1
|
Kurl S, Kaur S, Mittal N, Kaur G. Mushrooms and Colorectal Cancer: Unveiling Mechanistic Insights and Therapeutic Innovations. Phytother Res 2024. [PMID: 39528260 DOI: 10.1002/ptr.8382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/26/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Nature has bestowed us with an abundant reservoir of resources that besides having nutritional value, are prolific mines of bioactive constituents with a plethora of medicinal activities. Mushrooms have been used since centuries in traditional system of medicine for their purported health benefits including anticancer activities. Thorough research, spanning over centuries in Japan, China, Korea, and the USA, has established the unique properties of mushrooms and their extractives in the prevention and treatment of various types cancer. The aim of the review article is to provide a comprehensive overview of the existing literature highlighting the potential relationship between mushrooms and colorectal cancer. Different databases such as PubMed, Web of Science, Google Scholar, and ScienceDirect were searched and a total of 62 articles and two book chapters were reviewed, and data were extracted. Multiple studies have demonstrated that mushrooms exhibit anticancer activities, effectively reducing adverse side effects such as nausea, myelosuppression, anemia, and sleeplessness. Furthermore, they have been shown to mitigate drug resistance following chemotherapy and radiation therapy. Certain species such as Antrodia, Pleurotus, Ganoderma, Lentinula, Hericium, Cantharellus, Clitocybe, Coprinopsis, Trametes, Sparassis, Lactarius, and so on manifest anticancer activity in colon. The article can help improve the scientific understanding of the co-relationship between mushrooms and colorectal cancer. This may help in advancing the research directions and integrating the mushroom-based strategies into current treatment protocols of colorectal cancer.
Collapse
Affiliation(s)
- Samridhi Kurl
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, Punjab, India
| | - Snimmer Kaur
- General William Polyclinic, Patiala, Punjab, India
| | - Neeraj Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Gurpreet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, Punjab, India
| |
Collapse
|
2
|
Lau MF, Phan CW, Sabaratnam V, Kuppusamy UR. Bibliometric, taxonomic, and medicinal perspectives of Ganoderma neo-japonicum Imazeki: A mini review. Mycology 2024; 15:360-373. [PMID: 39247898 PMCID: PMC11376291 DOI: 10.1080/21501203.2024.2302028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/01/2024] [Indexed: 09/10/2024] Open
Abstract
Ganoderma, a traditional medicine in Asian countries, has been used to prevent and treat various ailments for centuries. Ganoderma neo-japonicum (synonym Ganoderma bambusicola), also known as purple Lingzhi, is a species that is currently underutilised when compared to Ganoderma lucidum (Lingzhi). However, in recent decades, this mushroom has garnered significant attention due to its ethnomedicinal uses, especially in Southeast Asia regions like Malaysia. The taxonomy and nomenclature of this mushroom have been extensively studied. Numerous publications have reported that G. neo-japonicum displays a variety of medicinal properties, including antioxidation, anticancer, anti-hyperglycaemic, genoprotective, hepatoprotective, neuritogenic, and antidiabetic effects, both in vitro and in vivo. With the surge of research findings on this mushroom, this review aims to provide a systematic bibliometric analysis of G. neo-japonicum, published between 1991 to 2021. Additionally, the taxonomic description of this mushroom is discussed in detail. Our review reveals that G. neo-japonicum contains polysaccharides (α/β-D-glucans), triterpenoids, and sterols/ergosterol. However, the existing literature suggests that these active compounds have not yet been explored to their full potential as drug candidates. Moreover, most of the studies are preclinical and have several drawbacks. In conclusion, G. neo-japonicum possesses valuable pharmacological activities that merit further exploration.
Collapse
Affiliation(s)
- Meng Fei Lau
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Mushroom Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chia Wei Phan
- Mushroom Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Vikineswary Sabaratnam
- Mushroom Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Mushroom Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
You M, Zhao L, Song L. A novel protein extracted from Hemerocallis citrina Borani inhibits hepatocellular carcinoma cell proliferation by regulating mitochondria-dependent apoptosis and aerobic glycolysis. Food Sci Biotechnol 2024; 33:465-474. [PMID: 38222908 PMCID: PMC10786776 DOI: 10.1007/s10068-023-01358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 01/16/2024] Open
Abstract
Hemerocallis citrina Borani is a commonly consumed food in Asia and possesses many biologically active ingredients. In this study, a protein named Hemerocallis citrina Borani protein (HcBP) was purified using ammonium sulfate fractionation and anion exchange chromatography. Protease assays revealed that HcBP has peroxidase activity. Meanwhile, the UV absorption spectrum showed that HcBP contains heme. Notably, HcBP showed significant inhibitory effects on human hepatoma cancer cell proliferation. Mechanism investigations indicated that HcBP treatment resulted in overproduction of reactive oxygen species (ROS) and induced mitochondria-dependent apoptosis in human hepatoma cancer cells. Furthermore, we found HcBP not only downregulated pyruvate kinase M2 (PKM2) activity but also decreased the expression and nuclear levels of PKM2. The inhibition of PKM2 led to the downregulation of GLUT1, LDHA and PDK, and thus caused the suppression of glycolysis. In summary, our results suggested that HcBP has potential anti-hepatocellular carcinoma activity.
Collapse
Affiliation(s)
- Min You
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, 030006 China
| | - Lixia Zhao
- Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, 030006 China
| | - Li Song
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, 030006 China
- Xinghuacun College of Shanxi University, Taiyuan, 030006 China
| |
Collapse
|
4
|
Zhang RR, Zhang J, Guo X, Chen YY, Sun JY, Miao JL, Carpena M, Prieto M, Li NY, Zhou QX, Liu C. Molecular mechanisms of the chemical constituents from anti-inflammatory and antioxidant active fractions of Ganoderma neo-japonicum Imazeki. Curr Res Food Sci 2023; 6:100441. [PMID: 36756001 PMCID: PMC9900368 DOI: 10.1016/j.crfs.2023.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Ganoderma neo-japonicum Imazeki is a rare medicinal mushroom that has been reported to play a role in scavenging free radicals, protecting the liver, and inhibiting tumor cell activity. In this study, crude extracts were prepared, and 47 triterpenoids were identified by Ultra-high-performance liquid chromatography coupled with triple quadrupole time-of flight mass spectrometry (UHPLC-Triple TOF-MS/MS). Then, the crude extracts were subjected to column chromatography for the first time to obtain six fractions (Fr. (a), (b), (c), (d), (e) and (f)). Antioxidant and anti-inflammatory active tracking assays of all fractions found that Fr. (c) exhibited the strongest bioactivity. Subsequently, the chemical composition of Fr. (c) was clarified, and eight triterpenoids were determined in combination with the standard substances. In addition, this study demonstrated that Fr. (c) reduced the levels of inflammatory cytokines and reactive oxygen species (ROS) in LPS-stimulated RAW264.7 macrophages. Further studies showed that Fr. (c) could down-regulate the expression level of proteins associated of NF-κB signaling pathway, and upregulated Nrf2 and HO-1 protein level. In conclusion, our study showed that Fr. (c) inhibited LPS-mediated inflammatory response and oxidative stress by activating the Nrf2/HO-1 pathway and inactivating the NF-κB pathway. In the future, with the clearing of its composition and activity mechanism, Fr. (c) of G. neo-japonicum are expected to become a functional food for health and longevity.
Collapse
Affiliation(s)
- Rui-rui Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, PR China,Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China
| | - Jing Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China
| | - Xu Guo
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China
| | - Ying-ying Chen
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China
| | - Jin-yue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China
| | - Jia-lin Miao
- Weihai Yuwang Group CO., LTD, Wei Hai, 264209, Shandong, PR China
| | - M. Carpena
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004, Ourense, Spain
| | - M.A. Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004, Ourense, Spain,Agrifood Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Spain,Corresponding authors. Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004, Ourense, Spain.
| | - Ning-yang Li
- College Food Science and Engineering, Shandong Agricultural University, Tai An, 271018, Shandong, PR China,Corresponding author.
| | - Qing-xin Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, PR China,Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China,Corresponding authors. Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, PR China.
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China,Weihai Yuwang Group CO., LTD, Wei Hai, 264209, Shandong, PR China,Corresponding author. Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China.
| |
Collapse
|