1
|
Jiang X, Jiang Z, Cheng Q, Sun W, Jiang M, Sun Y. Cholecystectomy promotes the development of colorectal cancer by the alternation of bile acid metabolism and the gut microbiota. Front Med (Lausanne) 2022; 9:1000563. [PMID: 36213655 PMCID: PMC9540502 DOI: 10.3389/fmed.2022.1000563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
The incidence and mortality of colorectal cancer (CRC) have been markedly increasing worldwide, causing a tremendous burden to the healthcare system. Therefore, it is crucial to investigate the risk factors and pathogenesis of CRC. Cholecystectomy is a gold standard procedure for treating symptomatic cholelithiasis and gallstone diseases. The rhythm of bile acids entering the intestine is altered after cholecystectomy, which leads to metabolic disorders. Nonetheless, emerging evidence suggests that cholecystectomy might be associated with the development of CRC. It has been reported that alterations in bile acid metabolism and gut microbiota are the two main reasons. However, the potential mechanisms still need to be elucidated. In this review, we mainly discussed how bile acid metabolism, gut microbiota, and the interaction between the two factors influence the development of CRC. Subsequently, we summarized the underlying mechanisms of the alterations in bile acid metabolism after cholecystectomy including cellular level, molecular level, and signaling pathways. The potential mechanisms of the alterations on gut microbiota contain an imbalance of bile acid metabolism, cellular immune abnormality, acid-base imbalance, activation of cancer-related pathways, and induction of toxin, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Xi Jiang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhongxiu Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qi Cheng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yan Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- *Correspondence: Yan Sun,
| |
Collapse
|
2
|
Liu Y, Zhang S, Zhou W, Hu D, Xu H, Ji G. Secondary Bile Acids and Tumorigenesis in Colorectal Cancer. Front Oncol 2022; 12:813745. [PMID: 35574393 PMCID: PMC9097900 DOI: 10.3389/fonc.2022.813745] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/21/2022] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and deadly cancers in the world and is a typical inflammatory tumor. In recent years, the incidence of CRC has been increasing year by year. There is evidence that the intake of high-fat diet and overweight are associated with the incidence of CRC, among which bile acids play a key role in the pathogenesis of the disease. Studies on the relationship between bile acid metabolism and the occurrence of CRC have gradually become a hot topic, improving the understanding of metabolic factors in the etiology of colorectal cancer. Meanwhile, intestinal flora also plays an important role in the occurrence and development of CRC In this review, the classification of bile acids and their role in promoting the occurrence of CRC are discussed, and we highlights how a high-fat diet affects bile acid metabolism and destroys the integrity of the intestinal barrier and the effects of gut bacteria.
Collapse
Affiliation(s)
- Yujing Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengan Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Hu
- Department of Internal Medicine of Chinese Medicine, Shanghai Pudong New Area Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Li J, Zhang C, Li L, Hu X, Jia Y, Huang Y, Lyu T, Wang X, Guo X. Folate deficiency enhances the in vitro genotoxicity of bile acids in human colon and liver cells. Mutagenesis 2021; 37:34-43. [PMID: 34791379 DOI: 10.1093/mutage/geab041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/14/2021] [Indexed: 11/13/2022] Open
Abstract
Obese subjects have a high baseline of genotoxic stress, but the underlying mechanism is poorly understood. Given that obesity is associated with high bile acids (BA) and low folate, we aimed to determine the interactive effect of folate deficient or supplementation to the genotoxicity and cytotoxicity of BA in human colon and liver cells. NCM460 and L-02 cells were cultured in folate deficient (22.6 nM) and replete (2260 nM) RPMI 1640 medium with or without 50 μM deoxycholic acid (DCA) or lithocholic acid (LCA) for 7 days. Moreover, these cells were cultured in folate supplemented (5.65, 11.3 and 22.6 μM) and standard (2.26 μM) medium with 200 μM DCA or LCA for 7 days. Genotoxicity and cytotoxicity were measured using the cytokinesis-block micronucleus cytome assay. Our results showed that under folate-replete condition, 50 μM DCA or LCA significantly increased the rate of micronuclei in NCM460 and L-02 cells. Significantly, the micronuclei-inducing effect of 50 μM DCA or LCA was further enhanced by folate deficiency. Interestingly, folate supplementation exerted a dose-dependent manner to significantly decrease the rates of micronuclei, nucleoplasmic bridges, nuclear buds, apoptosis and necrosis induced by 200 μM DCA or LCA in NCM460 and L-02 cells. In conclusion, the genotoxicity of moderate BA (50 μM) was exacerbated by folate deficiency and folate supplementation could efficiently protect cells against the genotoxicity and cytotoxicity of high BA (200 μM).
Collapse
Affiliation(s)
- Jianfei Li
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Cheng Zhang
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Lingzhi Li
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Xueqin Hu
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Yizhen Jia
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Yanan Huang
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Ting Lyu
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Xu Wang
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China.,Yunnan Environmental Mutagen Society, Kunming, Yunnan, China
| | - Xihan Guo
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China.,Yunnan Environmental Mutagen Society, Kunming, Yunnan, China
| |
Collapse
|
4
|
Guo X, Qi Y, Li J, Fan H, Yang L, Wu X, Ni J, Wang H, Wang X. A comprehensive study of the genotoxic and anti-genotoxic effects of homocysteine in HUVECs and mouse bone marrow cells. Food Chem Toxicol 2021; 156:112518. [PMID: 34418477 DOI: 10.1016/j.fct.2021.112518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/24/2023]
Abstract
Elevated Homocysteine (Hcy) is associated with increased risk of vascular disease, but whether it induces genotoxicity to vascular endothelial cells remains unknown. Here, we conducted a comprehensive study of the genotoxicity, and unexpected anti-genotoxicity, of Hcy by cytokinesis-blocked micronucleus assay in HUVECs and erythrocyte micronucleus test in mouse bone marrow cells. Our experiments led to several important findings. First, while supraphysiological Hcy (SP-Hcy) exhibited remarkable genotoxicity, physiologically-relevant Hcy (PR-Hcy) reduced the basal genotoxicity. Second, among the metabolites of Hcy, cysteine phenocopied the anti-genotoxicity of PR-Hcy and, methionine, S-adenosylhomocysteine and H2S phenocopied the genotoxicity of SP-Hcy. Third, the genotoxicity of SP-Hcy was mitigated by vitamin B6, Fe2+ and Cu2+, but was exacerbated by N-acetylcysteine. Fourth, under pre-, co- or post-treatment protocol, both SP-Hcy and PR-Hcy attenuated the genotoxicity of cisplatin, mitomycin-C, nocodazole or deoxycholate. Finally, 100 and 250 mg/kg Hcy ameliorated cisplatin-induced genotoxicity in bone marrow cells of CF-1 and Kunming mice. Our results suggest that genotoxicity may be one mechanism through which Hcy confers an increased risk for vascular disease, but more importantly, they challenge the long-standing paradigm that Hcy is always harmful to human health. Our study calls for a more systematic effort in understanding the molecular mechanisms underlying the anti-genotoxicity of Hcy.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China; Yunnan Environmental Mutagen Society, Kunming, Yunnan, 650500, China.
| | - Yanmei Qi
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Jianfei Li
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Houhong Fan
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Limei Yang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Xue Wu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China; Yunnan Environmental Mutagen Society, Kunming, Yunnan, 650500, China
| | - Han Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China; Yunnan Environmental Mutagen Society, Kunming, Yunnan, 650500, China
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China; Yunnan Environmental Mutagen Society, Kunming, Yunnan, 650500, China.
| |
Collapse
|
5
|
Yin Y, Wang M, Gu W, Chen L. Intestine-specific FXR agonists as potential therapeutic agents for colorectal cancer. Biochem Pharmacol 2021; 186:114430. [PMID: 33556338 DOI: 10.1016/j.bcp.2021.114430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most malignant cancers in the world. A major cause of death in CRC patients is the limited therapeutic options in its advanced stages. The Farnesoid X receptor (FXR) is a member of the nuclear superfamily, which is effective in slowing the progression of colorectal cancer in addition to its extraordinary role in regulating metabolic disorders. Due to the systemic side-effects caused by non-selective agonists, the intestine-restricted FXR agonists can induce a whole-body benefit without activating the hepatic FXR, suggesting intestinal FXR activation as a potentially safer therapy in the treatment of CRC. This review highlights the effects of FXR on the disturbed bile acid circulation and the carcinogenesis of CRC and with a specific emphasis on listing the functions of several intestinal-restricted FXR agonists.
Collapse
Affiliation(s)
- Yiming Yin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Mengge Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Wenjie Gu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Lili Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
6
|
Kompella P, Vasquez KM. Obesity and cancer: A mechanistic overview of metabolic changes in obesity that impact genetic instability. Mol Carcinog 2019; 58:1531-1550. [PMID: 31168912 PMCID: PMC6692207 DOI: 10.1002/mc.23048] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022]
Abstract
Obesity, defined as a state of positive energy balance with a body mass index exceeding 30 kg/m2 in adults and 95th percentile in children, is an increasing global concern. Approximately one-third of the world's population is overweight or obese, and in the United States alone, obesity affects one in six children. Meta-analysis studies suggest that obesity increases the likelihood of developing several types of cancer, and with poorer outcomes, especially in children. The contribution of obesity to cancer risk requires a better understanding of the association between obesity-induced metabolic changes and its impact on genomic instability, which is a major driving force of tumorigenesis. In this review, we discuss how molecular changes during adipose tissue dysregulation can result in oxidative stress and subsequent DNA damage. This represents one of the many critical steps connecting obesity and cancer since oxidative DNA lesions can result in cancer-associated genetic instability. In addition, the by-products of the oxidative degradation of lipids (e.g., malondialdehyde, 4-hydroxynonenal, and acrolein), and gut microbiota-mediated secondary bile acid metabolites (e.g., deoxycholic acid and lithocholic acid), can function as genotoxic agents and tumor promoters. We also discuss how obesity can impact DNA repair efficiency, potentially contributing to cancer initiation and progression. Finally, we outline obesity-related epigenetic changes and identify the gaps in knowledge to be addressed for the development of better therapeutic strategies for the prevention and treatment of obesity-related cancers.
Collapse
Affiliation(s)
- Pallavi Kompella
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Karen M. Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| |
Collapse
|
7
|
Šarenac T, Mikov M. Cervical Cancer, Different Treatments and Importance of Bile Acids as Therapeutic Agents in This Disease. Front Pharmacol 2019; 10:484. [PMID: 31214018 PMCID: PMC6558109 DOI: 10.3389/fphar.2019.00484] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/16/2019] [Indexed: 01/15/2023] Open
Abstract
Cervical cancer can be cured, because it has a long preinvasive period. Early diagnosis and treatment of cervical cancer at women are crucial for reducing of rate mortality. Today, there are many methods for detecting premalignant lesions and one of them is a conventional Papanicolaou test. Cervical cancer develops through a series of changes in the epithelium called cervical intraepithelial neoplasia (CIN). The biological and genetic characteristics of the cells at cancer in situ are irreversibly altered and abnormal cells have the potential to metastasize to others anatomical regions. Infection with human Papillomavirus, which is transmitted sexually, is considered the main cause and represent the necessary, but not the only factor for the development of cervical cancer. Types of high risk human Papillomavirus are often associated with invasive cervical cancer. The carcinogenic types of HPV 16 and 18 are responsible for 70% of cervical cancer and about 50% of CIN 3. Primary prevention of cervical cancer is aimed at reducing incidence, control of causes and risk factors. In this scientific work, in addition to explaining the various treatments necessary for the treatment of cervical carcinoma, we were discussed about the anticancer effects of the synthetic derivative of ursodeoxycholic acid, such as HS-1183, and synthetic derivatives of chenodeoxycholic acid such as HS-1199 and HS-1200. Also, the effects of bile acid complexes with metals such as platinum, zinc, nickel, and copper were considered in the effective treatment of cervical cancer. KEY POINTS • Lymphogenic spreading of cervical cancer occurs relatively early in the regional lymph nodes, while this sort of progression of cervical cancer is rarer in the juxtaregional (paraaortic), mediastinal and supraclavicular nodes. Clinically proven supraclavicular metastases are not a rarity. In stages IIb and IIIa with metastases in paraaortal nodes occur a 20% metastases at the neck lymph nodes. Hematogenic metastases are relatively rare and occur in the posterior phase. Distant metastases are detected in the lungs and liver. Preinvasive and microinvasive stages of cervical cancer are without symptoms. With deeper invasion of the strome, certain clinical symptoms such as prolonged menstruation, increased vaginal secretions, vaginal bleeding between the two periods, contact bleeding (after coitus), unilateral pelvic pain with spreading in hip joint (infiltration of the pelvic nerve plexus), dysuric disturbance, anemia, islet of the lower extremities. In order to diagnose the level spreading of primary lesion of cervical cancer most commonly are used the supplemental searches such as cytoscopy, rectoscopy, urography, irigography, lung and bone radiography, scintigraphy of the liver, kidney and bone, lymphography, CT (MR) of abdomen and pelvis, as well as laboratory analysis. Surgical treatment consists of transvaginal hysterectomy, transabdominal removal of the uterus (via laparotomy), bilateral adenectomy (removal of the ovaries and the fallopian tubes), upper and middle third of the vagina and lymphonodectomy of the regional lymph nodes. The most commonly used radiotherapy, intracavitary brachytherapy, manual afterloading technique and remote afterloading techniques. The synthetic derivatives of ursodeoxycholic acid and chenodeoxycholic acid such as HS-1183, HS-1199, and HS-1200 are used to treat cervical cancer. These derivatives of chenodeoxycholic acid and ursodeoxycholic acid are capable of inhibiting cell proliferation and inducing apoptosis in SiHa human cells of cervix. Platinum compounds are used as catalysts in cervical cancer therapy. Clinical use of platinum complexes for which the bile acids bind is based on the desire to achieve the death of tumor cells and the spectrum of drug activity in the treatment of cervical cancer. Bisursodeoxycholate (ethylenediamine) platinum (II) [Pt(UDC)2(en)] is characterized by important cytotoxicity against HeLa cervical carcinoma cells and this effect already being clearly detectable after 24 h.
Collapse
Affiliation(s)
- Tanja Šarenac
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | |
Collapse
|
8
|
Farhana L, Antaki F, Murshed F, Mahmud H, Judd SL, Nangia-Makker P, Levi E, Yu Y, Majumdar APN. Gut microbiome profiling and colorectal cancer in African Americans and Caucasian Americans. World J Gastrointest Pathophysiol 2018; 9:47-58. [PMID: 30283710 PMCID: PMC6163128 DOI: 10.4291/wjgp.v9.i2.47] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/08/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To determine whether and to what extent the gut microbiome is involved in regulating racial disparity in colorectal cancer (CRC).
METHODS All patients were recruited and experiments were performed in accordance with the relevant guidelines and regulations by the Institutional Review Boards (IRB), committees of the John D. Dingell VAMC and Wayne State University guidelines. African American (AA) and Caucasian American (CA) patients were scheduled for an outpatient screening for colonoscopy, and no active malignancy volunteer patients were doubly consented, initially by the gastroenterologist and later by the study coordinator, for participation in the study. The gut microbial communities in colonic effluents from AAs and CAs were examined using 16sRNA profiling, and bacterial identifications were validated by performing SYBR-based Real Time PCR. For metagenomic analysis to characterize the microbial communities, multiple software/tools were used, including Metastats and R statistical software.
RESULTS It is generally accepted that the incidence and mortality of CRC is higher in AAs than in CAs. However, the reason for this disparity is not well understood. We hypothesize that the gut microbiome plays a role in regulating this disparity. Indeed, we found significant differences in species richness and diversity between AAs and CAs. Bacteroidetes was more abundant in AAs than in CAs. In particular, the pro-inflammatory bacteria Fusobacterium nucleatum and Enterobacter species were significantly higher in AAs, whereas probiotic Akkermansia muciniphila and Bifidobacterium were higher in CAs. The polyphyletic Clostridia class showed a divergent pattern, with Clostridium XI elevated in AAs, and Clostridium IV, known for its beneficial function, higher in CAs. Lastly, the AA group had decreased microbial diversity overall in comparison to the CA group. In summary, there were significant differences in pro-inflammatory bacteria and microbial diversity between AA and CA, which may help explain the CRC disparity between groups.
CONCLUSION Our current investigation, for the first time, demonstrates microbial dysbiosis between AAs and CAs, which could contribute to the racial disparity of CRC.
Collapse
Affiliation(s)
- Lulu Farhana
- Department of Internal Medicine, John D Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Fadi Antaki
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, United States
- Division of Gastroenterology, John D Dingell VA Medical Center, Detroit, MI 48201, United States
| | - Farhan Murshed
- Department of Internal Medicine, John D Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States
| | - Hamidah Mahmud
- Department of Internal Medicine, John D Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States
| | - Stephanie L Judd
- Division of Gastroenterology, John D Dingell VA Medical Center, Detroit, MI 48201, United States
| | - Pratima Nangia-Makker
- Department of Internal Medicine, John D Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, United States
- Department of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, United States
| | - Edi Levi
- Department of Pathology Service, John D Dingell VA Medical Center, Detroit, MI 48201, United States
| | - Yingjie Yu
- Department of Internal Medicine, John D Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Adhip PN Majumdar
- Department of Internal Medicine, John D Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, United States
- Department of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, United States
| |
Collapse
|
9
|
Farhana L, Nangia-Makker P, Arbit E, Shango K, Sarkar S, Mahmud H, Hadden T, Yu Y, Majumdar APN. Bile acid: a potential inducer of colon cancer stem cells. Stem Cell Res Ther 2016; 7:181. [PMID: 27908290 PMCID: PMC5134122 DOI: 10.1186/s13287-016-0439-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/26/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022] Open
Abstract
Background Although the unconjugated secondary bile acids, specifically deoxycholic acid (DCA) and lithocholic acid (LCA), are considered to be risk factors for colorectal cancer, the precise mechanism(s) by which they regulate carcinogenesis is poorly understood. We hypothesize that the cytotoxic bile acids may promote stemness in colonic epithelial cells leading to generation of cancer stem cells (CSCs) that play a role in the development and progression of colon cancer. Methods Normal human colonic epithelial cells (HCoEpiC) were used to study bile acid DCA/LCA-mediated induction of CSCs. The expression of CSC markers was measured by real-time qPCR. Flow cytometry was used to isolate CSCs. T-cell factor/lymphoid-enhancing factor (TCF/LEF) luciferase assay was employed to examine the transcriptional activity of β-catenin. Downregulation of muscarinic 3 receptor (M3R) was achieved through transfection of corresponding siRNA. Results We found DCA/LCA to induce CSCs in normal human colonic epithelial cells, as evidenced by the increased proportion of CSCs, elevated levels of several CSC markers, as well as a number of epithelial–mesenchymal transition markers together with increased colonosphere formation, drug exclusion, ABCB1 and ABCG2 expression, and induction of M3R, p-EGFR, matrix metallopeptidases, and c-Myc. Inhibition of M3R signaling greatly suppressed DCA/LCA induction of the CSC marker ALDHA1 and also c-Myc mRNA expression as well as transcriptional activation of TCF/LEF. Conclusions Our results suggest that bile acids, specifically DCA and LCA, induce cancer stemness in colonic epithelial cells by modulating M3R and Wnt/β-catenin signaling and thus could be considered promoters of colon cancer.
Collapse
Affiliation(s)
- Lulu Farhana
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA.,Department of Internal Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Pratima Nangia-Makker
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA.,Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Department of Internal Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Evan Arbit
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA
| | - Kathren Shango
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA
| | - Sarah Sarkar
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA
| | - Hamidah Mahmud
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA
| | - Timothy Hadden
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA.,Department of Internal Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Yingjie Yu
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA.,Department of Internal Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Adhip P N Majumdar
- Department of Veterans' Affairs Medical Center, 4646 John R, Detroit, MI, 48201, USA. .,Karmanos Cancer Institute, Detroit, MI, 48201, USA. .,Department of Internal Medicine, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
10
|
Right colon carcinoma infiltrating the alimentary limb in a patient with biliopancreatic diversion. Int Surg 2015; 99:354-8. [PMID: 25058764 DOI: 10.9738/intsurg-d-12-00017.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Biliopancreatic diversion (BPD) has excellent results, with the average patient losing 60% to 80% of the excess weight in the first 2 years. However, the BPD works by malabsorption and malabsorptive problems may be experienced with the operation. Therefore, monitoring is necessary for life. In the recent literature there is some debate over the possibility that this technique can increase the risk of colon cancer secondary to the action of the unabsorbed food and bile acid on colonic mucosa. We report the case of a 42-year-old patient with a previous bariatric surgery (BPD with 50 cm common channel; 300 cm alimentary limb) who developed a very aggressive right colon cancer 6 years after the operation. We also review our series of 330 patients operated on during a 14-year period to try to answer if there is any relationship between BPD and colon cancer.
Collapse
|
11
|
Raskov H, Pommergaard HC, Burcharth J, Rosenberg J. Colorectal carcinogenesis-update and perspectives. World J Gastroenterol 2014; 20:18151-18164. [PMID: 25561783 PMCID: PMC4277953 DOI: 10.3748/wjg.v20.i48.18151] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/18/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a very common malignancy in the Western World and despite advances in surgery, chemotherapy and screening, it is still the second leading cause of cancer deaths in this part of the world. Numerous factors are found important in the development of CRC including colonocyte metbolism, high risk luminal environment, inflammation, as well as lifestyle factors such as diet, tobacco, and alchohol consumption. In recent years focus has turned towards the genetics and molecular biology of CRC and several interesting and promising correlations and pathways have been discovered. The major genetic pathways of CRC are the Chromosome Instability Pathway representing the pathway of sporadic CRC through the K-ras, APC, and P53 mutations, and the Microsatellite Instability Pathway representing the pathway of hereditary non-polyposis colon cancer through mutations in mismatch repair genes. To identify early cancers, screening programs have been initiated, and the leading strategy has been the use of faecal occult blood testing followed by colonoscopy in positive cases. Regarding the treatment of colorectal cancer, significant advances have been made in the recent decade. The molecular targets of CRC include at least two important cell surface receptors: the epidermal growth factor receptor and the vascular endothelial growth factor receptor. The genetic and molecular knowledge of CRC has widen the scientific and clinical perspectives of diagnosing and treatment. However, despite significant advances in the understanding and treatment of CRC, results from targeted therapy are still not convincing. Future studies will determine the role for this new treatment modality.
Collapse
|
12
|
Abstract
Enzymatic oxidation of cholesterol generates numerous distinct bile acids which function both as detergents that facilitate the digestion and absorption of dietary lipids and as hormones that activate five distinct receptors. Activation of these receptors alters gene expression in multiple tissues, leading to changes not only in bile acid metabolism but also in glucose homeostasis, lipid and lipoprotein metabolism, energy expenditure, intestinal motility, bacterial growth, inflammation, and in the liver-gut axis. This review focuses on the present knowledge regarding the physiologic and pathologic role of bile acids and their immunomodulatory role, with particular attention to bacterial lipopolysaccharides (endotoxins) and bile acid and immunological disorders. The specific role that bile acids play in the regulation of innate immunity, various systemic inflammations, inflammatory bowel diseases, allergy, psoriasis, cholestasis, obesity, metabolic syndrome, alcoholic liver disease, and colon cancer will be reviewed.
Collapse
Affiliation(s)
- Sándor Sipka
- Division of Clinical Immunology, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|
13
|
Appleby RN, Walters JRF. The role of bile acids in functional GI disorders. Neurogastroenterol Motil 2014; 26:1057-69. [PMID: 24898156 DOI: 10.1111/nmo.12370] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/28/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bile acids are increasingly implicated in the pathogenesis of functional GI disorders. New mechanisms have recently been described in the irritable bowel syndrome, chronic diarrhea and chronic idiopathic constipation. Identification of bile acid signaling through farnesoid X receptor (FXR), transmembrane G-coupled receptor 5 (TGR5) and fibroblast growth factor 19 (FGF19) has led to the development of new, directly acting therapeutic agents. Despite these advances primary bile acid diarrhea remains under-recognized partly because of the lack of a widely available diagnostic test. PURPOSE In this review we will summarize the effects of bile acids on bowel function throughout the gastrointestinal tract and their roles in the pathogenesis of functional diseases. We will review established diagnostic tests and therapies for functional heartburn, dyspepsia and bile acid diarrhea. There will be a particular emphasis on recent trial data for emerging therapies such as Elobixibat and Obeticholic acid and novel diagnostic tests for bile acid diarrhea such as 7α-Hydroxy-4-cholesten-3-one (C4) and FGF19. Finally we will discuss future directions for research in this rapidly evolving field, such as bacterial bile acid modification and identification of genetic anomalies associated with functional disorders.
Collapse
Affiliation(s)
- Richard N Appleby
- Section of Hepatology and Gastroenterology, Imperial College London, Imperial College Healthcare, Hammersmith Hospital, London, UK
| | | |
Collapse
|
14
|
Serban DE. Gastrointestinal cancers: influence of gut microbiota, probiotics and prebiotics. Cancer Lett 2014; 345:258-70. [PMID: 23981580 DOI: 10.1016/j.canlet.2013.08.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 02/07/2023]
Abstract
Cancers of the gastrointestinal (GI) tract continue to represent a major health problem, despite progress in therapy. Gut microbiota is a key element related to the genesis of GI cancers, countless papers addressing this burning issue across the world. We provide an updated knowledge of the involvement of gut microbiota in GI tumorigenesis, including its underlying mechanisms. We present also a comprehensive review of the evidence from animal and clinical studies using probiotics and/or prebiotics in the prevention and/or therapy of GI tumours, of GI cancer therapy-related toxicity and of post-operative complications. We summarize the anticarcinogenic mechanisms of these biotherapeutics from in vitro, animal and clinical interventions. More research is required to reveal the interactions of microflora with genetic, epigenetic and immunologic factors, diet and age, before any firm conclusion be drawn. Well-designed, randomized, double blind, placebo-controlled human studies using probiotics and/or prebiotics, with adequate follow-up are necessary in order to formulate directions for prevention and therapy.
Collapse
Affiliation(s)
- Daniela Elena Serban
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Second Pediatric Clinic, Emergency Children's Hospital, Cluj-Napoca, Romania.
| |
Collapse
|
15
|
Kitamura T, Srivastava J, DiGiovanni J, Kiguchi K. Bile acid accelerates erbB2-induced pro-tumorigenic activities in biliary tract cancer. Mol Carcinog 2013; 54:459-72. [PMID: 24839254 DOI: 10.1002/mc.22118] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/31/2013] [Accepted: 11/05/2013] [Indexed: 12/16/2022]
Abstract
Although very few studies have addressed the molecular and cellular mechanisms underlying the development of biliary tract cancer (BTC), several lines of evidence suggest a role for the erbB receptor family. Overexpression and activation of erbB2 has been reported in a significant percentage of human BTC. Further, we previously reported that overexpression of erbB2 basal epithelial cells of the biliary tract (BK5.erbB2 mouse) led to the development of BTC. However, the mechanisms by which erbB2 overexpression led to the spontaneous development of tumors specifically in the biliary tract are not completely understood. The goals of the current study were to (1) determine whether a cooperative relationship between bile acid exposure and erbB2 activation exists during biliary tract carcinogenesis and (2) to characterize the mechanism(s) underlying bile acid-mediated biliary tract carcinogenesis in cells with activated erbB2. In this study, we demonstrated that the secondary conjugated bile acid, taurochenodeoxycholic acid (TCDC), increased proliferation of primary cultured gallbladder epithelial cells from BK5.erbB2 mice and human BTC cells. TCDC treatment activated EGFR/erbB2 and downstream signaling molecules in both primary cultured cells and human BTC cells. TCDC also increased the expression of epidermal growth factor receptor (EGFR) ligands and TACE activity in human BTC cells. Inhibition of src activation led to attenuation of bile-induced upregulation of TACE activity as well as signaling through the EGFR/erbB2, suggesting that during the development of BTC erbB2 overexpression/activation accelerates the bile acid-induced signaling cascade: bile acid → src → TACE → EGFR/erbB2 → downstream signaling. We also provide direct evidence that bile acids possess tumor promoting capacity in epithelial cells overexpressing erbB2 using the two-stage skin carcinogenesis model. Collectively these findings suggest cooperative roles for bile acid and erbB2 activation in epithelial cell proliferation; bile acid appears to accelerate erbB2-induced pro-tumorigenic activities in the biliary tract and skin.
Collapse
Affiliation(s)
- Takuya Kitamura
- Department of Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas
| | | | | | | |
Collapse
|
16
|
Song W, Yang HB, Chen P, Wang SM, Zhao LP, Xu WH, Fan HF, Gu X, Chen LY. Apoptosis of human gastric carcinoma SGC-7901 induced by deoxycholic acid via the mitochondrial-dependent pathway. Appl Biochem Biotechnol 2013; 171:1061-71. [PMID: 23943012 DOI: 10.1007/s12010-013-0417-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/17/2013] [Indexed: 01/05/2023]
Abstract
The study aimed to evaluate the effects of deoxycholic acid (DCA) on human gastric carcinoma cell lines and to explore its mechanisms. In the present study, effects of DCA on SGC-7901 cell growth, cell cycle, and apoptosis were investigated by MTT assay, inverted microscopy, fluorescence microscopy, PI single- and FITC/PI double-staining flow cytometry, and western blotting. The study have revealed that DCA significantly inhibited the growth of SGC-7901 cells in a dose- and time-dependent manner and arrested cell cycle at G0/G1 phase. SGC-7901 cells showed typical apoptotic morphological changes after treated with DCA for 48 h. The intensity of typical apoptosis pattern- "ladders" formed by DNA in fragments of multiples of 200 base pairs was also observed. Apoptosis of SGC-7901 cells induced by DCA were associated with collapse of the mitochondrial membrane potential. DCA treatment could also increase the ratio of Bax to Bcl-2 in SGC-7901 cells. Meanwhile, the expression of p53, cyclinD1, and c-Myc were changed after DCA treatment. These results suggest that DCA induces apoptosis of gastric carcinoma cells through an intrinsic mitochondrial-dependent pathway, and the increase in the Bax/Bcl-2 ratio and collapse of the mitochondrial membrane potential may play important roles in DCA-induced apoptosis of gastric carcinoma cells.
Collapse
Affiliation(s)
- Wei Song
- School of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467044, Henan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Guccini S, Lombardi S, Pisani A, Piaggi S, Scarpato R. Effects of spindle poisons in peripheral human lymphocytes by the in vitro cytokinesis-block micronucleus assay. Mutagenesis 2012; 27:749-58. [DOI: 10.1093/mutage/ges044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
18
|
Vipperla K, O'Keefe SJ. The microbiota and its metabolites in colonic mucosal health and cancer risk. Nutr Clin Pract 2012; 27:624-35. [PMID: 22868282 DOI: 10.1177/0884533612452012] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent advances in our ability to identify and characterize the human microbiota have transformed our appreciation of the function of the colon from an organ principally involved in the reabsorption of secretory fluids to a metabolic organ on a par with the liver. High-throughput technology has been applied to the identification of specific differences in microbial DNA, allowing the identification of trillions of microbes belonging to more than 1000 different species, with a metabolic mass of approximately 1.5 kg. The close proximity of these microbes with the mucosa and gut lymphoid tissue helps explain why a balanced microbiota is likely to preserve mucosal health, whereas an unbalanced composition, as seen in dysbiosis, may increase the prevalence of diseases not only of the mucosa but also within the body due to the strong interactions with the gut immune system, the largest immune organ of the body. Such abnormalities have been pinpointed as etiological factors in a wide range of diseases, including autoimmune disorders, allergy, irritable bowel syndrome, inflammatory bowel disease, obesity, and colon cancer. Recognition of the strong potential for food to manipulate microbiota composition has opened up new therapeutic strategies against these diseases based on dietary intervention.
Collapse
Affiliation(s)
- Kishore Vipperla
- Division of General Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
19
|
Májer F, Salomon JJ, Sharma R, Etzbach SV, Najib MNM, Keaveny R, Long A, Wang J, Ehrhardt C, Gilmer JF. New fluorescent bile acids: synthesis, chemical characterization, and disastereoselective uptake by Caco-2 cells of 3-deoxy 3-NBD-amino deoxycholic and ursodeoxycholic acid. Bioorg Med Chem 2012; 20:1767-78. [PMID: 22316556 DOI: 10.1016/j.bmc.2012.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/23/2011] [Accepted: 01/02/2012] [Indexed: 01/01/2023]
Abstract
Deoxycholic acid (DCA), a secondary bile acid (BA), and ursodeoxycholic acid (UDCA), a tertiary BA, cause opposing effects in vivo and in cell suspensions. Fluorescent analogues of DCA and UDCA could help investigate important questions about their cellular interactions and distribution. We have prepared a set of isomeric 3α- and 3β-amino analogues of UDCA and DCA and derivatised these with the discrete fluorophore, 4-nitrobenzo-2-oxa-1,3-diazol (NBD), forming the corresponding four fluorescent adducts. These absorb in the range 465-470 nm and fluoresce at approx. 535 nm. In order to determine the ability of the new fluorescent bile acids to mimic the parents, their uptake was studied using monolayers of Caco-2 cells, which are known to express multiple proteins of the organic anion-transporting peptide (OATP) subfamily of transporters. Cellular uptake was monitored over time at 4 and 37°C to distinguish between passive and active transport. All four BA analogues were taken up but in a strikingly stereo- and structure-specific manner, suggesting highly discriminatory interactions with transporter protein(s). The α-analogues of DCA and to a lesser extent UDCA were actively transported, whereas the β-analogues were not. The active transport process was saturable, with Michaelis-Menten constants for 3α-NBD DCA (5) being K(m)=42.27±12.98 μM and V(max)=2.8 ± 0.4 nmol/(mg protein*min) and for 3α-NBD UDCA (3) K(m)=28.20 ± 7.45 μM and V(max)=1.8 ± 0.2 nmol/(mg protein*min). These fluorescent bile acids are promising agents for investigating questions of bile acid biology and for detection of bile acids and related organic anion transport processes.
Collapse
Affiliation(s)
- Ferenc Májer
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Panoz Institute, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Payne CM, Holubec H, Crowley-Skillicorn C, Nguyen H, Bernstein H, Wilcox G, Bernstein C. Maspin is a deoxycholate-inducible, anti-apoptotic stress-response protein differentially expressed during colon carcinogenesis. Clin Exp Gastroenterol 2011; 4:239-53. [PMID: 22162927 PMCID: PMC3234125 DOI: 10.2147/ceg.s24093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Increased maspin expression in the colon is related to colon cancer risk and patient survival. Maspin is induced by the hydrophobic bile acid, deoxycholate (DOC), which is an endogenous carcinogen and inducer of oxidative stress and DNA damage in the colon. Persistent exposure of colon epithelial cells, in vitro, to high physiologic levels of DOC results in increased constitutive levels of maspin protein expression associated with the development of apoptosis resistance. When an apoptosis-resistant colon epithelial cell line (HCT-116RC) developed in the authors' laboratory was treated with a maspin-specific siRNA probe, there was a statistically significant increase in apoptosis compared to treatment with an siRNA control probe. These results indicate, for the first time, that maspin is an anti-apoptotic protein in the colon. Immunohistochemical evaluation of maspin expression in human colonic epithelial cells during sporadic colon carcinogenesis (131 human tissues evaluated) indicated a statistically significant increase in maspin protein expression beginning at the polyp stage of carcinogenesis. There was no statistically significant difference in maspin expression between hyperplastic/adenomatous polyps and colonic adenocarcinomas. The absence of "field defects" in the non-neoplastic colonic mucosa of patients with colonic neoplasia indicates that maspin may drive the growth of tumors, in part, through its anti-apoptotic function.
Collapse
Affiliation(s)
- Claire M Payne
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona
| | | | | | | | | | | | | |
Collapse
|
21
|
Prakash S, Rodes L, Coussa-Charley M, Tomaro-Duchesneau C. Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biologics 2011; 5:71-86. [PMID: 21847343 PMCID: PMC3156250 DOI: 10.2147/btt.s19099] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Indexed: 12/29/2022]
Abstract
The gut microbiota is a remarkable asset for human health. As a key element in the development and prevention of specific diseases, its study has yielded a new field of promising biotherapeutics. This review provides comprehensive and updated knowledge of the human gut microbiota, its implications in health and disease, and the potentials and limitations of its modification by currently available biotherapeutics to treat, prevent and/or restore human health, and future directions. Homeostasis of the gut microbiota maintains various functions which are vital to the maintenance of human health. Disruption of the intestinal ecosystem equilibrium (gut dysbiosis) is associated with a plethora of human diseases, including autoimmune and allergic diseases, colorectal cancer, metabolic diseases, and bacterial infections. Relevant underlying mechanisms by which specific intestinal bacteria populations might trigger the development of disease in susceptible hosts are being explored across the globe. Beneficial modulation of the gut microbiota using biotherapeutics, such as prebiotics, probiotics, and antibiotics, may favor health-promoting populations of bacteria and can be exploited in development of biotherapeutics. Other technologies, such as development of human gut models, bacterial screening, and delivery formulations eg, microencapsulated probiotics, may contribute significantly in the near future. Therefore, the human gut microbiota is a legitimate therapeutic target to treat and/or prevent various diseases. Development of a clear understanding of the technologies needed to exploit the gut microbiota is urgently required.
Collapse
Affiliation(s)
- Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
22
|
Bile acids and colon cancer: Solving the puzzle with nuclear receptors. Trends Mol Med 2011; 17:564-72. [PMID: 21724466 DOI: 10.1016/j.molmed.2011.05.010] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/06/2011] [Accepted: 05/23/2011] [Indexed: 12/11/2022]
Abstract
Colorectal cancer is the third most common malignancy worldwide and is often linked to obesity, a sedentary lifestyle, carbohydrate- and fat-rich diets and elevated fecal excretion of secondary bile acids. Accumulation of toxic bile acids triggers oxidative damage, mitochondrial dysfunction and tumor progression. Nuclear receptors are transcription factors crucially involved in the regulation of bile acid metabolism and detoxification, and their activation may confer protection from bile acid tumor-promoting activity. In this review, we explore the tangled relationships among bile acids, nuclear receptors and the intestinal epithelium, with particular emphasis on the role of the farnesoid X receptor in colorectal cancer prevention and on novel nuclear receptor-based approaches to expand the portfolio of chemotherapeutic agents.
Collapse
|
23
|
Bernstein C, Holubec H, Bhattacharyya AK, Nguyen H, Payne CM, Zaitlin B, Bernstein H. Carcinogenicity of deoxycholate, a secondary bile acid. Arch Toxicol 2011; 85:863-71. [PMID: 21267546 PMCID: PMC3149672 DOI: 10.1007/s00204-011-0648-7] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/10/2011] [Indexed: 12/19/2022]
Abstract
High dietary fat causes increased bile acid secretion into the gastrointestinal tract and is associated with colon cancer. Since the bile acid deoxycholic acid (DOC) is suggested to be important in colon cancer etiology, this study investigated whether DOC, at a high physiologic level, could be a colon carcinogen. Addition of 0.2% DOC for 8-10 months to the diet of 18 wild-type mice induced colonic tumors in 17 mice, including 10 with cancers. Addition of the antioxidant chlorogenic acid at 0.007% to the DOC-supplemented diet significantly reduced tumor formation. These results indicate that a high fat diet in humans, associated with increased risk of colon cancer, may have its carcinogenic potential mediated through the action of bile acids, and that some dietary anti-oxidants may ameliorate this carcinogenicity.
Collapse
Affiliation(s)
- Carol Bernstein
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona, Tucson, AZ 85724-5044, USA.
| | | | | | | | | | | | | |
Collapse
|