the impact of microbiota-derived fatty acids; (3) the effect of diet on bile acid composition, and the modulator role of bile acids on the gut microbiota; (4) the impact of endogenous and exogenous intestinal micronutrients and metabolites; and (5) the need to consider food associated toxins and chemicals, which can introduce confounding immune modulating elements (e.g., antioxidant and phytochemicals in oils and proteins). These concepts, which are not mutually exclusive, are herein illustrated paying special emphasis on physiologically inter-related processes.
Collapse
Affiliation(s)
- Abigail Basson
- Digestive Health Research Institute, Case Western Reserve University , Cleveland, OH , USA
| | - Ashley Trotter
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| | | | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
44
|
Janakiram NB, Mohammed A, Madka V, Kumar G, Rao CV. Prevention and treatment of cancers by immune modulating nutrients. Mol Nutr Food Res 2016; 60:1275-94. [PMID: 26833775 PMCID: PMC6038926 DOI: 10.1002/mnfr.201500884] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/16/2016] [Accepted: 01/18/2016] [Indexed: 12/11/2022]
Abstract
Epidemiological and laboratory data support the protective effects of bioactive nutrients in our diets for various diseases. Along with various factors, such as genetic history, alcohol, smoking, exercise, and dietary choices play a vital role in affecting an individual's immune responses toward a transforming cell, by either preventing or accelerating a neoplastic transformation. Ample evidence suggests that dietary nutrients control the inflammatory and protumorigenic responses in immune cells. Immunoprevention is usually associated with the modulation of immune responses that help in resolving the inflammation, thus improving clinical outcome. Various metabolic pathway-related nutrients, including glutamine, arginine, vitamins, minerals, and long-chain fatty acids, are important components of immunonutrient mixes. Epidemiological studies related to these substances have reported different results, with no or minimal effects. However, several studies suggest that these nutrients may have immune-modulating effects that may lower cancer risk. Preclinical studies submit that most of these components may provide beneficial effects. The present review discusses the available data, the immune-modulating functions of these nutrients, and how these substances could be used to study immune modulation in a neoplastic environment. Further research will help to determine whether the mechanistic signaling pathways in immune cells altered by nutrients can be exploited for cancer prevention and treatment.
Collapse
Affiliation(s)
- Naveena B. Janakiram
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Gaurav Kumar
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chinthalapally V. Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
45
|
Cancer Risk and Eicosanoid Production: Interaction between the Protective Effect of Long Chain Omega-3 Polyunsaturated Fatty Acid Intake and Genotype. J Clin Med 2016; 5:jcm5020025. [PMID: 26891335 PMCID: PMC4773781 DOI: 10.3390/jcm5020025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/15/2016] [Accepted: 02/02/2016] [Indexed: 01/11/2023] Open
Abstract
Dietary inclusion of fish and fish supplements as a means to improve cancer prognosis and prevent tumour growth is largely controversial. Long chain omega-3 polyunsaturated fatty acids (LCn-3 PUFA), eicosapentaenoic acid and docosahexaenoic acid, may modulate the production of inflammatory eicosanoids, thereby influencing local inflammatory status, which is important in cancer development. Although in vitro studies have demonstrated inhibition of tumour cell growth and proliferation by LCn-3 PUFA, results from human studies have been mainly inconsistent. Genes involved in the desaturation of fatty acids, as well as the genes encoding enzymes responsible for eicosanoid production, are known to be implicated in tumour development. This review discusses the current evidence for an interaction between genetic polymorphisms and dietary LCn-3 PUFA in the risk for breast, prostate and colorectal cancers, in regards to inflammation and eicosanoid synthesis.
Collapse
|
46
|
Omega-3 Polyunsaturated Fatty Acids: The Way Forward in Times of Mixed Evidence. BIOMED RESEARCH INTERNATIONAL 2015; 2015:143109. [PMID: 26301240 PMCID: PMC4537707 DOI: 10.1155/2015/143109] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/18/2015] [Accepted: 05/28/2015] [Indexed: 12/18/2022]
Abstract
Almost forty years ago, it was first hypothesized that an increased dietary intake of omega-3 polyunsaturated fatty acids (PUFA) from fish fat could exert protective effects against several pathologies. Decades of intense preclinical investigation have supported this hypothesis in a variety of model systems. Several clinical cardiovascular studies demonstrated the beneficial health effects of omega-3 PUFA, leading medical institutions worldwide to publish recommendations for their increased intake. However, particularly in recent years, contradictory results have been obtained in human studies focusing on cardiovascular disease and the clinical evidence in other diseases, particularly chronic inflammatory and neoplastic diseases, was never established to a degree that led to clear approval of treatment with omega-3 PUFA. Recent data not in line with the previous findings have sparked a debate on the health efficacy of omega-3 PUFA and the usefulness of increasing their intake for the prevention of a number of pathologies. In this review, we aim to examine the controversies on the possible use of these fatty acids as preventive/curative tools against the development of cardiovascular, metabolic, and inflammatory diseases, as well as several kinds of cancer.
Collapse
|
47
|
Song M, Garrett WS, Chan AT. Nutrients, foods, and colorectal cancer prevention. Gastroenterology 2015; 148:1244-60.e16. [PMID: 25575572 PMCID: PMC4409470 DOI: 10.1053/j.gastro.2014.12.035] [Citation(s) in RCA: 435] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023]
Abstract
Diet has an important role in the development of colorectal cancer. In the past few decades, findings from extensive epidemiologic and experimental investigations have linked consumption of several foods and nutrients to the risk of colorectal neoplasia. Calcium, fiber, milk, and whole grains have been associated with a lower risk of colorectal cancer, and red meat and processed meat have been associated with an increased risk. There is substantial evidence for the potential chemopreventive effects of vitamin D, folate, fruits, and vegetables. Nutrients and foods also may interact, as a dietary pattern, to influence colorectal cancer risk. Diet likely influences colorectal carcinogenesis through several interacting mechanisms. These include the direct effects on immune responsiveness and inflammation, and the indirect effects of overnutrition and obesity-risk factors for colorectal cancer. Emerging evidence also implicates the gut microbiota as an important effector in the relationship between diet and cancer. Dietary modification therefore has the promise of reducing colorectal cancer incidence.
Collapse
Affiliation(s)
- Mingyang Song
- Department of Nutrition, Harvard School of Public Health, Boston, MA,Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - Wendy S. Garrett
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA,Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA,Department of Medicine, Harvard Medical School, Boston, MA,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Andrew T. Chan
- Department of Medicine, Harvard Medical School, Boston, MA,Channing Division of Network Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
48
|
Song M, Nishihara R, Wu K, Qian ZR, Kim SA, Sukawa Y, Mima K, Inamura K, Masuda A, Yang J, Fuchs CS, Giovannucci EL, Ogino S, Chan AT. Marine ω-3 polyunsaturated fatty acids and risk of colorectal cancer according to microsatellite instability. J Natl Cancer Inst 2015; 107:djv007. [PMID: 25810492 DOI: 10.1093/jnci/djv007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chronic inflammation is involved in the development of colorectal cancer (CRC) and microsatellite instability (MSI), a distinct phenotype of CRC. Experimental evidence indicates an anti-inflammatory and antineoplastic effect of marine ω-3 polyunsaturated fatty acids (PUFAs). However, epidemiologic data remain inconclusive. METHODS We investigated whether the association between marine ω-3 PUFAs and CRC varies by MSI-defined subtypes of tumors in the Nurses' Health Study and Health Professionals Follow-up Study. We documented and classified 1125 CRC cases into either MSI-high tumors, in which 30% or more of the 10 microsatellite markers demonstrated instability, or microsatellite-stable (MSS) tumors. Cox proportional hazards model was used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) of MSS tumors and MSI-high tumors in relation to marine ω-3 PUFA intake. All statistical tests were two-sided. RESULTS Marine ω-3 PUFA intake was not associated with overall incidence of CRC. However, a statistically significant difference was detected by MSI status (P heterogeneity = .02): High marine ω-3 PUFA intake was associated with a lower risk of MSI-high tumors (comparing ≥0.30g/d with <0.10g/d: multivariable HR = 0.54, 95% CI = 0.35 to 0.83, P linearity = .03) but not MSS tumors (HR = 0.97, 95% CI = 0.78 to 1.20, P linearity = .28). This differential association appeared to be independent of CpG island methylator phenotype and BRAF mutation status. CONCLUSIONS High marine ω-3 PUFA intake is associated with lower risk of MSI-high CRC but not MSS tumors, suggesting a potential role of ω-3 PUFAs in protection against CRC through DNA mismatch repair. Further research is needed to confirm our findings and elucidate potential underlying mechanisms.
Collapse
Affiliation(s)
- Mingyang Song
- Department of Nutrition (MS, RN, KW, ELG) and Department of Epidemiology (MS, ELG, SO), Harvard School of Public Health, Boston, MA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (RN, ZRQ, SAK, YS, KM, AM, JY, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI); Channing Division of Network Medicine, Department of Medicine (CSF, ELG, SO, ATC) and Department of Pathology (SO), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (ATC)
| | - Reiko Nishihara
- Department of Nutrition (MS, RN, KW, ELG) and Department of Epidemiology (MS, ELG, SO), Harvard School of Public Health, Boston, MA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (RN, ZRQ, SAK, YS, KM, AM, JY, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI); Channing Division of Network Medicine, Department of Medicine (CSF, ELG, SO, ATC) and Department of Pathology (SO), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (ATC)
| | - Kana Wu
- Department of Nutrition (MS, RN, KW, ELG) and Department of Epidemiology (MS, ELG, SO), Harvard School of Public Health, Boston, MA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (RN, ZRQ, SAK, YS, KM, AM, JY, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI); Channing Division of Network Medicine, Department of Medicine (CSF, ELG, SO, ATC) and Department of Pathology (SO), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (ATC)
| | - Zhi Rong Qian
- Department of Nutrition (MS, RN, KW, ELG) and Department of Epidemiology (MS, ELG, SO), Harvard School of Public Health, Boston, MA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (RN, ZRQ, SAK, YS, KM, AM, JY, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI); Channing Division of Network Medicine, Department of Medicine (CSF, ELG, SO, ATC) and Department of Pathology (SO), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (ATC)
| | - Sun A Kim
- Department of Nutrition (MS, RN, KW, ELG) and Department of Epidemiology (MS, ELG, SO), Harvard School of Public Health, Boston, MA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (RN, ZRQ, SAK, YS, KM, AM, JY, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI); Channing Division of Network Medicine, Department of Medicine (CSF, ELG, SO, ATC) and Department of Pathology (SO), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (ATC)
| | - Yasutaka Sukawa
- Department of Nutrition (MS, RN, KW, ELG) and Department of Epidemiology (MS, ELG, SO), Harvard School of Public Health, Boston, MA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (RN, ZRQ, SAK, YS, KM, AM, JY, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI); Channing Division of Network Medicine, Department of Medicine (CSF, ELG, SO, ATC) and Department of Pathology (SO), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (ATC)
| | - Kosuke Mima
- Department of Nutrition (MS, RN, KW, ELG) and Department of Epidemiology (MS, ELG, SO), Harvard School of Public Health, Boston, MA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (RN, ZRQ, SAK, YS, KM, AM, JY, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI); Channing Division of Network Medicine, Department of Medicine (CSF, ELG, SO, ATC) and Department of Pathology (SO), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (ATC)
| | - Kentaro Inamura
- Department of Nutrition (MS, RN, KW, ELG) and Department of Epidemiology (MS, ELG, SO), Harvard School of Public Health, Boston, MA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (RN, ZRQ, SAK, YS, KM, AM, JY, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI); Channing Division of Network Medicine, Department of Medicine (CSF, ELG, SO, ATC) and Department of Pathology (SO), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (ATC)
| | - Atsuhiro Masuda
- Department of Nutrition (MS, RN, KW, ELG) and Department of Epidemiology (MS, ELG, SO), Harvard School of Public Health, Boston, MA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (RN, ZRQ, SAK, YS, KM, AM, JY, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI); Channing Division of Network Medicine, Department of Medicine (CSF, ELG, SO, ATC) and Department of Pathology (SO), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (ATC)
| | - Juhong Yang
- Department of Nutrition (MS, RN, KW, ELG) and Department of Epidemiology (MS, ELG, SO), Harvard School of Public Health, Boston, MA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (RN, ZRQ, SAK, YS, KM, AM, JY, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI); Channing Division of Network Medicine, Department of Medicine (CSF, ELG, SO, ATC) and Department of Pathology (SO), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (ATC)
| | - Charles S Fuchs
- Department of Nutrition (MS, RN, KW, ELG) and Department of Epidemiology (MS, ELG, SO), Harvard School of Public Health, Boston, MA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (RN, ZRQ, SAK, YS, KM, AM, JY, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI); Channing Division of Network Medicine, Department of Medicine (CSF, ELG, SO, ATC) and Department of Pathology (SO), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (ATC)
| | - Edward L Giovannucci
- Department of Nutrition (MS, RN, KW, ELG) and Department of Epidemiology (MS, ELG, SO), Harvard School of Public Health, Boston, MA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (RN, ZRQ, SAK, YS, KM, AM, JY, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI); Channing Division of Network Medicine, Department of Medicine (CSF, ELG, SO, ATC) and Department of Pathology (SO), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (ATC)
| | - Shuji Ogino
- Department of Nutrition (MS, RN, KW, ELG) and Department of Epidemiology (MS, ELG, SO), Harvard School of Public Health, Boston, MA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (RN, ZRQ, SAK, YS, KM, AM, JY, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI); Channing Division of Network Medicine, Department of Medicine (CSF, ELG, SO, ATC) and Department of Pathology (SO), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (ATC)
| | - Andrew T Chan
- Department of Nutrition (MS, RN, KW, ELG) and Department of Epidemiology (MS, ELG, SO), Harvard School of Public Health, Boston, MA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (RN, ZRQ, SAK, YS, KM, AM, JY, CSF, SO); Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (KI); Channing Division of Network Medicine, Department of Medicine (CSF, ELG, SO, ATC) and Department of Pathology (SO), Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (ATC)
| |
Collapse
|
49
|
Milligan G, Alvarez-Curto E, Watterson KR, Ulven T, Hudson BD. Characterizing pharmacological ligands to study the long-chain fatty acid receptors GPR40/FFA1 and GPR120/FFA4. Br J Pharmacol 2015; 172:3254-65. [PMID: 25131623 DOI: 10.1111/bph.12879] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/05/2014] [Accepted: 08/11/2014] [Indexed: 02/06/2023] Open
Abstract
The free fatty acid receptors (FFA) 1 (previously designated GPR40) and FFA4 (previously GPR120) are two GPCRs activated by saturated and unsaturated longer-chain free fatty acids. With expression patterns and functions anticipated to directly or indirectly promote insulin secretion, provide homeostatic control of blood glucose and improve tissue insulin sensitivity, both receptors are being studied as potential therapeutic targets for the control of type 2 diabetes. Furthermore, genetic and systems biology studies in both humans and mouse models link FFA4 receptors to diabetes and obesity. Although activated by the same group of free fatty acids, FFA1 and FFA4 receptors are not closely related and, while the basis of recognition of fatty acids by FFA1 receptors is similar to that of the short-chain fatty acid receptors FFA2 and FFA3, the amino acid residues involved in endogenous ligand recognition by FFA4 receptors are more akin to those of the sphingosine 1 phosphate receptor S1P1 . Screening and subsequent medicinal chemistry programmes have developed a number of FFA1 receptor selective agonists that are effective in promoting insulin secretion in a glucose concentration-dependent manner, and in lowering blood glucose levels. However, the recent termination of Phase III clinical trials employing TAK-875/fasiglifam has caused a setback and raises important questions over the exact nature and mechanistic causes of the problems. Progress in the identification and development of highly FFA4 receptor-selective pharmacological tools has been less rapid and several issues remain to be clarified to fully validate this receptor as a therapeutic target. Despite this, the ongoing development of a range of novel ligands offers great opportunities to further unravel the contributions of these receptors.
Collapse
Affiliation(s)
- G Milligan
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - E Alvarez-Curto
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - K R Watterson
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - T Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - B D Hudson
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| |
Collapse
|
50
|
Abstract
A number of studies have evaluated the role of gene-diet interaction in the etiology of colorectal cancer (CRC). Historically, these studies focused on established dietary risk factors and genes involved in their metabolism. However, results from these candidate gene studies were inconsistent, possibly due to multiple testing and publication bias. In recent years, genome-wide association studies have identified a number of CRC susceptibility loci, and subsequent meta-analyses have observed limited evidence that diet may modify the risk associated with these susceptibility loci. Statistical techniques have been recently developed to evaluate the presence of interaction across the entire genome; results from these genome-wide studies have demonstrated limited evidence of interaction and have failed to replicate results from candidate gene studies and those using established susceptibility loci. However, larger sample sizes are likely needed to elucidate modest or weak interaction in genome-wide studies of gene-diet interaction.
Collapse
|