1
|
Nandakumar S, Singh N, Tharani AR, Pankiw M, Brezden-Masley C. Intravenous iron and iron deficiency anemia in patients with gastrointestinal cancer: A systematic review. PLoS One 2024; 19:e0302964. [PMID: 38776289 PMCID: PMC11111077 DOI: 10.1371/journal.pone.0302964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/17/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Iron deficiency anemia (IDA) is a prevalent hematological complication associated with gastrointestinal (GI) cancers due to an increased loss of iron and decreased iron absorption. The purpose of this systematic review is to evaluate the use of parenteral iron to treat IDA in patients with GI cancer. METHODS PubMed, Cochrane, EMBASE, CINHAL and Scopus were searched from January 1, 2010 to September 29, 2023 with no language restrictions. We excluded editorials, case reports, abstracts, conference papers, and poster presentations. Studies were included if they discussed IDA, GI neoplasms, use of iron supplementation (with or without erythropoietin-stimulating agents [ESAs]), defined anemia and had an adult patient population. We assessed the efficacy of parenteral iron in comparison to other iron supplementation methods when treating IDA in patients with GI cancer. The Cochrane Risk of Bias Tool 2 (RoB 2) and the Risk Of Bias In Non-randomized Studies of Interventions (ROBINS-I) assessment tools were used to assess the quality of the included studies. Moreover, the Cochrane Effective Practice and Organization data collection form was used to collect pertinent study information. RESULTS Our search yielded 3,969 studies across all databases. Twenty-one studies were included (6 randomized control trials; 15 non-randomized studies). Of the 15 studies evaluating hemoglobin (Hb) response, seven studies found an increase in Hb levels when patients were treated with IV iron. The 14 studies evaluating red blood cell (RBC) transfusion rates found conflicting differences in RBC transfusion needs when treated with IV iron. Studies analyzing health related outcomes typically found an increase in quality of life and decreased post-operative complications. DISCUSSION This review demonstrates improved outcomes of IDA in patients with GI cancer treated with IV iron instead of other iron supplementation methods. Timely diagnosis and appropriate IDA management can greatly improve quality of life in this patient population, especially if myelosuppressive chemotherapy is required.
Collapse
Affiliation(s)
| | - Navreet Singh
- Department of Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Maya Pankiw
- Department of Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Christine Brezden-Masley
- Department of Medicine, Mount Sinai Hospital, Toronto, ON, Canada
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Dickson EA, Ng O, Keeler BD, Wilcock A, Brookes MJ, Acheson AG. The ICaRAS randomised controlled trial: Intravenous iron to treat anaemia in people with advanced cancer - feasibility of recruitment, intervention and delivery. Palliat Med 2023; 37:372-383. [PMID: 36609173 PMCID: PMC10021128 DOI: 10.1177/02692163221145604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Anaemia is highly prevalent in people with advanced, palliative cancer yet sufficiently effective and safe treatments are lacking. Oral iron is poorly tolerated, and blood transfusion offers only transient benefits. Intravenous iron has shown promise as an effective treatment for anaemia but its use for people with advanced, palliative cancer lacks evidence. AIMS To assess feasibility of the trial design according to screening, recruitment, and attrition rates. To evaluate the efficacy of intravenous iron to treat anaemia in people with solid tumours, receiving palliative care. DESIGN A multicentre, randomised, double blind, placebo-controlled trial of intravenous iron (ferric derisomaltose, Monofer®). Outcomes included trial feasibility, change in blood indices, and change in quality of life via three validated questionnaires (EQ5D5L, QLQC30, and the FACIT-F) over 8 weeks. (ISRCTN; 13370767). SETTING/PARTICIPANTS People with anaemia and advanced solid tumours who were fatigued with a performance status ⩽2 receiving support from a specialist palliative care service. RESULTS 34 participants were randomised over 16 months (17 iron, 17 placebo). Among those eligible 47% of people agreed to participate and total study attrition was 26%. Blinding was successful in all participants. There were no serious adverse reactions. Results indicated that intravenous iron may be efficacious at improving participant haemoglobin, iron stores and select fatigue specific quality of life measures compared to placebo. CONCLUSION The trial was feasible according to recruitment and attrition rates. Intravenous iron increased haemoglobin and may improve fatigue specific quality of life measures compared to placebo. A definitive trial is required for confirmation.
Collapse
Affiliation(s)
- Edward A Dickson
- National Institute for Health Research
Biomedical Research Centre in Gastrointestinal and Liver Diseases, Nottingham
University Hospitals NHS Trust, Nottingham, UK
- Department of Colorectal Surgery,
Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham,
UK
| | - Oliver Ng
- Department of Colorectal Surgery,
Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham,
UK
| | - Barrie D Keeler
- Milton Keynes University Hospitals NHS
Foundation Trust, Milton Keynes, UK
- The University of Buckingham,
Buckingham, MK18 1EG, UK
| | - Andrew Wilcock
- Department of Palliative Care,
University of Nottingham, Nottingham, UK
| | - Matthew J Brookes
- Department of Gastroenterology, Royal
Wolverhampton NHS Trust, Wolverhampton, UK
- Faculty of Science and Engineering,
University of Wolverhampton, Wolverhampton, UK
| | - Austin G Acheson
- National Institute for Health Research
Biomedical Research Centre in Gastrointestinal and Liver Diseases, Nottingham
University Hospitals NHS Trust, Nottingham, UK
- Department of Colorectal Surgery,
Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham,
UK
| |
Collapse
|
3
|
Intravenous Iron Supplementation for the Treatment of Chemotherapy-Induced Anemia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Clin Med 2022; 11:jcm11144156. [PMID: 35887920 PMCID: PMC9317757 DOI: 10.3390/jcm11144156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
Background: The pathophysiology of cancer-related anemia is multifactorial, including that of chemotherapy-induced anemia (CIA). The guidelines are not consistent in their approach to the use of intravenous (IV) iron in patients with cancer as part of the clinical practice. Materials and methods: All randomized controlled trials that compared IV iron with either no iron or iron taken orally for the treatment of CIA were included. We excluded trials if erythropoiesis-stimulating agents (ESAs) were used. The primary outcome was the percentage of patients requiring a red blood cell (RBC) transfusion during the study period. The secondary outcomes included the hematopoietic response (an increase in the Hb level by more than 1 g/dL or an increase above 11 g/dL), the iron parameters and adverse events. For the dichotomous data, risk ratios (RRs) with 95% confidence intervals (Cis) were estimated and pooled. For the continuous data, the mean differences were calculated. A fixed effect model was used, except in the event of significant heterogeneity between the trials (p < 0.10; I2 > 40%), in which we used a random effects model. Results: A total of 8 trials published between January 1990 and July 2021 that randomized 1015 patients fulfilled the inclusion criteria. Of these, 553 patients were randomized to IV iron and were compared with 271 patients randomized to oral iron and 191 to no iron. IV iron decreased the percentage of patients requiring a blood transfusion compared with oral iron (RR 0.72; 95% CI 0.55−0.95) with a number needed to treat of 20 (95% CI 11−100). IV iron increased the hematopoietic response (RR 1.23; 95% CI 1.01−1.5). There was no difference with respect to the risk of adverse events (RR 0.97; 95% CI 0.88−1.07; 8 trials) or severe adverse events (RR 1.09; 95% CI 0.76−1.57; 8 trials). Conclusions: IV iron resulted in a decrease in the need for RBC transfusions, with no difference in adverse events in patients with CIA. IV iron for the treatment of CIA should be considered in clinical practice.
Collapse
|
4
|
Adams A, Scheckel B, Habsaoui A, Haque M, Kuhr K, Monsef I, Bohlius J, Skoetz N. Intravenous iron versus oral iron versus no iron with or without erythropoiesis- stimulating agents (ESA) for cancer patients with anaemia: a systematic review and network meta-analysis. Cochrane Database Syst Rev 2022; 6:CD012633. [PMID: 35724934 PMCID: PMC9208863 DOI: 10.1002/14651858.cd012633.pub2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Anaemia is common among cancer patients and they may require red blood cell transfusions. Erythropoiesis-stimulating agents (ESAs) and iron might help in reducing the need for red blood cell transfusions. However, it remains unclear whether the combination of both drugs is preferable compared to using one drug. OBJECTIVES To systematically review the effect of intravenous iron, oral iron or no iron in combination with or without ESAs to prevent or alleviate anaemia in cancer patients and to generate treatment rankings using network meta-analyses (NMAs). SEARCH METHODS We identified studies by searching bibliographic databases (CENTRAL, MEDLINE, Embase; until June 2021). We also searched various registries, conference proceedings and reference lists of identified trials. SELECTION CRITERIA We included randomised controlled trials comparing intravenous, oral or no iron, with or without ESAs for the prevention or alleviation of anaemia resulting from chemotherapy, radiotherapy, combination therapy or the underlying malignancy in cancer patients. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed risk of bias. Outcomes were on-study mortality, number of patients receiving red blood cell transfusions, number of red blood cell units, haematological response, overall mortality and adverse events. We conducted NMAs and generated treatment rankings. We assessed the certainty of the evidence using GRADE. MAIN RESULTS Ninety-six trials (25,157 participants) fulfilled our inclusion criteria; 62 trials (24,603 participants) could be considered in the NMA (12 different treatment options). Here we present the comparisons of ESA with or without iron and iron alone versus no treatment. Further results and subgroup analyses are described in the full text. On-study mortality We estimated that 92 of 1000 participants without treatment for anaemia died up to 30 days after the active study period. Evidence from NMA (55 trials; 15,074 participants) suggests that treatment with ESA and intravenous iron (12 of 1000; risk ratio (RR) 0.13, 95% confidence interval (CI) 0.01 to 2.29; low certainty) or oral iron (34 of 1000; RR 0.37, 95% CI 0.01 to 27.38; low certainty) may decrease or increase and ESA alone (103 of 1000; RR 1.12, 95% CI 0.92 to 1.35; moderate certainty) probably slightly increases on-study mortality. Additionally, treatment with intravenous iron alone (271 of 1000; RR 2.95, 95% CI 0.71 to 12.34; low certainty) may increase and oral iron alone (24 of 1000; RR 0.26, 95% CI 0.00 to 19.73; low certainty) may increase or decrease on-study mortality. Haematological response We estimated that 90 of 1000 participants without treatment for anaemia had a haematological response. Evidence from NMA (31 trials; 6985 participants) suggests that treatment with ESA and intravenous iron (604 of 1000; RR 6.71, 95% CI 4.93 to 9.14; moderate certainty), ESA and oral iron (527 of 1000; RR 5.85, 95% CI 4.06 to 8.42; moderate certainty), and ESA alone (467 of 1000; RR 5.19, 95% CI 4.02 to 6.71; moderate certainty) probably increases haematological response. Additionally, treatment with oral iron alone may increase haematological response (153 of 1000; RR 1.70, 95% CI 0.69 to 4.20; low certainty). Red blood cell transfusions We estimated that 360 of 1000 participants without treatment for anaemia needed at least one transfusion. Evidence from NMA (69 trials; 18,684 participants) suggests that treatment with ESA and intravenous iron (158 of 1000; RR 0.44, 95% CI 0.31 to 0.63; moderate certainty), ESA and oral iron (144 of 1000; RR 0.40, 95% CI 0.24 to 0.66; moderate certainty) and ESA alone (212 of 1000; RR 0.59, 95% CI 0.51 to 0.69; moderate certainty) probably decreases the need for transfusions. Additionally, treatment with intravenous iron alone (268 of 1000; RR 0.74, 95% CI 0.43 to 1.28; low certainty) and with oral iron alone (333 of 1000; RR 0.92, 95% CI 0.54 to 1.57; low certainty) may decrease or increase the need for transfusions. Overall mortality We estimated that 347 of 1000 participants without treatment for anaemia died overall. Low-certainty evidence from NMA (71 trials; 21,576 participants) suggests that treatment with ESA and intravenous iron (507 of 1000; RR 1.46, 95% CI 0.87 to 2.43) or oral iron (482 of 1000; RR 1.39, 95% CI 0.60 to 3.22) and intravenous iron alone (521 of 1000; RR 1.50, 95% CI 0.63 to 3.56) or oral iron alone (534 of 1000; RR 1.54, 95% CI 0.66 to 3.56) may decrease or increase overall mortality. Treatment with ESA alone may lead to little or no difference in overall mortality (357 of 1000; RR 1.03, 95% CI 0.97 to 1.10; low certainty). Thromboembolic events We estimated that 36 of 1000 participants without treatment for anaemia developed thromboembolic events. Evidence from NMA (50 trials; 15,408 participants) suggests that treatment with ESA and intravenous iron (66 of 1000; RR 1.82, 95% CI 0.98 to 3.41; moderate certainty) probably slightly increases and with ESA alone (66 of 1000; RR 1.82, 95% CI 1.34 to 2.47; high certainty) slightly increases the number of thromboembolic events. None of the trials reported results on the other comparisons. Thrombocytopenia or haemorrhage We estimated that 76 of 1000 participants without treatment for anaemia developed thrombocytopenia/haemorrhage. Evidence from NMA (13 trials, 2744 participants) suggests that treatment with ESA alone probably leads to little or no difference in thrombocytopenia/haemorrhage (76 of 1000; RR 1.00, 95% CI 0.67 to 1.48; moderate certainty). None of the trials reported results on other comparisons. Hypertension We estimated that 10 of 1000 participants without treatment for anaemia developed hypertension. Evidence from NMA (24 trials; 8383 participants) suggests that treatment with ESA alone probably increases the number of hypertensions (29 of 1000; RR 2.93, 95% CI 1.19 to 7.25; moderate certainty). None of the trials reported results on the other comparisons. AUTHORS' CONCLUSIONS When considering ESAs with iron as prevention for anaemia, one has to balance between efficacy and safety. Results suggest that treatment with ESA and iron probably decreases number of blood transfusions, but may increase mortality and the number of thromboembolic events. For most outcomes the different comparisons within the network were not fully connected, so ranking of all treatments together was not possible. More head-to-head comparisons including all evaluated treatment combinations are needed to fill the gaps and prove results of this review.
Collapse
Affiliation(s)
- Anne Adams
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Benjamin Scheckel
- Institute of Health Economics and Clinical Epidemiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anissa Habsaoui
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Madhuri Haque
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kathrin Kuhr
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julia Bohlius
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Shah AA, Donovan K, Seeley C, Dickson EA, Palmer AJR, Doree C, Brunskill S, Reid J, Acheson AG, Sugavanam A, Litton E, Stanworth SJ. Risk of Infection Associated With Administration of Intravenous Iron: A Systematic Review and Meta-analysis. JAMA Netw Open 2021; 4:e2133935. [PMID: 34767026 PMCID: PMC8590171 DOI: 10.1001/jamanetworkopen.2021.33935] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Importance Intravenous iron is recommended by many clinical guidelines based largely on its effectiveness in reducing anemia. However, the association with important safety outcomes, such as infection, remains uncertain. Objective To examine the risk of infection associated with intravenous iron compared with oral iron or no iron. Data Sources Medline, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) were searched for randomized clinical trials (RCTs) from 1966 to January 31, 2021. Ongoing trials were sought from ClinicalTrials.gov, CENTRAL, and the World Health Organization International Clinical Trials Search Registry Platform. Study Selection Pairs of reviewers identified RCTs that compared intravenous iron with oral iron or no iron across all patient populations, excluding healthy volunteers. Nonrandomized studies published since January 1, 2007, were also included. A total of 312 full-text articles were assessed for eligibility. Data Extraction and Synthesis Data extraction and risk of bias assessments were performed according to the Preferred Reporting Items of Systematic Reviews and Meta-analyses (PRISMA) and Cochrane recommendations, and the quality of evidence was assessed using the GRADE (Grades of Recommendation, Assessment, Development, and Evaluation) approach. Two reviewers extracted data independently. A random-effects model was used to synthesize data from RCTs. A narrative synthesis was performed to characterize the reporting of infection. Main Outcomes and Measures The primary outcome was risk of infection. Secondary outcomes included mortality, hospital length of stay, and changes in hemoglobin and red blood cell transfusion requirements. Measures of association were reported as risk ratios (RRs) or mean differences. Results A total of 154 RCTs (32 920 participants) were included in the main analysis. Intravenous iron was associated with an increased risk of infection when compared with oral iron or no iron (RR, 1.17; 95% CI, 1.04-1.31; I2 = 37%; moderate certainty of evidence). Intravenous iron also was associated with an increase in hemoglobin (mean difference, 0.57 g/dL; 95% CI, 0.50-0.64 g/dL; I2 = 94%) and a reduction in the risk of requiring a red blood cell transfusion (RR, 0.93; 95% CI, 0.76-0.89; I2 = 15%) when compared with oral iron or no iron. There was no evidence of an effect on mortality or hospital length of stay. Conclusions and Relevance In this large systematic review and meta-analysis, intravenous iron was associated with an increased risk of infection. Well-designed studies, using standardized definitions of infection, are required to understand the balance between this risk and the potential benefits.
Collapse
Affiliation(s)
- Akshay A. Shah
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Biomedical Research Centre Haematology Theme, Oxford, United Kingdom
- Adult Intensive Care Unit, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Killian Donovan
- Adult Intensive Care Unit, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Claire Seeley
- Department of Anaesthesia, Royal Berkshire Hospitals NHS Foundation Trust, Reading, United Kingdom
| | - Edward A. Dickson
- National Institute for Health Research Biomedical Research Centre in Gastrointestinal and Liver Diseases, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
- Department of Colorectal Surgery, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, United Kingdom
| | - Antony J. R. Palmer
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Carolyn Doree
- Systematic Review Initiative, NHS Blood & Transplant, Oxford, United Kingdom
| | - Susan Brunskill
- Systematic Review Initiative, NHS Blood & Transplant, Oxford, United Kingdom
| | - Jack Reid
- Department of Anaesthesia, Brighton and Sussex University Hospitals NHS Trust, Brighton, United Kingdom
| | - Austin G. Acheson
- National Institute for Health Research Biomedical Research Centre in Gastrointestinal and Liver Diseases, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
- Department of Colorectal Surgery, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, United Kingdom
| | - Anita Sugavanam
- Department of Anaesthesia, Brighton and Sussex University Hospitals NHS Trust, Brighton, United Kingdom
| | - Edward Litton
- Intensive Care Unit, Fiona Stanley Hospital, Perth, Australia
| | - Simon J. Stanworth
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Biomedical Research Centre Haematology Theme, Oxford, United Kingdom
- Systematic Review Initiative, NHS Blood & Transplant, Oxford, United Kingdom
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
6
|
Kassianides X, Bodington R, Bhandari S. An evaluation of ferric derisomaltose as a treatment for anemia. Expert Rev Hematol 2020; 14:7-29. [PMID: 33317356 DOI: 10.1080/17474086.2021.1858406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Originally approved in Europe in 2009, ferric derisomaltose is the most recently authorized intravenous iron compound in the United States of America (2020). Ferric derisomaltose given as a rapid high-dose infusion can allow complete iron repletion in a single dose and it is now widely used in the treatment of iron deficiency. Areas covered: The chemistry, pharmacodynamics and pharmacokinetics of ferric derisomaltose are reviewed. Results from phase II, III and IV trials regarding efficacy and safety are presented. Mechanisms behind minor infusion reactions, hypersensitivity and hypophosphatemia are discussed. The economic impact of ferric derisomaltose use is presented. Data pertaining to the use of ferric derisomaltose in iron deficiency anemia, chronic kidney disease, inflammatory bowel disease, chronic heart failure, perioperative care and other patient groups are comprehensively covered. Expert opinion: Ferric derisomaltose is an effective intravenous iron formulation with a good safety profile, providing rapid, cost-effective iron repletion. Ferric derisomaltose releases low quantities of labile iron relative to older compounds. Anaphylaxis is extremely rare, and 'Fishbane' reactions are uncommon. Hypophosphatemia following ferric derisomaltose administration is infrequent in comparison to other intravenous irons such as ferric carboxymaltose. The scope of ferric derisomaltose use is growing with increasing research in these areas.
Collapse
Affiliation(s)
- Xenophon Kassianides
- Academic Renal Department, Hull University Teaching Hospitals NHS Trust and Hull York Medical School , Hull, UK
| | - Richard Bodington
- Academic Renal Department, Hull University Teaching Hospitals NHS Trust and Hull York Medical School , Hull, UK
| | - Sunil Bhandari
- Academic Renal Department, Hull University Teaching Hospitals NHS Trust and Hull York Medical School , Hull, UK
| |
Collapse
|
7
|
Sinclair RC, Duffield KE, de Pennington JH. Improving preoperative haemoglobin using a quality improvement approach to treat iron deficiency anaemia. BMJ Open Qual 2020; 9:bmjoq-2019-000776. [PMID: 31986115 PMCID: PMC7011899 DOI: 10.1136/bmjoq-2019-000776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022] Open
Abstract
Optimising preoperative haemoglobin (Hb) before elective surgery is recommended by the National Institute of Clinical Excellence. We have used a quality improvement (QI) approach to treat iron deficiency anaemia in patients presenting to the preoperative assessment clinic (PAC) before major elective oesophagogastric surgery. Through a series of three QI cycles, we have treated iron deficiency, improved preoperative haemoglobin (Hb) and reduced the rate of postoperative blood transfusion. Our methods have included the early diagnosis of iron deficiency at the PAC attendance, the development and implementation of a new clinical guideline on the treatment of preoperative anaemia and the introduction of a one-stop clinic facilitating same-day treatment with intravenous iron, where appropriate, in conjunction with comprehensive preoperative assessment. The incidence of severe preoperative anaemia (Hb<100 g/L) has fallen from 10% in 2014 to 1.6% in 2018. The overall incidence of preoperative anaemia (defined as Hb<130 g/L by international consensus statement) has reduced from 57.9% in 2014 to 43.9% in 2018. Blood transfusion rate has declined from 16% to 6.5% of patients between 2014 and 2018. In 2018, none of the patients who required a postoperative blood transfusion presented to theatre with preoperative anaemia, a significant change from prior to the interventions. There has been a reduction of 63% in the number of units transfused. The project has successfully optimised these patients, leading to improved preoperative Hb and reduced use of blood transfusion.
Collapse
Affiliation(s)
- Rhona Cf Sinclair
- Department of Anaesthesia, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Kate E Duffield
- Department of Anaesthesia, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | | |
Collapse
|