1
|
Mercatante D, Curró S, Rosignoli P, Cardenia V, Sordini B, Taticchi A, Rodriguez-Estrada MT, Fabiani R. Effects of Phenols from Olive Vegetation Water on Mutagenicity and Genotoxicity of Stored-Cooked Beef Patties. Antioxidants (Basel) 2024; 13:695. [PMID: 38929134 PMCID: PMC11200613 DOI: 10.3390/antiox13060695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
This explorative study aimed to assess the mutagenicity and genotoxicity of stored-cooked beef patties formulated with and without phenols (7.00 mg of phenols/80-g patty) extracted from olive vegetation water (OVW), as related to the formation of cholesterol oxidation products (COPs) and heterocyclic amines (HCAs). The patties were packaged in a modified atmosphere, sampled during cold storage (4 °C) for 9 days, and grilled at 200 °C. The genotoxicity was evaluated by the Comet assay. The patty extract was found to be genotoxic on primary peripheral blood mononuclear cells (PBMCs), while no mutagenicity was detected. The addition of OVW phenols significantly decreased the genotoxicity of the patty extract and reduced the total COPs content in stored-cooked patties (4.59 times lower than control); however, it did not affect the content of total HCAs (31.51-36.31 ng/patty) and the revertants' number. Therefore, these results demonstrate that the OVW phenols were able to counteract the formation of genotoxic compounds in stored-cooked beef patties.
Collapse
Affiliation(s)
- Dario Mercatante
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - Sarah Curró
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy;
| | - Patrizia Rosignoli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06129 Perugia, Italy; (P.R.); (R.F.)
| | - Vladimiro Cardenia
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10124 Torino, Italy;
| | - Beatrice Sordini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy;
| | - Agnese Taticchi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy;
| | - Maria Teresa Rodriguez-Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
- Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum—University of Bologna, 47521 Cesena, Italy
| | - Roberto Fabiani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06129 Perugia, Italy; (P.R.); (R.F.)
| |
Collapse
|
2
|
Scicchitano S, Vecchio E, Battaglia AM, Oliverio M, Nardi M, Procopio A, Costanzo F, Biamonte F, Faniello MC. The Double-Edged Sword of Oleuropein in Ovarian Cancer Cells: From Antioxidant Functions to Cytotoxic Effects. Int J Mol Sci 2023; 24:ijms24010842. [PMID: 36614279 PMCID: PMC9821453 DOI: 10.3390/ijms24010842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Oleuropein plays a key role as a pro-oxidant as well as an antioxidant in cancer. In this study, the activity of oleuropein, in an in vitro model of ovarian (OCCs) and breast cancer cells (BCCs) was investigated. Cell viability and cell death were analyzed. Oxidative stress was measured by CM-H2DCFDA flow cytometry assay. Mitochondrial dysfunction was evaluated based on mitochondrial reactive oxygen species (ROS) and GPX4 protein levels. Further, the effects on iron metabolism were analyzed by measuring the intracellular labile iron pool (LIP). We confirmed that high doses of oleuropein show anti-proliferative and pro-apoptotic activity on HEY and MCF-7 cells. Moreover, our results indicate that low doses of oleuropein impair cell viability without affecting the mortality of cells, and also decrease the LIP and ROS levels, keeping them unchanged in MCF-7 cells. For the first time, our data show that low doses of oleuropein reduce erastin-mediated cell death. Interestingly, oleuropein decreases the levels of intracellular ROS and LIP in OCCs treated with erastin. Noteworthily, we observed an increased amount of ROS scavenging enzyme GPX4 together with a consistent reduction in mitochondrial ROS, confirming a reduction in oxidative stress in this model.
Collapse
Affiliation(s)
- Stefania Scicchitano
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Eleonora Vecchio
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Centre of Services, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Martina Battaglia
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Manuela Oliverio
- Department of Health Science, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Monica Nardi
- Department of Health Science, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Procopio
- Department of Health Science, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| | - Francesco Costanzo
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Centre of Services, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Flavia Biamonte
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Centre of Services, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Concetta Faniello
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Chen WQ, Zhang XY. 1,3-Butadiene: a ubiquitous environmental mutagen and its associations with diseases. Genes Environ 2022; 44:3. [PMID: 35012685 PMCID: PMC8744311 DOI: 10.1186/s41021-021-00233-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/27/2021] [Indexed: 01/09/2023] Open
Abstract
1,3-Butadiene (BD) is a petrochemical manufactured in high volumes. It is a human carcinogen and can induce lymphohematopoietic cancers, particularly leukemia, in occupationally-exposed workers. BD is an air pollutant with the major environmental sources being automobile exhaust and tobacco smoke. It is one of the major constituents and is considered the most carcinogenic compound in cigarette smoke. The BD concentrations in urban areas usually vary between 0.01 and 3.3 μg/m3 but can be significantly higher in some microenvironments. For BD exposure of the general population, microenvironments, particularly indoor microenvironments, are the primary determinant and environmental tobacco smoke is the main contributor. BD has high cancer risk and has been ranked the second or the third in the environmental pollutants monitored in most urban areas, with the cancer risks exceeding 10-5. Mutagenicity/carcinogenicity of BD is mediated by its genotoxic metabolites but the specific metabolite(s) responsible for the effects in humans have not been determined. BD can be bioactivated to yield three mutagenic epoxide metabolites by cytochrome P450 enzymes, or potentially be biotransformed into a mutagenic chlorohydrin by myeloperoxidase, a peroxidase almost specifically present in neutrophils and monocytes. Several urinary BD biomarkers have been developed, among which N-acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine is the most sensitive and is suitable for biomonitoring BD exposure in the general population. Exposure to BD has been associated with leukemia, cardiovascular disease, and possibly reproductive effects, and may be associated with several cancers, autism, and asthma in children. Collectively, BD is a ubiquitous pollutant that has been associated with a range of adverse health effects and diseases with children being a subpopulation with potentially greater susceptibility. Its adverse effects on human health may have been underestimated and more studies are needed.
Collapse
Affiliation(s)
- Wan-Qi Chen
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin-Yu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
4
|
Karakoç MD, Sekkin S. Effects of Oleuropein on Epirubicin and Cyclophosphamide Combination Treatment in Rats. Turk J Pharm Sci 2021; 18:420-429. [PMID: 34496482 DOI: 10.4274/tjps.galenos.2020.69008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objectives Oleuropein is the main bioactive polyphenolic compound in olive leaves, olive, and olive oil. Its anticancer, antioxidant, and antiinflammatory effects have been proven through several in vitro and in vivo studies. This study aimed to explore the effects of oleuropein on cyclophosphamideand epirubicin-induced toxicity in female rats. Materials and Methods Seven groups containing eight rats in each group were formed. Four cycles of 16 mg/kg/week of cyclophosphamide and 2.5 mg/kg/week of epirubicin were administered to the rats through intraperitoneal injection. Oleuropein (150 mg/kg/week) was simultaneously applied via oral gavage. The effects of oleuropein were examined with hemogram tests in whole blood samples and biochemical analysis in serum samples. Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the serum samples were analyzed through enzyme-linked immunosorbent assay. Subsequently, a comet assay was performed using lymphocyte DNA. The levels of oxidant [i.e., malondialdehyde (MDA)] and antioxidants [i.e., catalase (CAT), glutathione (GSH), and superoxide dismutase (SOD)] were measured in the heart, kidney, and liver tissues. Results Oleuropein could reduce DNA damage and serum TNF-α and IL-6 levels. It also ameliorated some hemogram and biochemical parameters that deteriorated due to antineoplastic drugs. It increased the amounts of antioxidants (GSH, SOD, and CAT) and reduced the level of MDA in the heart, kidney, and liver tissues. Conclusion Oleuropein might be a beneficial agent against toxicity caused by the combination treatment of cyclophosphamide and epirubicin. Further studies should be performed to demonstrate the protective effects of oleuropein against antineoplastic induced-toxicity precisely.
Collapse
Affiliation(s)
- Metin Deniz Karakoç
- Aydın Adnan Menderes University Health Sciences Institute, Department of Pharmacology and Toxicology, Aydın, Turkey
| | - Selim Sekkin
- Aydın Adnan Menderes University Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Aydın, Turkey
| |
Collapse
|
5
|
Lagoa R, Marques-da-Silva D, Diniz M, Daglia M, Bishayee A. Molecular mechanisms linking environmental toxicants to cancer development: Significance for protective interventions with polyphenols. Semin Cancer Biol 2020; 80:118-144. [PMID: 32044471 DOI: 10.1016/j.semcancer.2020.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/25/2020] [Accepted: 02/01/2020] [Indexed: 12/12/2022]
Abstract
Human exposure to environmental toxicants with diverse mechanisms of action is a growing concern. In addition to well-recognized carcinogens, various chemicals in environmental and occupational settings have been suggested to impact health, increasing susceptibility to cancer by inducing genetic and epigenetic changes. Accordingly, in this review, we have discussed recent insights into the pathological mechanisms of these chemicals, namely their effects on cell redox and calcium homeostasis, mitochondria and inflammatory signaling, with a focus on the possible implications for multi-stage carcinogenesis and its reversal by polyphenols. Plant-derived polyphenols, such as epigallocatechin-gallate, resveratrol, curcumin and anthocyanins reduce the incidence of cancer and can be useful nutraceuticals for alleviating the detrimental outcomes of harmful pollutants. However, development of therapies based on polyphenol administration requires further studies to validate the biological efficacy, identifying effective doses, mode of action and new delivery forms. Innovative microphysiological testing models are presented and specific proposals for future trials are given. Merging the current knowledge of multifactorial actions of specific polyphenols and chief environmental toxicants, this work aims to potentiate the delivery of phytochemical-based protective treatments to individuals at high-risk due to environmental exposure.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Mário Diniz
- Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| |
Collapse
|
6
|
Fuccelli R, Fabiani R, Rosignoli P. Hydroxytyrosol Exerts Anti-Inflammatory and Anti-Oxidant Activities in a Mouse Model of Systemic Inflammation. Molecules 2018; 23:molecules23123212. [PMID: 30563131 PMCID: PMC6321432 DOI: 10.3390/molecules23123212] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
Hydroxytyrosol (3,4-dihydroxyphenil-ethanol, HT), the major phenol derived from olive oil consumption, has shown different anti-inflammatory and anti-oxidant activities in vitro which may explain the chronic-degenerative diseases preventive properties of olive oil. The aim of this study was to examine the ability of HT reduce inflammatory markers, Cyclooxygenase-2 (COX2) and Tumour Necrosis Factor alfa (TNF-α and oxidative stress in vivo on a mouse model of systemic inflammation. Balb/c mice were pre-treated with HT (40 and 80 mg/Kg b.w.) and then stimulated by intraperitoneal injection of lipopolysaccharide (LPS). Blood was collected to measure COX2 gene expression by qPCR and TNF-α level by ELISA kit in plasma. In addition, the total anti-oxidant power of plasma and the DNA damage were measured by FRAP test and COMET assay, respectively. LPS increased the COX2 expression, the TNF-α production and the DNA damage. HT administration prevented all LPS-induced effects and improved the anti-oxidant power of plasma. HT demonstrated in vivo anti-inflammatory and anti-oxidant abilities. The results may explain the health effects of olive oil in Mediterranean diet. HT represents an interesting molecule for the development of new nutraceuticals and functional food useful in chronic diseases prevention.
Collapse
Affiliation(s)
- Raffaela Fuccelli
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, del Giochetto Street, 06123 Perugia, Italy.
| | - Roberto Fabiani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, del Giochetto Street, 06123 Perugia, Italy.
| | - Patrizia Rosignoli
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, del Giochetto Street, 06123 Perugia, Italy.
| |
Collapse
|
7
|
Fuccelli R, Rosignoli P, Servili M, Veneziani G, Taticchi A, Fabiani R. Genotoxicity of heterocyclic amines (HCAs) on freshly isolated human peripheral blood mononuclear cells (PBMC) and prevention by phenolic extracts derived from olive, olive oil and olive leaves. Food Chem Toxicol 2018; 122:234-241. [PMID: 30321573 DOI: 10.1016/j.fct.2018.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 01/31/2023]
Abstract
In this study we investigated the genotoxic potential of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, (PhIP); 2-amino-3-methyl-3H-imidazo[4,5-f]quinoline, (IQ); 2-amino-3,8-dimethyl-imidazo[4,5-f]quinoxaline, (MeIQx) and 2-amino-3,4,8-trimethyl-3H-imidazo[4,5-f]quinoxaline (DiMeIQx) on human freshly isolated peripheral blood mononuclear cells (PBMC) by the comet assay. The preventive ability of three different phenolic extracts derived from olive (O-PE), virgin olive oil (OO-PE) and olive leaf (OL-PE) on PhIP induced DNA damage was also investigated. PhIP and IQ induced a significant DNA damage at the lowest concentration tested (100 μM), while the genotoxic effect of MeIQx and DiMeIQx become apparent only in the presence of DNA repair inhibitors Cytosine b-D-arabinofuranoside and Hydroxyurea (AraC/HU). The inclusion of metabolic activation (S9-mix) in the culture medium increased the genotoxicity of all HCAs tested. All three phenolic extracts showed an evident DNA damage preventive activity in a very low concentration range (0.1-1.0 μM of phenols) which could be easily reached in human tissues "in vivo" under a regular intake of virgin olive oil. These data further support the observation that consumption of olive and virgin olive oil may prevent the initiation step of carcinogenesis. The leaf waste could be an economic and simple source of phenolic compounds to be used as food additives or supplements.
Collapse
Affiliation(s)
- Raffaela Fuccelli
- Department of Chemistry, Biology and Biotechnology (Biochemistry and Molecular Biology Unit), via del Giochetto, 06126, Perugia, University of Perugia, Italy
| | - Patrizia Rosignoli
- Department of Chemistry, Biology and Biotechnology (Biochemistry and Molecular Biology Unit), via del Giochetto, 06126, Perugia, University of Perugia, Italy
| | - Maurizio Servili
- Department of Agricultural, Food and Environmental Science (Food Science and Technology Unit), via S. Costanzo, 06126, Perugia, University of Perugia, Italy
| | - Gianluca Veneziani
- Department of Agricultural, Food and Environmental Science (Food Science and Technology Unit), via S. Costanzo, 06126, Perugia, University of Perugia, Italy
| | - Agnese Taticchi
- Department of Agricultural, Food and Environmental Science (Food Science and Technology Unit), via S. Costanzo, 06126, Perugia, University of Perugia, Italy.
| | - Roberto Fabiani
- Department of Chemistry, Biology and Biotechnology (Biochemistry and Molecular Biology Unit), via del Giochetto, 06126, Perugia, University of Perugia, Italy.
| |
Collapse
|
8
|
Crespo MC, Tomé-Carneiro J, Dávalos A, Visioli F. Pharma-Nutritional Properties of Olive Oil Phenols. Transfer of New Findings to Human Nutrition. Foods 2018; 7:E90. [PMID: 29891766 PMCID: PMC6025313 DOI: 10.3390/foods7060090] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023] Open
Abstract
The Mediterranean diet has been long associated with improved cardiovascular prognosis, chemoprevention, and lower incidence of neurodegeneration. Of the multiple components of this diet, olive oil stands out because its use has historically been limited to the Mediterranean basin. The health benefits of olive oil and some of its components are being rapidly decoded. In this paper we review the most recent pharma-nutritional investigations on olive oil biophenols and their health effects, chiefly focusing on recent findings that elucidate their molecular mechanisms of action.
Collapse
Affiliation(s)
- M Carmen Crespo
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Joao Tomé-Carneiro
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Francesco Visioli
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain.
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
9
|
Sepporta MV, Fuccelli R, Rosignoli P, Ricci G, Servili M, Fabiani R. Oleuropein Prevents Azoxymethane-Induced Colon Crypt Dysplasia and Leukocytes DNA Damage in A/J Mice. J Med Food 2016; 19:983-989. [DOI: 10.1089/jmf.2016.0026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Maria Vittoria Sepporta
- Biochemistry and Molecular Biology Unit, Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Raffaela Fuccelli
- Biochemistry and Molecular Biology Unit, Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Patrizia Rosignoli
- Biochemistry and Molecular Biology Unit, Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Giovanni Ricci
- Laboratory of Histology, Central Animal Unit, University of Perugia, Perugia, Italy
| | - Maurizio Servili
- Food Science and Technology Unit, Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| | - Roberto Fabiani
- Biochemistry and Molecular Biology Unit, Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
10
|
Zhao G, Zhang R, Zhang M. Effects of high hydrostatic pressure processing and subsequent storage on phenolic contents and antioxidant activity in fruit and vegetable products. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13203] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guanghe Zhao
- Sericultural & Agri-Food Research Institute; Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods; Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing; Guangzhou 510610 China
- College of Food Science & Technology; Huazhong Agricultural University; Wuhan 430070 China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute; Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods; Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing; Guangzhou 510610 China
- College of Food Science & Technology; Huazhong Agricultural University; Wuhan 430070 China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute; Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods; Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing; Guangzhou 510610 China
| |
Collapse
|