1
|
Filipi T, Tureckova J, Vanatko O, Chmelova M, Kubiskova M, Sirotova N, Matejkova S, Vargova L, Anderova M. ALS-like pathology diminishes swelling of spinal astrocytes in the SOD1 animal model. Front Cell Neurosci 2024; 18:1472374. [PMID: 39449756 PMCID: PMC11499153 DOI: 10.3389/fncel.2024.1472374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Astrocytes are crucial for the functioning of the nervous system as they maintain the ion homeostasis via volume regulation. Pathological states, such as amyotrophic lateral sclerosis (ALS), affect astrocytes and might even cause a loss of such functions. In this study, we examined astrocytic swelling/volume recovery in both the brain and spinal cord of the SOD1 animal model to determine the level of their impairment caused by the ALS-like pathology. Astrocyte volume changes were measured in acute brain or spinal cord slices during and after exposure to hyperkalemia. We then compared the results with alterations of extracellular space (ECS) diffusion parameters, morphological changes, expression of the Kir4.1 channel and the potassium concentration measured in the cerebrospinal fluid, to further disclose the link between potassium and astrocytes in the ALS-like pathology. Morphological analysis revealed astrogliosis in both the motor cortex and the ventral horns of the SOD1 spinal cord. The activated morphology of SOD1 spinal astrocytes was associated with the results from volume measurements, which showed decreased swelling of these cells during hyperkalemia. Furthermore, we observed lower shrinkage of ECS in the SOD1 spinal ventral horns. Immunohistochemical analysis then confirmed decreased expression of the Kir4.1 channel in the SOD1 spinal cord, which corresponded with the diminished volume regulation. Despite astrogliosis, cortical astrocytes in SOD1 mice did not show alterations in swelling nor changes in Kir4.1 expression, and we did not identify significant changes in ECS parameters. Moreover, the potassium level in the cerebrospinal fluid did not deviate from the physiological concentration. The results we obtained thus suggest that ALS-like pathology causes impaired potassium uptake associated with Kir4.1 downregulation in the spinal astrocytes, but based on our data from the cortex, the functional impairment seems to be independent of the morphological state.
Collapse
Affiliation(s)
- Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Ondrej Vanatko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Monika Kubiskova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Natalia Sirotova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Stanislava Matejkova
- Analytical Laboratory, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Pasternack N, Doucet-O'Hare T, Johnson K, Paulsen O, Nath A. Endogenous retroviruses are dysregulated in ALS. iScience 2024; 27:110147. [PMID: 38989463 PMCID: PMC11233923 DOI: 10.1016/j.isci.2024.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 07/12/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a universally fatal neurodegenerative disease with no cure. Human endogenous retroviruses (HERVs) have been implicated in its pathogenesis but their relevance to ALS is not fully understood. We examined bulk RNA-seq data from almost 2,000 ALS and unaffected control samples derived from the cortex and spinal cord. Using different methods of feature selection, including differential expression analysis and machine learning, we discovered that transcription of HERV-K loci 1q22 and 8p23.1 were significantly upregulated in the spinal cord of individuals with ALS. Additionally, we identified a subset of ALS patients with upregulated HERV-K expression in the cortex and spinal cord. We also found the expression of HERV-K loci 19q11 and 8p23.1 was correlated with protein coding genes previously implicated in ALS and dysregulated in ALS patients in this study. These results clarify the association of HERV-K and ALS and highlight specific genes in the pathobiology of late-stage ALS.
Collapse
Affiliation(s)
- Nicholas Pasternack
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Tara Doucet-O'Hare
- Neuro-Oncology Branch Stem Cell Team, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kory Johnson
- Bioinformatics Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
3
|
Costa-Pinto S, Gonçalves-Ribeiro J, Tedim-Moreira J, Socodato R, Relvas JB, Sebastião AM, Vaz SH. Communication defects with astroglia contribute to early impairments in the motor cortex plasticity of SOD1 G93A mice. Neurobiol Dis 2024; 193:106435. [PMID: 38336279 DOI: 10.1016/j.nbd.2024.106435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease, involving the selective degeneration of cortical upper synapses in the primary motor cortex (M1). Excitotoxicity in ALS occurs due to an imbalance between excitation and inhibition, closely linked to the loss/gain of astrocytic function. Using the ALS SOD1G93A mice, we investigated the astrocytic contribution for the electrophysiological alterations observed in the M1 of SOD1G93A mice, throughout disease progression. Results showed that astrocytes are involved in synaptic dysfunction observed in presymptomatic SOD1G93A mice, since astrocytic glutamate transport currents are diminished and pharmacological inhibition of astrocytes only impaired long-term potentiation and basal transmission in wild-type mice. Proteomic analysis revealed major differences in neuronal transmission, metabolism, and immune system in upper synapses, confirming early communication deficits between neurons and astroglia. These results provide valuable insights into the early impact of upper synapses in ALS and the lack of supportive functions of cortical astrocytes, highlighting the possibility of manipulating astrocytes to improve synaptic function.
Collapse
Affiliation(s)
- Sara Costa-Pinto
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Joana Tedim-Moreira
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto 4200-135, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Porto 4200-135, Portugal
| | - Renato Socodato
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto 4200-135, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto 4200-135, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Porto 4200-135, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal.
| |
Collapse
|
4
|
Stoklund Dittlau K, Freude K. Astrocytes: The Stars in Neurodegeneration? Biomolecules 2024; 14:289. [PMID: 38540709 PMCID: PMC10967965 DOI: 10.3390/biom14030289] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 11/11/2024] Open
Abstract
Today, neurodegenerative disorders like Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) affect millions of people worldwide, and as the average human lifespan increases, similarly grows the number of patients. For many decades, cognitive and motoric decline has been explained by the very apparent deterioration of neurons in various regions of the brain and spinal cord. However, more recent studies show that disease progression is greatly influenced by the vast population of glial cells. Astrocytes are traditionally considered star-shaped cells on which neurons rely heavily for their optimal homeostasis and survival. Increasing amounts of evidence depict how astrocytes lose their supportive functions while simultaneously gaining toxic properties during neurodegeneration. Many of these changes are similar across various neurodegenerative diseases, and in this review, we highlight these commonalities. We discuss how astrocyte dysfunction drives neuronal demise across a wide range of neurodegenerative diseases, but rather than categorizing based on disease, we aim to provide an overview based on currently known mechanisms. As such, this review delivers a different perspective on the disease causes of neurodegeneration in the hope to encourage further cross-disease studies into shared disease mechanisms, which might ultimately disclose potentially common therapeutic entry points across a wide panel of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark;
| |
Collapse
|
5
|
Abdullatef S, Farina C. Publicly available ex vivo transcriptomics datasets to explore CNS physiology and neurodegeneration: state of the art and perspectives. Front Neurosci 2023; 17:1211079. [PMID: 37680966 PMCID: PMC10481165 DOI: 10.3389/fnins.2023.1211079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
The central nervous system (CNS) is characterized by an intricate composition of diverse cell types, including neurons and glia cells (astrocytes, oligodendrocytes, and microglia), whose functions may differ along time, between sexes and upon pathology. The advancements in high-throughput transcriptomics are providing fundamental insights on cell phenotypes, so that molecular codes and instructions are ever more described for CNS physiology and neurodegeneration. To facilitate the search of relevant information, this review provides an overview of key CNS transcriptomics studies ranging from CNS development to ageing and from physiology to pathology as defined for five neurodegenerative disorders and their relative animal models, with a focus on molecular descriptions whose raw data were publicly available. Accurate phenotypic descriptions of cellular states correlate with functional changes and this knowledge may support research devoted to the development of therapeutic strategies supporting CNS repair and function.
Collapse
Affiliation(s)
- Sandra Abdullatef
- Division of Neuroscience, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Cinthia Farina
- Division of Neuroscience, Institute of Experimental Neurology (INSpe), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
6
|
Valori CF, Sulmona C, Brambilla L, Rossi D. Astrocytes: Dissecting Their Diverse Roles in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Cells 2023; 12:1450. [PMID: 37296571 PMCID: PMC10252425 DOI: 10.3390/cells12111450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders often co-occurring in the same patient, a feature that suggests a common origin of the two diseases. Consistently, pathological inclusions of the same proteins as well as mutations in the same genes can be identified in both ALS/FTD. Although many studies have described several disrupted pathways within neurons, glial cells are also regarded as crucial pathogenetic contributors in ALS/FTD. Here, we focus our attention on astrocytes, a heterogenous population of glial cells that perform several functions for optimal central nervous system homeostasis. Firstly, we discuss how post-mortem material from ALS/FTD patients supports astrocyte dysfunction around three pillars: neuroinflammation, abnormal protein aggregation, and atrophy/degeneration. Furthermore, we summarize current attempts at monitoring astrocyte functions in living patients using either novel imaging strategies or soluble biomarkers. We then address how astrocyte pathology is recapitulated in animal and cellular models of ALS/FTD and how we used these models both to understand the molecular mechanisms driving glial dysfunction and as platforms for pre-clinical testing of therapeutics. Finally, we present the current clinical trials for ALS/FTD, restricting our discussion to treatments that modulate astrocyte functions, directly or indirectly.
Collapse
Affiliation(s)
- Chiara F. Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), 72072 Tübingen, Germany
- Department of Neuropathology, University of Tübingen, 72076 Tübingen, Germany
| | - Claudia Sulmona
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
7
|
Filipi T, Matusova Z, Abaffy P, Vanatko O, Tureckova J, Benesova S, Kubiskova M, Kirdajova D, Zahumensky J, Valihrach L, Anderova M. Cortical glia in SOD1(G93A) mice are subtly affected by ALS-like pathology. Sci Rep 2023; 13:6538. [PMID: 37085528 PMCID: PMC10121704 DOI: 10.1038/s41598-023-33608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/15/2023] [Indexed: 04/23/2023] Open
Abstract
The role of glia in amyotrophic lateral sclerosis (ALS) is undeniable. Their disease-related activity has been extensively studied in the spinal cord, but only partly in the brain. We present herein a comprehensive study of glia in the cortex of SOD1(G93A) mice-a widely used model of ALS. Using single-cell RNA sequencing (scRNA-seq) and immunohistochemistry, we inspected astrocytes, microglia, and oligodendrocytes, in four stages of the disease, respecting the factor of sex. We report minimal changes of glia throughout the disease progression and regardless of sex. Pseudobulk and single-cell analyses revealed subtle disease-related transcriptional alterations at the end-stage in microglia and oligodendrocytes, which were supported by immunohistochemistry. Therefore, our data support the hypothesis that the SOD1(G93A) mouse cortex does not recapitulate the disease in patients, and we recommend the use of a different model for future studies of the cortical ALS pathology.
Collapse
Affiliation(s)
- Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, V Uvalu 84, 15006, Prague, Czech Republic
| | - Zuzana Matusova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 25250, Vestec, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 12800, Prague, Czech Republic
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 25250, Vestec, Czech Republic
| | - Ondrej Vanatko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, V Uvalu 84, 15006, Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 25250, Vestec, Czech Republic
- Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 16628, Prague, Czech Republic
| | - Monika Kubiskova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Jakub Zahumensky
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 25250, Vestec, Czech Republic.
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic.
| |
Collapse
|
8
|
Founta K, Dafou D, Kanata E, Sklaviadis T, Zanos TP, Gounaris A, Xanthopoulos K. Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning. Mol Med 2023; 29:12. [PMID: 36694130 PMCID: PMC9872307 DOI: 10.1186/s10020-023-00603-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a rare progressive neurodegenerative disease that affects upper and lower motor neurons. As the molecular basis of the disease is still elusive, the development of high-throughput sequencing technologies, combined with data mining techniques and machine learning methods, could provide remarkable results in identifying pathogenetic mechanisms. High dimensionality is a major problem when applying machine learning techniques in biomedical data analysis, since a huge number of features is available for a limited number of samples. The aim of this study was to develop a methodology for training interpretable machine learning models in the classification of ALS and ALS-subtypes samples, using gene expression datasets. METHODS We performed dimensionality reduction in gene expression data using a semi-automated preprocessing systematic gene selection procedure using Statistically Equivalent Signature (SES), a causality-based feature selection algorithm, followed by Boosted Regression Trees (XGBoost) and Random Forest to train the machine learning classifiers. The SHapley Additive exPlanations (SHAP values) were used for interpretation of the machine learning classifiers. The methodology was developed and tested using two distinct publicly available ALS RNA-seq datasets. We evaluated the performance of SES as a dimensionality reduction method against: (a) Least Absolute Shrinkage and Selection Operator (LASSO), and (b) Local Outlier Factor (LOF). RESULTS The proposed methodology achieved 85.18% accuracy for the classification of cerebellum or frontal cortex samples as C9orf72-related familial ALS, sporadic ALS or healthy samples. Importantly, the genes identified as the most determinative have also been reported as disease-associated in ALS literature. When tested in the evaluation dataset, the methodology achieved 88.89% accuracy for the classification of sporadic ALS motor neuron samples. When LASSO was used as feature selection method instead of SES, the accuracy of the machine learning classifiers ranged from 74.07 to 96.30%, depending on tissue assessed, while LOF underperformed significantly (77.78% accuracy for the classification of pooled cerebellum and frontal cortex samples). CONCLUSIONS Using SES, we addressed the challenge of high dimensionality in gene expression data analysis, and we trained accurate machine learning ALS classifiers, specific for the gene expression patterns of different disease subtypes and tissue samples, while identifying disease-associated genes.
Collapse
Affiliation(s)
- Kyriaki Founta
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY, 11549, USA
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
- Laboratory of Pharmacology, School of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Dimitra Dafou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Eirini Kanata
- Laboratory of Pharmacology, School of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Theodoros P Zanos
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY, 11549, USA
- Feinstein Institutes for Medical Research, Institute of Health Systems Science, Northwell Health, Manhasset, NY, 11030, USA
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Anastasios Gounaris
- School of Informatics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, School of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001, Thermi, Greece.
| |
Collapse
|
9
|
Stoklund Dittlau K, Van Den Bosch L. Why should we care about astrocytes in a motor neuron disease? FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1047540. [PMID: 39086676 PMCID: PMC11285655 DOI: 10.3389/fmmed.2023.1047540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/13/2023] [Indexed: 08/02/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in adults, causing progressive degeneration of motor neurons, which results in muscle atrophy, respiratory failure and ultimately death of the patients. The pathogenesis of ALS is complex, and extensive efforts have focused on unravelling the underlying molecular mechanisms with a large emphasis on the dying motor neurons. However, a recent shift in focus towards the supporting glial population has revealed a large contribution and influence in ALS, which stresses the need to explore this area in more detail. Especially studies into astrocytes, the residential homeostatic supporter cells of neurons, have revealed a remarkable astrocytic dysfunction in ALS, and therefore could present a target for new and promising therapeutic entry points. In this review, we provide an overview of general astrocyte function and summarize the current literature on the role of astrocytes in ALS by categorizing the potentially underlying molecular mechanisms. We discuss the current efforts in astrocyte-targeted therapy, and highlight the potential and shortcomings of available models.
Collapse
Affiliation(s)
- Katarina Stoklund Dittlau
- KU Leuven—University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, Leuven, Belgium
- VIB Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven—University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, Leuven, Belgium
- VIB Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| |
Collapse
|
10
|
Logan R, Dubel-Haag J, Schcolnicov N, Miller SJ. Novel Genetic Signatures Associated With Sporadic Amyotrophic Lateral Sclerosis. Front Genet 2022; 13:851496. [PMID: 35401706 PMCID: PMC8986983 DOI: 10.3389/fgene.2022.851496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex polygenetic neurodegenerative disorder. Establishing a diagnosis for ALS is a challenging and lengthy process. By the time a diagnosis is made, the lifespan prognosis is only about two to 5 years. Genetic testing can be critical in assessing a patient’s risk for ALS, provided they have one of the known familial genes. However, the vast majority of ALS cases are sporadic and have no known associated genetic signatures. Our analysis of the whole genome sequencing data from ALS patients and healthy controls from the Answer ALS Consortium has uncovered twenty-three novel mutations in twenty-two protein-coding genes associated with sporadic ALS cases. The results show the majority of patients with the sporadic form of ALS have at least one or more mutation(s) in the 22 genes we have identified with probabilities of developing ALS ranging from 25–99%, depending on the number of mutations a patient has among the identified genes. Moreover, we have identified a subset of the ALS cohort that has >17 mutations in the 22 identified. In this case, a patient with this mutation profile has a 99% chance of developing ALS and could be classified as being at high risk for the disease. These genetic biomarkers can be used as an early ALS disease diagnostic tool with a rapid and non-invasive technique.
Collapse
Affiliation(s)
- Robert Logan
- Pluripotent Diagnostics Corp, Colorado Springs, CO, United States
- Department of Biology, Eastern Nazarene College, Quincy, MA, United States
| | | | | | - Sean J. Miller
- Pluripotent Diagnostics Corp, Colorado Springs, CO, United States
- *Correspondence: Sean J. Miller,
| |
Collapse
|
11
|
MacLean M, Juranek J, Cuddapah S, López-Díez R, Ruiz HH, Hu J, Frye L, Li H, Gugger PF, Schmidt AM. Microglia RAGE exacerbates the progression of neurodegeneration within the SOD1 G93A murine model of amyotrophic lateral sclerosis in a sex-dependent manner. J Neuroinflammation 2021; 18:139. [PMID: 34130712 PMCID: PMC8207569 DOI: 10.1186/s12974-021-02191-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background Burgeoning evidence highlights seminal roles for microglia in the pathogenesis of neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). The receptor for advanced glycation end products (RAGE) binds ligands relevant to ALS that accumulate in the diseased spinal cord and RAGE has been previously implicated in the progression of ALS pathology. Methods We generated a novel mouse model to temporally delete Ager from microglia in the murine SOD1G93A model of ALS. Microglia Ager deficient SOD1G93A mice and controls were examined for changes in survival, motor function, gliosis, motor neuron numbers, and transcriptomic analyses of lumbar spinal cord. Furthermore, we examined bulk-RNA-sequencing transcriptomic analyses of human ALS cervical spinal cord. Results Transcriptomic analysis of human cervical spinal cord reveals a range of AGER expression in ALS patients, which was negatively correlated with age at disease onset and death or tracheostomy. The degree of AGER expression related to differential expression of pathways involved in extracellular matrix, lipid metabolism, and intercellular communication. Microglia display increased RAGE immunoreactivity in the spinal cords of high AGER expressing patients and in the SOD1G93A murine model of ALS vs. respective controls. We demonstrate that microglia Ager deletion at the age of symptomatic onset, day 90, in SOD1G93A mice extends survival in male but not female mice. Critically, many of the pathways identified in human ALS patients that accompanied increased AGER expression were significantly ameliorated by microglia Ager deletion in male SOD1G93A mice. Conclusions Our results indicate that microglia RAGE disrupts communications with cell types including astrocytes and neurons, intercellular communication pathways that divert microglia from a homeostatic to an inflammatory and tissue-injurious program. In totality, microglia RAGE contributes to the progression of SOD1G93A murine pathology in male mice and may be relevant in human disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02191-2.
Collapse
Affiliation(s)
- Michael MacLean
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Judyta Juranek
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA.,Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Swetha Cuddapah
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Raquel López-Díez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Henry H Ruiz
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Jiyuan Hu
- Division of Biostatistics, Department of Population Health and the Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Laura Frye
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Huilin Li
- Division of Biostatistics, Department of Population Health and the Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Paul F Gugger
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
12
|
Pietrowski MJ, Gabr AA, Kozlov S, Blum D, Halle A, Carvalho K. Glial Purinergic Signaling in Neurodegeneration. Front Neurol 2021; 12:654850. [PMID: 34054698 PMCID: PMC8160300 DOI: 10.3389/fneur.2021.654850] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Purinergic signaling regulates neuronal and glial cell functions in the healthy CNS. In neurodegenerative diseases, purinergic signaling becomes dysregulated and can affect disease-associated phenotypes of glial cells. In this review, we discuss how cell-specific expression patterns of purinergic signaling components change in neurodegeneration and how dysregulated glial purinergic signaling and crosstalk may contribute to disease pathophysiology, thus bearing promising potential for the development of new therapeutical options for neurodegenerative diseases.
Collapse
Affiliation(s)
- Marie J Pietrowski
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Amr Ahmed Gabr
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Stanislav Kozlov
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - David Blum
- University of Lille, Inserm, CHU Lille, U1172 LilNCog - Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, Labex DISTALZ, Lille, France
| | - Annett Halle
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute of Neuropathology, University of Bonn, Bonn, Germany
| | - Kevin Carvalho
- University of Lille, Inserm, CHU Lille, U1172 LilNCog - Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, Labex DISTALZ, Lille, France
| |
Collapse
|
13
|
Potential Roles of the WNT Signaling Pathway in Amyotrophic Lateral Sclerosis. Cells 2021; 10:cells10040839. [PMID: 33917816 PMCID: PMC8068170 DOI: 10.3390/cells10040839] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
The WNT signaling pathway plays an important role in the physiological and pathophysiological processes of the central nervous system and the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We reviewed the literature pertinent to WNT/β–catenin signaling in ALS from cellular studies, animal models, and human clinical trials. WNT, WNT receptors, and other components of the WNT signaling pathway are expressed in both ALS patients and transgenic mice, and are involved in the pathogenesis of ALS. Studies have shown that abnormal activation of the WNT/β–catenin signaling pathway is related to neuronal degeneration and glial cell proliferation. WNT/Ca2+ signaling is associated with the pro–inflammatory phenotype of microglia; data on the muscle skeletal receptor Tyr kinase receptor in superoxide dismutase–1–G93A mice indicate that gene therapy is necessary for successful treatment of ALS. The varying profiles of lipoprotein receptor–related protein 4 antibodies in different ethnic groups suggest that individual treatment and multifactorial personalized approaches may be necessary for effective ALS therapy. In conclusion, the WNT signaling pathway is important to the ALS disease process, making it a likely therapeutic target.
Collapse
|
14
|
Das S, Li Z, Noori A, Hyman BT, Serrano-Pozo A. Meta-analysis of mouse transcriptomic studies supports a context-dependent astrocyte reaction in acute CNS injury versus neurodegeneration. J Neuroinflammation 2020; 17:227. [PMID: 32736565 PMCID: PMC7393869 DOI: 10.1186/s12974-020-01898-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Background Neuronal damage in acute CNS injuries and chronic neurodegenerative diseases is invariably accompanied by an astrocyte reaction in both mice and humans. However, whether and how the nature of the CNS insult—acute versus chronic—influences the astrocyte response, and whether astrocyte transcriptomic changes in these mouse models faithfully recapitulate the astrocyte reaction in human diseases remains to be elucidated. We hypothesized that astrocytes set off different transcriptomic programs in response to acute versus chronic insults, besides a shared “pan-injury” signature common to both types of conditions, and investigated the presence of these mouse astrocyte signatures in transcriptomic studies from human neurodegenerative diseases. Methods We performed a meta-analysis of 15 published astrocyte transcriptomic datasets from mouse models of acute injury (n = 6) and chronic neurodegeneration (n = 9) and identified pan-injury, acute, and chronic signatures, with both upregulated (UP) and downregulated (DOWN) genes. Next, we investigated these signatures in 7 transcriptomic datasets from various human neurodegenerative diseases. Results In mouse models, the number of UP/DOWN genes per signature was 64/21 for pan-injury and 109/79 for acute injury, whereas only 13/27 for chronic neurodegeneration. The pan-injury-UP signature was represented by the classic cytoskeletal hallmarks of astrocyte reaction (Gfap and Vim), plus extracellular matrix (i.e., Cd44, Lgals1, Lgals3, Timp1), and immune response (i.e., C3, Serping1, Fas, Stat1, Stat2, Stat3). The acute injury-UP signature was enriched in protein synthesis and degradation (both ubiquitin-proteasome and autophagy systems), intracellular trafficking, and anti-oxidant defense genes, whereas the acute injury-DOWN signature included genes that regulate chromatin structure and transcriptional activity, many of which are transcriptional repressors. The chronic neurodegeneration-UP signature was further enriched in astrocyte-secreted extracellular matrix proteins (Lama4, Cyr61, Thbs4), while the DOWN signature included relevant genes such as Agl (glycogenolysis), S1pr1 (immune modulation), and Sod2 (anti-oxidant). Only the pan-injury-UP mouse signature was clearly present in some human neurodegenerative transcriptomic datasets. Conclusions Acute and chronic CNS injuries lead to distinct astrocyte gene expression programs beyond their common astrocyte reaction signature. However, caution should be taken when extrapolating astrocyte transcriptomic findings from mouse models to human diseases.
Collapse
Affiliation(s)
- Sudeshna Das
- MGH BioMedical Informatics Core (BMIC), Cambridge, MA, 02139, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Massachusetts Alzheimer's Disease Research Center, 114 16th street, Suite 2012, Charlestown, MA, 02129, USA.,Harvard Medical School, Boston, MA, 02116, USA
| | - Zhaozhi Li
- MGH BioMedical Informatics Core (BMIC), Cambridge, MA, 02139, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ayush Noori
- MGH BioMedical Informatics Core (BMIC), Cambridge, MA, 02139, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Massachusetts Alzheimer's Disease Research Center, 114 16th street, Suite 2012, Charlestown, MA, 02129, USA.,Harvard Medical School, Boston, MA, 02116, USA
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA. .,Massachusetts Alzheimer's Disease Research Center, 114 16th street, Suite 2012, Charlestown, MA, 02129, USA. .,Harvard Medical School, Boston, MA, 02116, USA.
| |
Collapse
|
15
|
Clarke BE, Taha DM, Tyzack GE, Patani R. Regionally encoded functional heterogeneity of astrocytes in health and disease: A perspective. Glia 2020; 69:20-27. [PMID: 32749770 DOI: 10.1002/glia.23877] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
Increasing evidence has suggested that astrocytes demonstrate striking regionally allocated functional heterogeneity. Here, we discuss how this spatiotemporally encoded diversity determines the astrocytic phenotype along a finely grained spectrum from neuroprotective to deleterious states. With increasing recognition of their diverse and evolving roles in the central neuraxis, astrocytes now represent a tractable cellular target for therapies aiming to restore neural circuit integrity in a broad range of neurodegenerative disorders. Understanding the determinants of astrocyte physiology along with the true extent of heterogeneity in their regional and subregional functions will ultimately inform therapeutic strategy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin E Clarke
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,The Francis Crick Institute, London, UK
| | - Doaa M Taha
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,The Francis Crick Institute, London, UK
| | - Giulia E Tyzack
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,The Francis Crick Institute, London, UK
| | - Rickie Patani
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,The Francis Crick Institute, London, UK
| |
Collapse
|