1
|
Cassano JM, Leonard BC, Martins BC, Vapniarsky N, Morgan JT, Dow SW, Wotman KL, Pezzanite LM. Preliminary evaluation of safety and migration of immune activated mesenchymal stromal cells administered by subconjunctival injection for equine recurrent uveitis. Front Vet Sci 2023; 10:1293199. [PMID: 38162475 PMCID: PMC10757620 DOI: 10.3389/fvets.2023.1293199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Equine recurrent uveitis (ERU), an immune mediated disease characterized by repeated episodes of intra-ocular inflammation, affects 25% of horses in the USA and is the most common cause of glaucoma, cataracts, and blindness. Mesenchymal stromal cells (MSCs) have immunomodulatory properties, which are upregulated by preconditioning with toll-like receptor agonists. The objective was to evaluate safety and migration of TLR-3 agonist polyinosinic, polycytidylic acid (pIC)-activated MSCs injected subconjunctivally in healthy horses prior to clinical application in horses with ERU. We hypothesized that activated allogeneic MSCs injected subconjunctivally would not induce ocular or systemic inflammation and would remain in the conjunctiva for >14 days. Methods Bulbar subconjunctiva of two horses was injected with 10 × 106 pIC-activated (10 μg/mL, 2 h) GFP-labeled MSCs from one donor three times at two-week intervals. Vehicle (saline) control was injected in the contralateral conjunctiva. Horses received physical and ophthalmic exams [slit lamp biomicroscopy, rebound tonometry, fundic examination, and semiquantitative preclinical ocular toxicology scoring (SPOTS)] every 1-3 days. Systemic inflammation was assessed via CBC, fibrinogen, and serum amyloid A (SAA). Horses were euthanized 14 days following final injection. Full necropsy and histopathology were performed to examine ocular tissues and 36 systemic organs for MSC presence via IVIS Spectrum. Anti-GFP immunohistochemistry was performed on ocular tissues. Results No change in physical examinations was noted. Bloodwork revealed fibrinogen 100-300 mg/dL (ref 100-400) and SAA 0-25 μg/mL (ref 0-20). Ocular effects of the subjconjucntival injection were similar between MSC and control eyes on SPOTS grading system, with conjunctival hypermia, chemosis and ocular discharge noted bilaterally, which improved without intervention within 14 days. All other ocular parameters were unaffected throughout the study. Necropsy and histopathology revealed no evidence of systemic inflammation. Ocular histopathology was similar between MSC and control eyes. Fluorescent imaging analysis did not locate MSCs. Immunohistochemistry did not identify intact MSCs in the conjunctiva, but GFP-labeled cellular components were present in conjunctival phagocytic cells. Discussion Allogeneic pIC-activated conjunctival MSC injections were well tolerated. GFP-labeled tracking identified MSC components phagocytosed by immune cells subconjunctivally. This preliminary safety and tracking information is critical towards advancing immune conditioned cellular therapies to clinical trials in horses.
Collapse
Affiliation(s)
- Jennifer M. Cassano
- Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Brian C. Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Bianca C. Martins
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Natalia Vapniarsky
- Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Joshua T. Morgan
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Steven W. Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Kathryn L. Wotman
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lynn M. Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
2
|
Koch TG, Kuzma-Hunt AG, Russell KA. Overview of Equine Stem Cells: Sources, Practices, and Potential Safety Concerns. Vet Clin North Am Equine Pract 2023; 39:461-474. [PMID: 37574382 DOI: 10.1016/j.cveq.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Over the past 2 decades, equine veterinarians are turning increasingly to stem cell therapies to repair damaged tissues or to promote healing through modulation of the immune system. Research is ongoing into optimizing practices associated with stem cell product transport, dosage, and administration. Culture-expanded equine mesenchymal stem cell therapies seem safe, even when used allogeneically, but various safety concerns should be considered. Stem cells and cellular reprogramming tools hold great promise for future equine therapies.
Collapse
Affiliation(s)
- Thomas G Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| | - Alexander G Kuzma-Hunt
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Keith A Russell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
3
|
Li H, Xiong S, Masieri FF, Monika S, Lethaus B, Savkovic V. Mesenchymal Stem Cells Isolated from Equine Hair Follicles Using a Method of Air-Liquid Interface. Stem Cell Rev Rep 2023; 19:2943-2956. [PMID: 37733199 PMCID: PMC10661790 DOI: 10.1007/s12015-023-10619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
Equine mesenchymal stem cells (MSC) of various origins have been identified in horses, including MSCs from the bone marrow and adipose tissue. However, these stem cell sources are highly invasive in sampling, which thereby limits their clinical application in equine veterinary medicine. This study presents a novel method using an air-liquid interface to isolate stem cells from the hair follicle outer root sheath of the equine forehead skin. These stem cells cultured herewith showed high proliferation and asumed MSC phenotype by expressing MSC positive biomarkers (CD29, CD44 CD90) while not expressing negative markers (CD14, CD34 and CD45). They were capable of differentiating towards chondrogenic, osteogenic and adipogenic lineages, which was comparable with MSCs from adipose tissue. Due to their proliferative phenotype in vitro, MSC-like profile and differentiation capacities, we named them equine mesenchymal stem cells from the hair follicle outer root sheath (eMSCORS). eMSCORS present a promising alternative stem cell source for the equine veterinary medicine.
Collapse
Affiliation(s)
- Hanluo Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103, Leipzig, Germany
| | - Shiwen Xiong
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | | | - Seltenhammer Monika
- Institute of Livestock Sciences (NUWI), University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33/II, A-1180, Vienna, Austria
| | - Bernd Lethaus
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103, Leipzig, Germany
| | - Vuk Savkovic
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
4
|
Burk J, Wittenberg-Voges L, Schubert S, Horstmeier C, Brehm W, Geburek F. Treatment of Naturally Occurring Tendon Disease with Allogeneic Multipotent Mesenchymal Stromal Cells: A Randomized, Controlled, Triple-Blinded Pilot Study in Horses. Cells 2023; 12:2513. [PMID: 37947591 PMCID: PMC10650642 DOI: 10.3390/cells12212513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
The treatment of tendinopathies with multipotent mesenchymal stromal cells (MSCs) is a promising option in equine and human medicine. However, conclusive clinical evidence is lacking. The purpose of this study was to gain insight into clinical treatment efficacy and to identify suitable outcome measures for larger clinical studies. Fifteen horses with early naturally occurring tendon disease were assigned to intralesional treatment with allogeneic adipose-derived MSCs suspended in serum or with serum alone through block randomization (dosage adapted to lesion size). Clinicians and horse owners remained blinded to the treatment during 12 months (seven horses per group) and 18 months (seven MSC-group and five control-group horses) of follow-up including clinical examinations and diagnostic imaging. Clinical inflammation, lameness, and ultrasonography scores improved more over time in the MSC group. The lameness score difference significantly improved in the MSC group compared with the control group after 6 months. In the MSC group, five out of the seven horses were free of re-injuries and back to training until 12 and 18 months. In the control group, three out of the seven horses were free of re-injuries until 12 months. These results suggest that MSCs are effective for the treatment of early-phase tendon disease and provide a basis for a larger controlled study.
Collapse
Affiliation(s)
- Janina Burk
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Liza Wittenberg-Voges
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover, Germany;
| | - Susanna Schubert
- Institute of Human Genetics, University of Leipzig Medical Center, Philipp-Rosenthal-Strasse 55, 04103 Leipzig, Germany;
| | - Carolin Horstmeier
- Department for Horses, Veterinary Teaching Hospital, University of Leipzig, An den Tierkliniken 21, 04103 Leipzig, Germany; (C.H.); (W.B.)
| | - Walter Brehm
- Department for Horses, Veterinary Teaching Hospital, University of Leipzig, An den Tierkliniken 21, 04103 Leipzig, Germany; (C.H.); (W.B.)
| | - Florian Geburek
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover, Germany;
| |
Collapse
|
5
|
Pien N, Van de Maele Y, Parmentier L, Meeremans M, Mignon A, De Schauwer C, Peeters I, De Wilde L, Martens A, Mantovani D, Van Vlierberghe S, Dubruel P. Design of an electrospun tubular construct combining a mechanical and biological approach to improve tendon repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:51. [PMID: 35639212 PMCID: PMC9156498 DOI: 10.1007/s10856-022-06673-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Hand tendon injuries represent a major clinical problem and might dramatically diminish a patient's life quality. In this study, a targeted solution for flexor tendon repair was developed by combining a mechanical and biological approach. To this end, a novel acrylate-endcapped urethane-based polymer (AUP) was synthesized and its physico-chemical properties were characterized. Next, tubular repair constructs were developed using electrospinning of the AUP material with incorporated naproxen and hyaluronic acid (i.e. anti-inflammatory and anti-adhesion compounds, respectively), and with a tubular braid as mechanical reinforcement. Tensile testing of the repair constructs using ex vivo sheep tendons showed that the developed repair constructs fulfilled the required mechanical properties for tendon repair (i.e. minimal ultimate stress of 4 MPa), with an ultimate stress of 6.4 ± 0.6 MPa. Moreover, in vitro biological assays showed that the developed repair tubes and the incorporated bioactive components were non-cytotoxic. In addition, when equine tenocytes and mesenchymal stem cells were co-cultured with the repair tubes, an increased production of collagen and non-collagenous proteins was observed. In conclusion, this novel construct in which a mechanical approach (fulfilling the required mechanical properties) was combined with a biological approach (incorporation of bioactive compounds), shows potential as flexor tendon repair application. Graphical abstract.
Collapse
Affiliation(s)
- N Pien
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-bis, 9000, Ghent, Belgium
- Laboratory for Biomaterials and Bioengineering, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, 2325 Rue de l'Universite, Quebec, QC, G1V 0A6, Canada
| | - Y Van de Maele
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-bis, 9000, Ghent, Belgium
| | - L Parmentier
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-bis, 9000, Ghent, Belgium
| | - M Meeremans
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Salisburylaan 133, 9280, Merelbeke, Belgium
| | - A Mignon
- Smart Polymeric Biomaterials, Surface and Interface Engineered Materials, KU Leuven, Andreas Vesaliusstraat 13 - box 2600, 3000, Leuven, Belgium
| | - C De Schauwer
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Salisburylaan 133, 9280, Merelbeke, Belgium
| | - I Peeters
- Faculty of Medicine and Health Sciences, Department of Human Structure and Repair, Ghent University Hospital, C. Heymanslaan 10, ingang 46, 9000, Gent, Belgium
| | - L De Wilde
- Faculty of Medicine and Health Sciences, Department of Human Structure and Repair, Ghent University Hospital, C. Heymanslaan 10, ingang 46, 9000, Gent, Belgium
| | - A Martens
- Faculty of Veterinary Medicine, Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Ghent University, Salisburylaan 133, 9280, Merelbeke, Belgium
| | - D Mantovani
- Laboratory for Biomaterials and Bioengineering, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, 2325 Rue de l'Universite, Quebec, QC, G1V 0A6, Canada
| | - S Van Vlierberghe
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-bis, 9000, Ghent, Belgium
| | - P Dubruel
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4-bis, 9000, Ghent, Belgium.
| |
Collapse
|
6
|
Harman RM, Churchill KA, Jager MC, Van de Walle GR. The equine mesenchymal stromal cell secretome inhibits equid herpesvirus type 1 strain Ab4 in epithelial cells. Res Vet Sci 2021; 141:76-80. [PMID: 34700147 DOI: 10.1016/j.rvsc.2021.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/29/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Equid herpesvirus 1 (EHV-1) outbreaks occur when virus spreads from infected horses to in-contact horses, primarily via nasal shedding. This study evaluated the efficacy of factors secreted by equine peripheral blood derived mesenchymal stromal cells (PB-MSCs), collectively named the secretome, to inhibit the growth of EHV-1 in (i) 2D epithelial cell cultures (RK-13) in vitro, (ii) 3D equine nasal explants in vitro and (iii) an EHV-1 infection mouse model in vivo. The PB-MSC secretome was found to inhibit EHV-1 in RK-13 cells as well as in the epithelium of equine nasal explants. Although the PB-MSC secretome did not decrease overall severity of EHV-1 infection in mice, as determined by weight loss and viral titers in lungs, histological analyses indicated local reduction of EHV-1 infection in nasal epithelium. These results indicate that the PB-MSC secretome inhibits EHV-1 in epithelial cells in a context-dependent manner.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, 14853, NY, United States
| | - Katherine A Churchill
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, 14853, NY, United States
| | - Mason C Jager
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, 14853, NY, United States
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, 14853, NY, United States.
| |
Collapse
|
7
|
Barachini S, Montali M, Panvini FM, Carnicelli V, Gatti GL, Piolanti N, Bonicoli E, Scaglione M, Buda G, Parchi PD. Mesangiogenic Progenitor Cells Are Tissue Specific and Cannot Be Isolated From Adipose Tissue or Umbilical Cord Blood. Front Cell Dev Biol 2021; 9:669381. [PMID: 34291045 PMCID: PMC8287027 DOI: 10.3389/fcell.2021.669381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Mesangiogenic progenitor cells (MPCs) have been isolated from human bone marrow (BM) mononuclear cells. They attracted particular attention for the ability to differentiate into exponentially growing mesenchymal stromal cells while retaining endothelial differentiative potential. MPC power to couple mesengenesis and angiogenesis highlights their tissue regenerative potential and clinical value, with particular reference to musculoskeletal tissues regeneration. BM and adipose tissue represent the most promising adult multipotent cell sources for bone and cartilage repair, although discussion is still open on their respective profitability. Culture determinants, as well as tissues of origin, appeared to strongly affect the regenerative potential of cell preparations, making reliable methods for cell isolation and growth a prerequisite to obtain cell-based medicinal products. Our group had established a definite consistent protocol for MPC culture, and here, we present data showing MPCs to be tissue specific.
Collapse
Affiliation(s)
- Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marina Montali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca M Panvini
- Sant'Anna School of Advanced Studies, Institute of Life Sciences, Pisa, Italy
| | - Vittoria Carnicelli
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Gian Luca Gatti
- Plastic and Reconstructive Surgery Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Nicola Piolanti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Enrico Bonicoli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Michelangelo Scaglione
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gabriele Buda
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo D Parchi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Al Naem M, Bourebaba L, Kucharczyk K, Röcken M, Marycz K. Therapeutic mesenchymal stromal stem cells: Isolation, characterization and role in equine regenerative medicine and metabolic disorders. Stem Cell Rev Rep 2021; 16:301-322. [PMID: 31797146 DOI: 10.1007/s12015-019-09932-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSC) have become a popular treatment modality in equine orthopaedics. Regenerative therapies are especially interesting for pathologies like complicated tendinopathies of the distal limb, osteoarthritis, osteochondritis dissecans (OCD) and more recently metabolic disorders. Main sources for MSC harvesting in the horse are bone marrow, adipose tissue and umbilical cord blood. While the acquisition of umbilical cord blood is fairly easy and non-invasive, extraction of bone marrow and adipose tissue requires more invasive techniques. Characterization of the stem cells as a result of any isolation method, is also a crucial step for the confirmation of the cells' stemness properties; thus, three main characteristics must be fulfilled by these cells, namely: adherence, expression of a series of well-defined differentiation clusters as well as pluripotency. EVs, resulting from the paracrine action of MSCs, also play a key role in the therapeutic mechanisms mediated by stem cells; MSC-EVs are thus largely implicated in the regulation of proliferation, maturation, polarization and migration of various target cells. Evidence that EVs alone represent a complex network 0involving different soluble factors and could then reflect biophysical characteristics of parent cells has fuelled the importance of developing highly specific techniques for their isolation and analysis. All these aspects related to the functional and technical understanding of MSCs will be discussed and summarized in this review.
Collapse
Affiliation(s)
- Mohamad Al Naem
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland.,International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114, Wisznia Mała, Poland
| | - Katarzyna Kucharczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Michael Röcken
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany
| | - Krzysztof Marycz
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany. .,Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland. .,International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114, Wisznia Mała, Poland.
| |
Collapse
|
9
|
Harman RM, Marx C, Van de Walle GR. Translational Animal Models Provide Insight Into Mesenchymal Stromal Cell (MSC) Secretome Therapy. Front Cell Dev Biol 2021; 9:654885. [PMID: 33869217 PMCID: PMC8044970 DOI: 10.3389/fcell.2021.654885] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The therapeutic potential of the mesenchymal stromal cell (MSC) secretome, consisting of all molecules secreted by MSCs, is intensively studied. MSCs can be readily isolated, expanded, and manipulated in culture, and few people argue with the ethics of their collection. Despite promising pre-clinical studies, most MSC secretome-based therapies have not been implemented in human medicine, in part because the complexity of bioactive factors secreted by MSCs is not completely understood. In addition, the MSC secretome is variable, influenced by individual donor, tissue source of origin, culture conditions, and passage. An increased understanding of the factors that make up the secretome and the ability to manipulate MSCs to consistently secrete factors of biologic importance will improve MSC therapy. To aid in this goal, we can draw from the wealth of information available on secreted factors from MSC isolated from veterinary species. These translational animal models will inspire efforts to move human MSC secretome therapy from bench to bedside.
Collapse
Affiliation(s)
| | | | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
10
|
Hagen A, Lehmann H, Aurich S, Bauer N, Melzer M, Moellerberndt J, Patané V, Schnabel CL, Burk J. Scalable Production of Equine Platelet Lysate for Multipotent Mesenchymal Stromal Cell Culture. Front Bioeng Biotechnol 2021; 8:613621. [PMID: 33553119 PMCID: PMC7859354 DOI: 10.3389/fbioe.2020.613621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
Translation of multipotent mesenchymal stromal cell (MSC)-based therapies is advancing in human and veterinary medicine. One critical issue is the in vitro culture of MSC before clinical use. Using fetal bovine serum (FBS) as supplement to the basal medium is still the gold standard for cultivation of many cell types including equine MSC. Alternatives are being explored, with substantial success using platelet lysate-supplemented media for human MSC. However, progress lags behind in the veterinary field. The aim of this study was to establish a scalable protocol for equine platelet lysate (ePL) production and to test the ePL in equine MSC culture. Whole blood was harvested into blood collection bags from 20 healthy horses. After checking sample materials for pathogen contamination, samples from 19 animals were included. Platelet concentrates were prepared using a buffy coat method. Platelets, platelet-derived growth factor BB, and transforming growth factor β1 concentrations were increased in the concentrates compared with whole blood or serum (p < 0.05), while white blood cells were reduced (p < 0.05). The concentrates were lysed using freeze/thaw cycles, which eliminated the cells while growth factor concentrations were maintained. Donor age negatively correlated with platelet and growth factor concentrations after processing (p < 0.05). Finally, all lysates were pooled and the ePL was evaluated as culture medium supplement in comparison with FBS, using adipose-derived MSC from four unrelated donor horses. MSC proliferated well in 10% FBS as well as in 10% ePL. However, using 5 or 2.5% ePL entailed highly inconsistent proliferation or loss of proliferation, with significant differences in generation times and confluencies (p < 0.05). MSC expressed the surface antigens CD90, CD44, and CD29, but CD73 and CD105 detection was low in all culture media. Adipogenic and osteogenic differentiation led to similar results in MSC from different culture media. The buffy coat method is useful to produce equine platelet concentrate with increased platelet and reduced white blood cell content in large scales. The ePL obtained supports MSC expansion similar as FBS when used at the same concentration (10%). Further investigations into equine MSC functionality in culture with ePL should follow.
Collapse
Affiliation(s)
- A Hagen
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - H Lehmann
- Department of Veterinary Clinical Sciences, Small Animal Clinic, Justus-Liebig-University Giessen, Giessen, Germany
| | - S Aurich
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, Giessen, Germany
| | - N Bauer
- Department of Veterinary Clinical Sciences, Clinical Pathology and Clinical Pathophysiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - M Melzer
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - J Moellerberndt
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - V Patané
- Department of Veterinary Clinical Sciences, Clinical Pathology and Clinical Pathophysiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - C L Schnabel
- Faculty of Veterinary Medicine, Institute of Immunology, Leipzig University, Leipzig, Germany
| | - J Burk
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
11
|
Harman RM, Patel RS, Fan JC, Park JE, Rosenberg BR, Van de Walle GR. Single-cell RNA sequencing of equine mesenchymal stromal cells from primary donor-matched tissue sources reveals functional heterogeneity in immune modulation and cell motility. Stem Cell Res Ther 2020; 11:524. [PMID: 33276815 PMCID: PMC7716481 DOI: 10.1186/s13287-020-02043-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The efficacy of mesenchymal stromal cell (MSC) therapy is thought to depend on the intrinsic heterogeneity of MSC cultures isolated from different tissue sources as well as individual MSCs isolated from the same tissue source, neither of which is well understood. To study this, we used MSC cultures isolated from horses. The horse is recognized as a physiologically relevant large animal model appropriate for translational MSC studies. Moreover, due to its large size the horse allows for the simultaneous collection of adequate samples from multiple tissues of the same animal, and thus, for the unique collection of donor matched MSC cultures from different sources. The latter is much more challenging in mice and humans due to body size and ethical constraints, respectively. METHODS In the present study, we performed single-cell RNA sequencing (scRNA-seq) on primary equine MSCs that were collected from three donor-matched tissue sources; adipose tissue (AT), bone marrow (BM), and peripheral blood (PB). Based on transcriptional differences detected with scRNA-seq, we performed functional experiments to examine motility and immune regulatory function in distinct MSC populations. RESULTS We observed both inter- and intra-source heterogeneity across the three sources of equine MSCs. Functional experiments demonstrated that transcriptional differences correspond with phenotypic variance in cellular motility and immune regulatory function. Specifically, we found that (i) differential expression of junctional adhesion molecule 2 (JAM2) between MSC cultures from the three donor-matched tissue sources translated into altered cell motility of BM-derived MSCs when RNA interference was used to knock down this gene, and (ii) differences in C-X-C motif chemokine ligand 6 (CXCL6) expression in clonal MSC lines derived from the same tissue source correlated with the chemoattractive capacity of PB-derived MSCs. CONCLUSIONS Ultimately, these findings will enhance our understanding of MSC heterogeneity and will lead to improvements in the therapeutic potential of MSCs, accelerating the transition from bench to bedside.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Roosheel S Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jennifer C Fan
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Jee E Park
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
12
|
Suelzu CM, Conti V, Khalidy Y, Montagna S, Strusi G, Di Lecce R, Berni P, Basini G, Ramoni R, Grolli S. Xenobiotic-Free Medium Guarantees Expansion of Adipose Tissue-Derived Canine Mesenchymal Stem Cells Both in 3D Fibrin-Based Matrices and in 2D Plastic Surface Cultures. Cells 2020; 9:cells9122578. [PMID: 33276432 PMCID: PMC7759956 DOI: 10.3390/cells9122578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/28/2020] [Indexed: 01/22/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been recently introduced in veterinary medicine as a potential therapeutic tool for several pathologies. The large-scale in vitro expansion needed to ensure the preparation of a suitable number of MSCs for clinical application usually requires the use of xenogeneic supplements like the fetal bovine serum (FBS). The substitution of FBS with species-specific supplements would improve the safety of implanted cells, reducing the risk of undesired immune responses following cell therapy. We have evaluated the effectiveness of canine adipose tissue-derived stromal vascular fraction (SVF) and MSCs (ADMSCs) expansion in the presence of canine blood-derived supplements. Cells were cultured on traditional plastic surface and inside a 3D environment derived from the jellification of different blood-derived products, i.e., platelet-poor plasma (PPP), platelet-rich plasma (PRP), or platelet lysate (PL). PPP, PRP, and PL can contribute to canine ADMSCs in vitro expansion. Both allogeneic and autologous PPP and PL can replace FBS for ADMSCs culture on a plastic surface, exhibiting either a similar (PPP) or a more effective (PL) stimulus to cell replication. Furthermore, the 3D environment based on homospecific blood-derived products polymerization provides a strong stimulus to ADMSCs replication, producing a higher number of cells in comparison to the plastic surface environment. Allogeneic or autologous blood products behave similarly. The work suggests that canine ADMSCs can be expanded in the absence of xenogeneic supplements, thus increasing the safety of cellular preparations. Furthermore, the 3D fibrin-based matrices could represent a simple, readily available environments for effective in vitro expansion of ADMSCs using allogeneic or autologous blood-products.
Collapse
Affiliation(s)
- Caterina M. Suelzu
- Dipartimento di Scienze Mediche Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy; (V.C.); (Y.K.); (S.M.); (R.D.L.); (P.B.); (G.B.); (R.R.)
- Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7UQ, UK;
- Correspondence: (C.M.S.); (S.G.)
| | - Virna Conti
- Dipartimento di Scienze Mediche Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy; (V.C.); (Y.K.); (S.M.); (R.D.L.); (P.B.); (G.B.); (R.R.)
| | - Youssef Khalidy
- Dipartimento di Scienze Mediche Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy; (V.C.); (Y.K.); (S.M.); (R.D.L.); (P.B.); (G.B.); (R.R.)
| | - Sara Montagna
- Dipartimento di Scienze Mediche Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy; (V.C.); (Y.K.); (S.M.); (R.D.L.); (P.B.); (G.B.); (R.R.)
| | - Gabriele Strusi
- Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7UQ, UK;
| | - Rosanna Di Lecce
- Dipartimento di Scienze Mediche Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy; (V.C.); (Y.K.); (S.M.); (R.D.L.); (P.B.); (G.B.); (R.R.)
| | - Priscilla Berni
- Dipartimento di Scienze Mediche Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy; (V.C.); (Y.K.); (S.M.); (R.D.L.); (P.B.); (G.B.); (R.R.)
| | - Giuseppina Basini
- Dipartimento di Scienze Mediche Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy; (V.C.); (Y.K.); (S.M.); (R.D.L.); (P.B.); (G.B.); (R.R.)
| | - Roberto Ramoni
- Dipartimento di Scienze Mediche Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy; (V.C.); (Y.K.); (S.M.); (R.D.L.); (P.B.); (G.B.); (R.R.)
| | - Stefano Grolli
- Dipartimento di Scienze Mediche Veterinarie, Università di Parma, Via del Taglio 10, 43126 Parma, Italy; (V.C.); (Y.K.); (S.M.); (R.D.L.); (P.B.); (G.B.); (R.R.)
- Correspondence: (C.M.S.); (S.G.)
| |
Collapse
|
13
|
Bukowska J, Szóstek-Mioduchowska AZ, Kopcewicz M, Walendzik K, Machcińska S, Gawrońska-Kozak B. Adipose-Derived Stromal/Stem Cells from Large Animal Models: from Basic to Applied Science. Stem Cell Rev Rep 2020; 17:719-738. [PMID: 33025392 PMCID: PMC8166671 DOI: 10.1007/s12015-020-10049-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
Abstract
Adipose-derived stem cells (ASCs) isolated from domestic animals fulfill the qualitative criteria of mesenchymal stem cells, including the capacity to differentiate along multiple lineage pathways and to self-renew, as well as immunomodulatory capacities. Recent findings on human diseases derived from studying large animal models, have provided evidence that administration of autologous or allogenic ASCs can improve the process of healing. In a narrow group of large animals used in bioresearch studies, pigs and horses have been shown to be the best suited models for study of the wound healing process, cardiovascular and musculoskeletal disorders. To this end, current literature demonstrates that ASC-based therapies bring considerable benefits to animal health in both spontaneously occurring and experimentally induced clinical cases. The purpose of this review is to provide an overview of the diversity, isolation, and characterization of ASCs from livestock. Particular attention has been paid to the functional characteristics of the cells that facilitate their therapeutic application in large animal models of human disease. In this regard, we describe outcomes of ASCs utilization in translational research with pig and horse models of disease. Furthermore, we evaluate the current status of ASC-based therapy in veterinary practice, particularly in the rapidly developing field of equine regenerative medicine. In conclusion, this review presents arguments that support the relevance of animal ASCs in the field of regenerative medicine and it provides insights into the future perspectives of ASC utilization in animal husbandry.
Collapse
Affiliation(s)
- Joanna Bukowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | | | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Sylwia Machcińska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Barbara Gawrońska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| |
Collapse
|
14
|
Dias IE, Pinto PO, Barros LC, Viegas CA, Dias IR, Carvalho PP. Mesenchymal stem cells therapy in companion animals: useful for immune-mediated diseases? BMC Vet Res 2019; 15:358. [PMID: 31640767 PMCID: PMC6805418 DOI: 10.1186/s12917-019-2087-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells are multipotent cells, with capacity for self-renewal and differentiation into tissues of mesodermal origin. These cells are possible therapeutic agents for autoimmune disorders, since they present remarkable immunomodulatory ability.The increase of immune-mediated diseases in veterinary medicine has led to a growing interest in the research of these disorders and their medical treatment. Conventional immunomodulatory drug therapy such as glucocorticoids or other novel therapies such as cyclosporine or monoclonal antibodies are associated with numerous side effects that limit its long-term use, leading to the need for developing new therapeutic strategies that can be more effective and safe.The aim of this review is to provide a critical overview about the therapeutic potential of these cells in the treatment of some autoimmune disorders (canine atopic dermatitis, feline chronic gingivostomatitis, inflammatory bowel disease and feline asthma) compared with their conventional treatment.Mesenchymal stem cell-based therapy in autoimmune diseases has been showing that this approach can ameliorate clinical signs or even cause remission in most animals, with the exception of canine atopic dermatitis in which little to no improvement was observed.Although mesenchymal stem cells present a promising future in the treatment of most of these disorders, the variability in the outcomes of some clinical trials has led to the current controversy among authors regarding their efficacy. Mesenchymal stem cell-based therapy is currently requiring a deeper and detailed analysis that allows its standardization and better adaptation to the intended therapeutic results, in order to overcome current limitations in future trials.
Collapse
Affiliation(s)
- Inês Esteves Dias
- CIVG - Vasco da Gama Research Center, Vasco da Gama University School, Av. José R. Sousa Fernandes 197, Campus Universitário - Bloco B, Lordemão, 3020-210 Coimbra, Portugal
| | - Pedro Olivério Pinto
- CIVG - Vasco da Gama Research Center, Vasco da Gama University School, Av. José R. Sousa Fernandes 197, Campus Universitário - Bloco B, Lordemão, 3020-210 Coimbra, Portugal
- Coimbra University Veterinary Hospital, Av. José R. Sousa Fernandes 197, 3020-210 Coimbra, Portugal
| | - Luís Carlos Barros
- CIVG - Vasco da Gama Research Center, Vasco da Gama University School, Av. José R. Sousa Fernandes 197, Campus Universitário - Bloco B, Lordemão, 3020-210 Coimbra, Portugal
| | - Carlos Antunes Viegas
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Isabel Ribeiro Dias
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Pedro Pires Carvalho
- CIVG - Vasco da Gama Research Center, Vasco da Gama University School, Av. José R. Sousa Fernandes 197, Campus Universitário - Bloco B, Lordemão, 3020-210 Coimbra, Portugal
- Vetherapy, 479 St, San Francisco, CA 94103 USA
| |
Collapse
|
15
|
Shojaee A, Parham A, Ejeian F, Nasr Esfahani MH. Equine adipose mesenchymal stem cells (eq-ASCs) appear to have higher potential for migration and musculoskeletal differentiation. Res Vet Sci 2019; 125:235-243. [PMID: 31310927 DOI: 10.1016/j.rvsc.2019.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 05/14/2019] [Accepted: 06/30/2019] [Indexed: 12/28/2022]
Abstract
Equine adipose-derived mesenchymal stem cells (eq-ASCs) possess excellent regeneration potential especially for treatment of musculoskeletal disorders. Besides their common characteristics, MSCs harvested from different species reveal some species-specific and donor-dependent behaviors. Hence, the molecular analysis of MSCs may shed more light on their future clinical application of these cells. This study aimed to investigate some behavioral aspects of eq-ASCs in vitro which may influence the efficacy of stem cell therapy. For this purpose, MSCs of a donor horse were isolated, characterized and expanded under normal culture conditions. During continuous culture condition, eq-ASCs were started to formed aggregated structures that was accompanied with the up-regulation of migratory related genes including transforming growth factor beta 1 (TGFB1) and its receptor 3 (TGFBR3), and snail family transcriptional repressor 1 (SNAI1), E-cadherin (CDH1) and β-catenin (CTNNB1). Moreover, the expression of a musculoskeletal progenitor marker, scleraxis bHLH transcription factor (SCX), was also increased after 3 days. In order to clarify the impact of TGFB signaling pathway on cultured cells, gain- and loss-of-function treatment by TGFB3 and SB431542 (TGFB inhibitor) were performed, respectively. We found that TGFB3 treatment exaggerated the aggregate formation effects, in some extend via induction of cytoskeletal actin rearrangement, while inhibition of TGFB signaling pathway by SB431542 reversed this phenomenon. Overall, our findings support the fact that eq-ASCs have an inherent capacity for migration, which was enhanced by TGFB3 treatment and, this ability may play crucial role in cell motility and wound healing of transplanted cells.
Collapse
Affiliation(s)
- Asiyeh Shojaee
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Parham
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell Biology and Alternative Regenerative Medicine Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Fatemeh Ejeian
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
16
|
Shojaee A, Parham A. Strategies of tenogenic differentiation of equine stem cells for tendon repair: current status and challenges. Stem Cell Res Ther 2019; 10:181. [PMID: 31215490 PMCID: PMC6582602 DOI: 10.1186/s13287-019-1291-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tendon injuries, as one of the most common orthopedic disorders, are the major cause of early retirement or wastage among sport horses which mainly affect the superficial digital flexor tendon (SDFT). Tendon repair is a slow process, and tendon tissue is often replaced by scar tissue. The current treatment options are often followed by an incomplete recovery that increases the susceptibility to re-injury. Recently, cell therapy has been used in veterinary medicine to treat tendon injuries, although the risk of ectopic bone formation after cell injection is possible in some cases. In vitro tenogenic induction may overcome the mentioned risk in clinical application. Moreover, a better understanding of treatment strategies for musculoskeletal injuries in horse may have future applications for human and vice versa. This comprehensive review outlines the current strategies of stem cell therapy in equine tendon injury and in vitro tenogenic induction of equine stem cell.
Collapse
Affiliation(s)
- Asiyeh Shojaee
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Parham
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran. .,Stem Cell Biology and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
17
|
Arnhold S, Elashry MI, Klymiuk MC, Wenisch S. Biological macromolecules and mesenchymal stem cells: Basic research for regenerative therapies in veterinary medicine. Int J Biol Macromol 2018; 123:889-899. [PMID: 30452985 DOI: 10.1016/j.ijbiomac.2018.11.158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Stefan Arnhold
- Institute of Veterinary Anatomy-, Histology and -Embryology, University of Giessen, 35392 Giessen, Germany
| | - Mohamed I Elashry
- Institute of Veterinary Anatomy-, Histology and -Embryology, University of Giessen, 35392 Giessen, Germany; Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Mansoura 35516, Egypt.
| | - Michele C Klymiuk
- Institute of Veterinary Anatomy-, Histology and -Embryology, University of Giessen, 35392 Giessen, Germany
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen 35392, Giessen, Germany
| |
Collapse
|
18
|
Gugjoo MB, Amarpal, Makhdoomi DM, Sharma GT. Equine Mesenchymal Stem Cells: Properties, Sources, Characterization, and Potential Therapeutic Applications. J Equine Vet Sci 2018; 72:16-27. [PMID: 30929778 DOI: 10.1016/j.jevs.2018.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/06/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
Properties like sustained multiplication and self-renewal, and homing and multilineage differentiation to undertake repair of the damaged tissues make stem cells the lifeline for any living system. Therefore, stem cell therapy is regarded to carry immense therapeutic potential. Though the dearth of understanding about the basic biological properties and pathways involved in therapeutic benefits currently limit the application of stem cells in humans as well as animals, there are innumerable reports that suggest clinical benefits of stem cell therapy in equine. Among various stem cell sources, currently adult mesenchymal stem cells (MSCs) are preferred for therapeutic application in horse owing to their easy availability, capacity to modulate inflammation, and promote healing. Also the cells carry very limited teratogenic risk compared to the pluripotent stem cells. Mesenchymal stem cells were earlier considered mainly for musculoskeletal tissues, but now may also be utilized in other diverse clinical problems in horse, and the results may be extrapolated even for human medicine. The current review highlights biological properties, sources, mechanisms, and potential therapeutic applications of stem cells in equine practice.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Surgery, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India.
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India
| | - Dil Mohammad Makhdoomi
- Division of Surgery, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-Kashmir, Srinagar, J&K, India
| | - Gutulla Taru Sharma
- Division of Physiology and Climatology, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India
| |
Collapse
|
19
|
Cassano JM, Fortier LA, Hicks RB, Harman RM, Van de Walle GR. Equine mesenchymal stromal cells from different tissue sources display comparable immune-related gene expression profiles in response to interferon gamma (IFN)-γ. Vet Immunol Immunopathol 2018; 202:25-30. [PMID: 30078595 DOI: 10.1016/j.vetimm.2018.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/19/2018] [Accepted: 06/10/2018] [Indexed: 02/08/2023]
Abstract
Mesenchymal stromal cells (MSC) have the therapeutic potential to decrease inflammation due to their immunomodulatory properties. They can be isolated from various tissue sources such as bone marrow, adipose tissue, and blood, but it is unknown how the tissue source of origin affects the responses of MSC to inflammatory stimuli. Here, we conceptually addressed this question by evaluating the immune-related gene expression profiles of equine MSC from different tissue sources in response to interferon gamma (IFN-γ) stimulation, with the goal to determine if there is a preferable MSC source for clinical application in an inflammatory environment. The salient findings from this initial study were that the baseline expression of all immune related genes analyzed, with the exception of prostaglandin-endoperoxide synthase 2 (PTGS2), was variable in MSC depending on tissue source. Following IFN-γ stimulation, however, gene expression profiles became more similar across all tissue sources, suggesting that MSC from different sources will likely respond similarly in an inflammatory environment when used clinically.
Collapse
Affiliation(s)
- Jennifer M Cassano
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14850, USA.
| | - Lisa A Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14850, USA.
| | - Rebecca B Hicks
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14850, USA.
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14850, USA.
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
20
|
Cassano JM, Schnabel LV, Goodale MB, Fortier LA. Inflammatory licensed equine MSCs are chondroprotective and exhibit enhanced immunomodulation in an inflammatory environment. Stem Cell Res Ther 2018; 9:82. [PMID: 29615127 PMCID: PMC5883371 DOI: 10.1186/s13287-018-0840-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 01/01/2023] Open
Abstract
Background Inflammatory licensed mesenchymal stem cells (MSCs) have the ability to promote functional tissue repair. This study specifically sought to understand how the recipient tissue environment reciprocally affects MSC function. Inflammatory polarized macrophages, modeling an injured tissue environment, were exposed to licensed MSCs, and the resultant effects of MSC immunomodulation and functionality of the MSC secretome on chondrocyte homeostasis were studied. Methods Inflammatory licensed MSCs were generated through priming with either IFN-γ or polyinosinic:polycytidylic acid (poly I:C). Macrophages were polarized to an inflammatory phenotype using IFN-γ. Licensed MSCs were co-cultured with inflammatory macrophages and immunomodulation of MSCs was assessed in a T-cell proliferation assay. MSC gene expression was analyzed for changes in immunogenicity (MHC-I, MHC-II), immunomodulation (IDO, PTGS2, NOS2, TGF-β1), cytokine (IL-6, IL-8), and chemokine (CCL2, CXCL10) expression. Macrophages were assessed for changes in cytokine (IL-6, IL-10, TNF-α, IFN-γ) and chemokine (CCL2, CXCL10) expression. Conditioned medium representing the secretome from IFN-γ or poly I:C-primed MSCs was applied to IL-1β-stimulated chondrocytes, which were analyzed for catabolic (IL-6, TNF-α, CCL2, CXCL10, MMP-13, PTGS2) and matrix synthesis (ACAN, COL2A1) genes. Results IFN-γ-primed MSCs had a superior ability to suppress T-cell proliferation compared to naïve MSCs, and this ability was maintained following exposure to proinflammatory macrophages. In naïve and licensed MSCs exposed to inflammatory macrophages, MHC-I and MHC-II gene expression was upregulated. The secretome from licensed MSCs was chondroprotective and downregulated inflammatory gene expression in IL-1β-stimulated chondrocytes. Conclusions In-vitro inflammatory licensing agents enhanced the immunomodulatory ability of MSCs exposed to inflammatory macrophages, and the resultant secretome was biologically active, protecting chondrocytes from catabolic stimulation. Use of licensing agents produced a more consistent immunomodulatory MSC population compared to exposure to inflammatory macrophages. The clinical implications of this study are that in-vitro licensing prior to therapeutic application could result in a more predictable immunomodulatory and reparative response to MSC therapy compared to in-vivo inflammatory licensing by the recipient environment. Electronic supplementary material The online version of this article (10.1186/s13287-018-0840-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer M Cassano
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - Margaret B Goodale
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Lisa A Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
21
|
Zayed M, Adair S, Ursini T, Schumacher J, Misk N, Dhar M. Concepts and challenges in the use of mesenchymal stem cells as a treatment for cartilage damage in the horse. Res Vet Sci 2018; 118:317-323. [PMID: 29601969 DOI: 10.1016/j.rvsc.2018.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/13/2018] [Accepted: 03/18/2018] [Indexed: 12/26/2022]
Abstract
Osteoarthritis (OA), the most common form of joint disease affecting humans and horses, is characterized by the advance and decline of cartilage and loss of function of the affected joint. The progression of OA is steadily accompanied with biochemical events, which interfere with the cytokines and proteolytic enzymes responsible for progress of the disease. Recently, regenerative therapies have been used with an assumption that mesenchymal stem cells (MSCs) possess the potential to prevent the advancement of cartilage damage and potentially regenerate the injured tissue with an ultimate goal of preventing OA. We believe that despite various challenges, the use of allogenic versus autologous MSCs in cartilage regeneration, is a major issue which can directly or indirectly affect the other factors including, the timing of implantation, dose or cell numbers for implantation, and the source of MSCs. Current knowledge reporting some of these challenges that the clinicians might face in the treatment of cartilage damage in horses are presented. In this regard we conducted two independent studies. In the first study we compared donor matched bone marrow and synovial fluid - derived equine MSCs in vitro, and showed that the SFMSCs were similar to the BMMSCs in their proliferation, expression of CD29, CD44 and CD90, but, exhibited a significantly different chondrogenesis. Additionally, 3.2-21% of all SFMSCs were positive for MHC II, whereas, BMMSCs were negative. In the second study we observed that injection of both the autologous and allogenic SFMSCs into the tarsocrural joint resulted in elevated levels of total protein and total nucleated cell counts. Further experiments to evaluate the in vivo acute or chronic response to allogenic or autologous MSCs are imperative.
Collapse
Affiliation(s)
- Mohammed Zayed
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Steve Adair
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Tena Ursini
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - James Schumacher
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Nabil Misk
- Department of Animal Surgery, College of Veterinary Medicine, Assuit University, 71526 Assuit, Egypt
| | - Madhu Dhar
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
22
|
Cassano JM, Schnabel LV, Goodale MB, Fortier LA. The immunomodulatory function of equine MSCs is enhanced by priming through an inflammatory microenvironment or TLR3 ligand. Vet Immunol Immunopathol 2017; 195:33-39. [PMID: 29249315 DOI: 10.1016/j.vetimm.2017.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) have the therapeutic potential to treat a variety of inflammatory and degenerative disease processes, however the effects of the tissue environment on MSCs have been overlooked. Our hypothesis was that the immunomodulatory function of MSCs would be impaired by TLR4 stimulation or exposure to inflammatory macrophages, whereas their immunosuppressive properties would be enhanced by TLR3 stimulation. MSCs were exposed to polyinosinic:polycytidylic acid (poly I:C) to stimulate TLR3 receptors or lipopolysaccharide (LPS) to stimulate TLR4 receptors. MSC1 proinflammatory phenotype in human MSCs was associated with increased IL-6 and IL-8 and MSC2 regenerative phenotype was associated with increased CCL2 and CXCL10. MSC immunomodulatory function was assessed by measuring the ability of primed MSCs to suppress mitogen-stimulated T cell proliferation. Peripheral blood monocytes were isolated using CD14 MACs positive selection, differentiated into macrophages, and polarized using interferon-gamma (IFN-γ). Polarization was confirmed by increased gene expression of TNFα, CCL2, and CXCL10. Inflammatory macrophages were co-cultured with MSCs for 6h, and the resultant MSC phenotype was analyzed as described above. Both TLR3 and TLR4 priming and co-culture of MSCs with inflammatory macrophages resulted in increased expression of IL-6, CCL2, and CXCL10 in MSCs. Both TLR3 and TLR4 priming or exposure of MSCs to inflammatory macrophages significantly (p<0.05) enhanced their immunomodulatory function, demonstrated by a decrease in T cell proliferation in the presence of poly I:C primed MSCs (11%), LPS primed MSCs (7%), or MSCs exposed to inflammatory macrophages (12%), compared to unstimulated MSCs. Additionally, MHC class II positive MSCs tended to have a greater magnitude of response to priming compared to MHC class II negative MSCs. These results suggest that MSCs can be activated by a variety of inflammatory stimuli, but the recipient injured tissue bed in chronic injuries may not contain sufficient inflammatory signals to activate MSC immunomodulatory function. Enhancement of MSCs immunomodulatory function through inflammatory priming prior to clinical application might improve the therapeutic effect of MSC treatments.
Collapse
Affiliation(s)
- Jennifer M Cassano
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27607, USA
| | - Margaret B Goodale
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Lisa A Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
23
|
Uder C, Brückner S, Winkler S, Tautenhahn HM, Christ B. Mammalian MSC from selected species: Features and applications. Cytometry A 2017; 93:32-49. [PMID: 28906582 DOI: 10.1002/cyto.a.23239] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal/stem cells (MSC) are promising candidates for cellular therapy of different diseases in humans and in animals. Following the guidelines of the International Society for Cell Therapy, human MSC may be identified by expression of a specific panel of cell surface markers (CD105+, CD73+, CD90+, CD34-, CD14-, or CD11b-, CD79- or CD19-, HLA-DR-). In addition, multiple differentiation potential into at least the osteogenic, adipogenic, and chondrogenic lineage is a main criterion for MSC definition. Human MSC and MSC of a variety of mammals isolated from different tissues meet these criteria. In addition to the abovementioned, they express many more cell surface markers. Yet, these are not uniquely expressed by MSC. The gross phenotypic appearance like marker expression and differentiation potential is similar albeit not identical for MSC from different tissues and species. Similarly, MSC may feature different biological characteristics depending on the tissue source and the isolation and culture procedures. Their versatile biological qualities comprising immunomodulatory, anti-inflammatory, and proregenerative capacities rely largely on the migratory and secretory capabilities of MSC. They are attracted to sites of tissue lesion and secrete factors to promote self-repair of the injured tissue. This is a big perspective for clinical MSC applications in both veterinary and human medicine. Phase I/II clinical trials have been initiated to assess safety and feasibility of MSC therapies in acute and chronic disease settings. Yet, since the mode of MSC action in a specific disease environment is still unknown at large, it is mandatory to unravel the response of MSC from a given source onto a specific disease environment in suitable animal models prior to clinical applications. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Christiane Uder
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Sandra Brückner
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Sandra Winkler
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Hans-Michael Tautenhahn
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | | |
Collapse
|
24
|
Michler JK, Hillmann A, Savkovic V, Mülling CKW. Horse hair follicles: A novel dermal stem cell source for equine regenerative medicine. Cytometry A 2017; 93:104-114. [DOI: 10.1002/cyto.a.23198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/07/2017] [Accepted: 08/05/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Jule K. Michler
- Faculty of Veterinary Medicine; Institute of Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany
| | - Aline Hillmann
- Saxon Incubator for Clinical Translation; Leipzig University, Leipzig, Germany
| | - Vuk Savkovic
- Saxon Incubator for Clinical Translation; Leipzig University, Leipzig, Germany
| | - Christoph K. W. Mülling
- Faculty of Veterinary Medicine; Institute of Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany
| |
Collapse
|
25
|
Marycz K, Kornicka K, Marędziak M, Golonka P, Nicpoń J. Equine metabolic syndrome impairs adipose stem cells osteogenic differentiation by predominance of autophagy over selective mitophagy. J Cell Mol Med 2016; 20:2384-2404. [PMID: 27629697 PMCID: PMC5134411 DOI: 10.1111/jcmm.12932] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/28/2016] [Indexed: 12/12/2022] Open
Abstract
Adipose‐derived mesenchymal stem cells (ASC) hold great promise in the treatment of many disorders including musculoskeletal system, cardiovascular and/or endocrine diseases. However, the cytophysiological condition of cells, used for engraftment seems to be fundamental factor that might determine the effectiveness of clinical therapy. In this study we investigated growth kinetics, senescence, accumulation of oxidative stress factors, mitochondrial biogenesis, autophagy and osteogenic differentiation potential of ASC isolated from horses suffered from equine metabolic syndrome (EMS). We demonstrated that EMS condition impairs multipotency/pluripotency in ASCs causes accumulation of reactive oxygen species and mitochondria deterioration. We found that, cytochrome c is released from mitochondria to the cytoplasm suggesting activation of intrinsic apoptotic pathway in those cells. Moreover, we observed up‐regulation of p21 and decreased ratio of Bcl‐2/BAX. Deteriorations in mitochondria structure caused alternations in osteogenic differentiation of ASCEMS resulting in their decreased proliferation rate and reduced expression of osteogenic markers BMP‐2 and collagen type I. During osteogenic differentiation of ASCEMS, we observed autophagic turnover as probably, an alternative way to generate adenosine triphosphate and amino acids required to increased protein synthesis during differentiation. Downregulation of PGC1α, PARKIN and PDK4 in differentiated ASCEMS confirmed impairments in mitochondrial biogenesis and function. Hence, application of ASCEMS into endocrinological or ortophedical practice requires further investigation and analysis in the context of safeness of their application.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Electron Microscopy Laboratory, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences Wroclaw, Wroclaw, Poland.,Wroclaw Research Centre EIT+, Wrocław, Poland
| | - Katarzyna Kornicka
- Electron Microscopy Laboratory, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences Wroclaw, Wroclaw, Poland.,Wroclaw Research Centre EIT+, Wrocław, Poland
| | - Monika Marędziak
- Department of Animal Physiology and Biostructure, Faculty of Veterinary Medicine, University of Environmental and Life Sciences Wroclaw, Wroclaw, Poland
| | | | - Jakub Nicpoń
- Department of Surgery, Faculty of Veterinary Medicine, University of Environmental and Life Sciences Wroclaw, Wroclaw, Poland
| |
Collapse
|
26
|
Pennington MR, Curtis TM, Divers TJ, Wagner B, Ness SL, Tennant BC, Van de Walle GR. Equine Mesenchymal Stromal Cells from Different Sources Efficiently Differentiate into Hepatocyte-Like Cells. Tissue Eng Part C Methods 2016; 22:596-607. [PMID: 27113698 DOI: 10.1089/ten.tec.2015.0403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adult equine hepatocytes have proven challenging to culture long term in vitro as they rapidly lose their morphology and functionality, thus limiting studies on liver function and response to disease. In this study, we describe for the first time the differentiation of equine mesenchymal stromal cells (MSC) from a variety of sources into functional hepatocyte-like cells (HLC). First, we differentiated equine umbilical cord blood (UCB)-derived MSC into HLC and found that these cells exhibited a distinct polygonal morphology, stored glycogen as visualized by periodic acid Schiff's reagent staining, and were positive for albumin and other hepatocyte-specific genes. Second, we demonstrated that UCB-HLC could be revived following cryopreservation and retained their phenotype for at least 10 days. Third, we differentiated three sets of MSC from bone marrow (BM), adipose tissue (AT), and peripheral blood (PB), matched within the same horse. We achieved a 100% differentiation success rate with BM, 0% with AT, and 66% with PB. An additional set of nine PB-MSC samples resulted in an overall success rate of 42% (n = 12), and age or gender did not seem to have an effect on the success of hepatic differentiation from that source. In a final set of experiments, we evaluated the use of these HLC as tools in different fields of biomedical research like virology, to study viral growth, and toxicology, to study chemicals with hepatic toxicity. Equine HLC were found susceptible for infection with the equine herpesviruses type 1 (EHV-1), -2, and -5, and exhibited a more sensitive dose-dependent response to arsenic toxicity than the commonly used human hepatocellular cell line HepG2. Taken together, these data indicate that equine MSC can be efficiently differentiated into HLC and these equine HLC could be a useful tool for in vitro studies.
Collapse
Affiliation(s)
- Matthew R Pennington
- 1 Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University , Ithaca, New York
| | - Theresa M Curtis
- 1 Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University , Ithaca, New York.,2 Department of Biological Sciences, State University of New York at Cortland , Cortland, New York
| | - Thomas J Divers
- 3 Department of Clinical Sciences, College of Veterinary Medicine, Cornell University , Ithaca, New York
| | - Bettina Wagner
- 4 Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University , Ithaca, New York
| | - SallyAnne L Ness
- 1 Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University , Ithaca, New York.,3 Department of Clinical Sciences, College of Veterinary Medicine, Cornell University , Ithaca, New York
| | - Bud C Tennant
- 3 Department of Clinical Sciences, College of Veterinary Medicine, Cornell University , Ithaca, New York
| | - Gerlinde R Van de Walle
- 1 Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University , Ithaca, New York
| |
Collapse
|
27
|
Hoffman AM, Dow SW. Concise Review: Stem Cell Trials Using Companion Animal Disease Models. Stem Cells 2016; 34:1709-29. [PMID: 27066769 DOI: 10.1002/stem.2377] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/26/2016] [Indexed: 12/13/2022]
Abstract
Studies to evaluate the therapeutic potential of stem cells in humans would benefit from more realistic animal models. In veterinary medicine, companion animals naturally develop many diseases that resemble human conditions, therefore, representing a novel source of preclinical models. To understand how companion animal disease models are being studied for this purpose, we reviewed the literature between 2008 and 2015 for reports on stem cell therapies in dogs and cats, excluding laboratory animals, induced disease models, cancer, and case reports. Disease models included osteoarthritis, intervertebral disc degeneration, dilated cardiomyopathy, inflammatory bowel diseases, Crohn's fistulas, meningoencephalomyelitis (multiple sclerosis-like), keratoconjunctivitis sicca (Sjogren's syndrome-like), atopic dermatitis, and chronic (end-stage) kidney disease. Stem cells evaluated in these studies included mesenchymal stem-stromal cells (MSC, 17/19 trials), olfactory ensheathing cells (OEC, 1 trial), or neural lineage cells derived from bone marrow MSC (1 trial), and 16/19 studies were performed in dogs. The MSC studies (13/17) used adipose tissue-derived MSC from either allogeneic (8/13) or autologous (5/13) sources. The majority of studies were open label, uncontrolled studies. Endpoints and protocols were feasible, and the stem cell therapies were reportedly safe and elicited beneficial patient responses in all but two of the trials. In conclusion, companion animals with naturally occurring diseases analogous to human conditions can be recruited into clinical trials and provide realistic insight into feasibility, safety, and biologic activity of novel stem cell therapies. However, improvements in the rigor of manufacturing, study design, and regulatory compliance will be needed to better utilize these models. Stem Cells 2016;34:1709-1729.
Collapse
Affiliation(s)
- Andrew M Hoffman
- Regenerative Medicine Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts, USA
| | - Steven W Dow
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
28
|
Zubin E, Conti V, Leonardi F, Zanichelli S, Ramoni R, Grolli S. Regenerative therapy for the management of a large skin wound in a dog. Clin Case Rep 2015; 3:598-603. [PMID: 26273450 PMCID: PMC4527804 DOI: 10.1002/ccr3.253] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/29/2014] [Accepted: 02/20/2015] [Indexed: 12/19/2022] Open
Abstract
Extensive full-thickness skin wounds are quite common in domestic animals. In these report, following the failure of reconstructive surgery, adipose tissue-derived mesenchymal stem cells, and platelet-rich plasma were successfully used in a dog to improve speed and quality of skin tissue healing, avoiding suffering, and debilitating effects.
Collapse
Affiliation(s)
- Elena Zubin
- Department of Veterinary Science, University of Parma Via del Taglio, 10 43126, Parma, Italy
| | - Virna Conti
- Department of Veterinary Science, University of Parma Via del Taglio, 10 43126, Parma, Italy
| | - Fabio Leonardi
- Department of Veterinary Science, University of Parma Via del Taglio, 10 43126, Parma, Italy
| | - Stefano Zanichelli
- Department of Veterinary Science, University of Parma Via del Taglio, 10 43126, Parma, Italy
| | - Roberto Ramoni
- Department of Veterinary Science, University of Parma Via del Taglio, 10 43126, Parma, Italy
| | - Stefano Grolli
- Department of Veterinary Science, University of Parma Via del Taglio, 10 43126, Parma, Italy
| |
Collapse
|
29
|
Donadeu FX. Equine induced pluripotent stem cells or how to turn skin cells into neurons: horse tissues a la carte? Equine Vet J 2015; 46:534-7. [PMID: 25099189 DOI: 10.1111/evj.12300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- F X Donadeu
- The Roslin Institute and Royal Dick School of Veterinary Sciences, University of Edinburgh, UK
| |
Collapse
|
30
|
Pezzanite LM, Fortier LA, Antczak DF, Cassano JM, Brosnahan MM, Miller D, Schnabel LV. Equine allogeneic bone marrow-derived mesenchymal stromal cells elicit antibody responses in vivo. Stem Cell Res Ther 2015; 6:54. [PMID: 25889095 PMCID: PMC4414005 DOI: 10.1186/s13287-015-0053-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/22/2015] [Accepted: 03/16/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction This study tested the hypothesis that Major Histocompatibility Complex (MHC) incompatible equine mesenchymal stromal cells (MSCs) would induce cytotoxic antibodies to donor MHC antigens in recipient horses after intradermal injection. No studies to date have explored recipient antibody responses to allogeneic donor MSC transplantation in the horse. This information is critical because the horse is a valuable species for assessing the safety and efficacy of MSC treatment prior to human clinical application. Methods Six MHC heterozygote horses were identified as non-ELA-A2 haplotype by microsatellite typing and used as allogeneic MHC-mismatched MSC recipients. MHC homozygote horses of known ELA-A2 haplotype were used as MSC and peripheral blood leukocyte (PBL) donors. One MHC homozygote horse of the ELA-A2 haplotype was the recipient of ELA-A2 donor MSCs as an MHC-matched control. Donor MSCs, which were previously isolated and immunophenotyped, were thawed and culture expanded to achieve between 30x106 and 50x106 cells for intradermal injection into the recipient’s neck. Recipient serum was collected and tested for the presence of anti-donor antibodies prior to MSC injection and every 7 days after MSC injection for the duration of the 8-week study using the standard two-stage lymphocyte microcytotoxicity dye-exclusion test. In addition to anti-ELA-A2 antibodies, recipient serum was examined for the presence of cross-reactive antibodies including anti-ELA-A3 and anti-RBC antibodies. Results All MHC-mismatched recipient horses produced anti-ELA-A2 antibodies following injection of ELA-A2 MSCs and developed a wheal at the injection site that persisted for the duration of the experiment. Anti-ELA-A2 antibody responses were varied both in terms of strength and timing. Four recipient horses had high-titered anti-ELA-A2 antibody responses resulting in greater than 80% donor PBL death in the microcytotoxicity assays and one of these horses also developed antibodies that cross-reacted when tested on lymphocyte targets from a horse with an unrelated MHC type. Conclusions Allogeneic MSCs are capable of eliciting antibody responses in vivo that can be strong and also cross-reactive with MHC types other than that of the donor. Such responses could limit the effectiveness of repeated allogeneic MSC use in a single horse, and could also result in untoward inflammatory responses in recipients. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0053-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lynn M Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Lisa A Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Douglas F Antczak
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA.
| | - Jennifer M Cassano
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | | | - Donald Miller
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA.
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27607, USA.
| |
Collapse
|
31
|
The equine immune responses to infectious and allergic disease: a model for humans? Mol Immunol 2014; 66:89-96. [PMID: 25457878 DOI: 10.1016/j.molimm.2014.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 01/01/2023]
Abstract
The modern horse, Equus caballus has historically made important contributions to the field of immunology, dating back to Emil von Behring's description of curative antibodies in equine serum over a century ago. While the horse continues to play an important role in human serotherapy, the mouse has replaced the horse as the predominant experimental animal in immunology research. Nevertheless, continuing efforts have led to an improved understanding of the equine immune response in a variety of infectious and non-infectious diseases. Based on this information, we can begin to identify specific situations where the horse may provide a unique immunological model for certain human diseases.
Collapse
|
32
|
Bussche L, Van de Walle GR. Peripheral Blood-Derived Mesenchymal Stromal Cells Promote Angiogenesis via Paracrine Stimulation of Vascular Endothelial Growth Factor Secretion in the Equine Model. Stem Cells Transl Med 2014; 3:1514-25. [PMID: 25313202 DOI: 10.5966/sctm.2014-0138] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have received much attention as a potential treatment of ischemic diseases, including ischemic tissue injury and cardiac failure. The beneficial effects of MSCs are thought to be mediated by their ability to provide proangiogenic factors, creating a favorable microenvironment that results in neovascularization and tissue regeneration. To study this in more detail and to explore the potential of the horse as a valuable translational model, the objectives of the present study were to examine the presence of angiogenic stimulating factors in the conditioned medium (CM) of peripheral blood-derived equine mesenchymal stromal cells (PB-MSCs) and to study their in vitro effect on angiogenesis-related endothelial cell (EC) behavior, including proliferation and vessel formation. Our salient findings were that CM from PB-MSCs contained significant levels of several proangiogenic factors. Furthermore, we found that CM could induce angiogenesis in equine vascular ECs and confirmed that endothelin-1, insulin growth factor binding protein 2, interleukin-8, and platelet-derived growth factor-AA, but not urokinase-type plasminogen activator, were responsible for this enhanced EC network formation by increasing the expression level of vascular endothelial growth factor-A, an important angiogenesis stimulator.
Collapse
Affiliation(s)
- Leen Bussche
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
33
|
Lopez MJ, Jarazo J. State of the art: stem cells in equine regenerative medicine. Equine Vet J 2014; 47:145-54. [PMID: 24957845 DOI: 10.1111/evj.12311] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/01/2014] [Indexed: 12/20/2022]
Abstract
According to Greek mythology, Prometheus' liver grew back nightly after it was removed each day by an eagle as punishment for giving mankind fire. Hence, contrary to popular belief, the concept of tissue and organ regeneration is not new. In the early 20th century, cell culture and ex vivo organ preservation studies by Alexis Carrel, some with famed aviator Charles Lindbergh, established a foundation for much of modern regenerative medicine. While early beliefs and discoveries foreshadowed significant accomplishments in regenerative medicine, advances in knowledge within numerous scientific disciplines, as well as nano- and micromolecular level imaging and detection technologies, have contributed to explosive advances over the last 20 years. Virtually limitless preparations, combinations and applications of the 3 major components of regenerative medicine, namely cells, biomaterials and bioactive molecules, have created a new paradigm of future therapeutic options for most species. It is increasingly clear, however, that despite significant parallels among and within species, there is no 'one-size-fits-all' regenerative therapy. Likewise, a panacea has yet to be discovered that completely reverses the consequences of time, trauma and disease. Nonetheless, there is no question that the promise and potential of regenerative medicine have forever altered medical practices. The horse is a relative newcomer to regenerative medicine applications, yet there is already a large body of work to incorporate novel regenerative therapies into standard care. This review focuses on the current state and potential future of stem cells in equine regenerative medicine.
Collapse
Affiliation(s)
- M J Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Equine Health Studies Program, Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, USA
| | | |
Collapse
|
34
|
Van Loon VJF, Scheffer CJW, Genn HJ, Hoogendoorn AC, Greve JW. Clinical follow-up of horses treated with allogeneic equine mesenchymal stem cells derived from umbilical cord blood for different tendon and ligament disorders. Vet Q 2014; 34:92-7. [PMID: 25072527 DOI: 10.1080/01652176.2014.949390] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) offer promise as therapeutic aids in the repair of tendon and ligament disorders in sport horses. Equine allogeneic MSCs derived from umbilical cord blood (eUCB-MSCs) can be obtained in a minimally invasive fashion with successful propagation of MSCs. OBJECTIVE The objective of this study was to determine the applicability and therapeutic effect of eUCB-MSCs on tendinitis of the superficial digital flexor tendon, desmitis of the suspensory ligament, tendinitis of the deep digital flexor tendon, and desmitis of the inferior check ligament in clinical cases. METHODS A retrospective clinical study was performed. At two equine clinics, 52 warmblood horses were treated with cultured eUCB-MSCs between 2009 and 2012. About 2-10 × 10(6) cells per lesion were administered. When a lesion was treated twice, the total amount could run up to 20 × 10(6) cells. Pearson's chi-squared test was used to compare the effect of the injured structure on the success rate, as well as the effect of the age of the horse. RESULTS Based on repeated examinations, 40 horses (77%) returned to work on the same or a higher level based on information provided by the owner. Neither the injured structure nor the age of the horse had a statistically significant influence on the result. CONCLUSION Overall, the results of treatment of some tendon and ligament injuries with eUCB-MSCs in clinical cases are promising.
Collapse
Affiliation(s)
- Vic J F Van Loon
- a Equine Clinic "De Watermolen" , Watermolenweg 5, 7481 VL Haaksbergen , The Netherlands
| | | | | | | | | |
Collapse
|
35
|
Sharma R, Livesey MR, Wyllie DJA, Proudfoot C, Whitelaw CBA, Hay DC, Donadeu FX. Generation of functional neurons from feeder-free, keratinocyte-derived equine induced pluripotent stem cells. Stem Cells Dev 2014; 23:1524-34. [PMID: 24548115 DOI: 10.1089/scd.2013.0565] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pluripotent stem cells (PSCs) offer unprecedented biomedical potential not only in relation to humans but also companion animals, particularly the horse. Despite this, attempts to generate bona fide equine embryonic stem cells have been unsuccessful. A very limited number of induced PSC lines have so far been generated from equine fibroblasts but their potential for directed differentiation into clinically relevant tissues has not been explored. In this study, we used retroviral vectors to generate induced pluripotent stem cells (iPSCs) with comparatively high efficiency from equine keratinocytes. Expression of endogenous PSC markers (OCT4, SOX2, LIN28, NANOG, DNMT3B, and REX1) was effectively restored in these cells, which could also form in vivo several tissue derivatives of the three germ layers, including functional neurons, keratinized epithelium, cartilage, bone, muscle, and respiratory and gastric epithelia. Comparative analysis of different reprogrammed cell lines revealed an association between the ability of iPSCs to form well-differentiated teratomas and the distinct endogenous expression of OCT4 and REX1 and reduced expression of viral transgenes. Importantly, unlike in previous studies, equine iPSCs were successfully expanded using simplified feeder-free culture conditions, constituting significant progress toward future biomedical applications. Further, under appropriate conditions equine iPSCs generated cells with features of cholinergic motor neurons including the ability to generate action potentials, providing the first report of functional cells derived from equine iPSCs. The ability to derive electrically active neurons in vitro from a large animal reveals highly conserved pathways of differentiation across species and opens the way for new and exciting applications in veterinary regenerative medicine.
Collapse
Affiliation(s)
- Ruchi Sharma
- 1 The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh , Midlothian, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
36
|
Schnabel LV, Pezzanite LM, Antczak DF, Felippe MJB, Fortier LA. Equine bone marrow-derived mesenchymal stromal cells are heterogeneous in MHC class II expression and capable of inciting an immune response in vitro. Stem Cell Res Ther 2014; 5:13. [PMID: 24461709 PMCID: PMC4055004 DOI: 10.1186/scrt402] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 01/17/2014] [Indexed: 01/16/2023] Open
Abstract
Introduction The horse is a valuable species to assess the effect of allogeneic mesenchymal stromal cells (MSCs) in regenerative treatments. No studies to date have examined recipient response to major histocompatibility complex (MHC)-mismatched equine MSCs. The purposes of this study were to immunophenotype MSCs from horses of known MHC haplotype and to compare the immunogenicity of MSCs with differing MHC class II expression. Methods MSCs and peripheral blood leukocytes (PBLs) were obtained from Thoroughbred horses (n = 10) of known MHC haplotype (ELA-A2, -A3, and -A9 homozygotes). MSCs were cultured through P8; cells from each passage (P2 to P8) were cryopreserved until used. Immunophenotyping of MHC class I and II, CD44, CD29, CD90, LFA-1, and CD45RB was performed by using flow cytometry. Tri-lineage differentiation assays were performed to confirm MSC multipotency. Recombinant equine IFN-γ was used to stimulate MHC class II negative MSCs in culture, after which expression of MHC class II was re-examined. To assess the ability of MHC class II negative or positive MSCs to stimulate an immune response, modified one-way mixed leukocyte reactions (MLRs) were performed by using MHC-matched and mismatched responder PBLs and stimulator PBLs or MSCs. Proliferation of gated CFSE-labeled CD3+ responder T cells was evaluated via CFSE attenuation by using flow cytometry and reported as the number of cells in the proliferating T-cell gate. Results MSCs varied widely in MHC class II expression despite being homogenous in terms of “stemness” marker expression and ability to undergo trilineage differentiation. Stimulation of MHC class II negative MSCs with IFN-γ resulted in markedly increased expression of MHC class II. MLR results revealed that MHC-mismatched MHC class II-positive MSCs caused significantly increased responder T-cell proliferation compared with MHC-mismatched MHC class II-negative and MHC-matched MSCs, and equivalent to that of the positive control of MHC-mismatched leukocytes. Conclusions The results of this study suggest that MSCs should be confirmed as MHC class II negative before allogeneic application. Additionally, it must be considered that even MHC class II-negative MSCs could upregulate MHC class II expression if implanted into an area of active inflammation, as demonstrated with in vitro stimulation with IFN-γ.
Collapse
|
37
|
de Bakker E, Van Ryssen B, De Schauwer C, Meyer E. Canine mesenchymal stem cells: state of the art, perspectives as therapy for dogs and as a model for man. Vet Q 2013; 33:225-33. [DOI: 10.1080/01652176.2013.873963] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|