1
|
Kunutsor SK, Lehoczki A, Laukkanen JA. The untapped potential of cold water therapy as part of a lifestyle intervention for promoting healthy aging. GeroScience 2024:10.1007/s11357-024-01295-w. [PMID: 39078461 DOI: 10.1007/s11357-024-01295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024] Open
Abstract
Healthy aging is a crucial goal in aging societies of the western world, with various lifestyle strategies being employed to achieve it. Among these strategies, hydrotherapy stands out for its potential to promote cardiovascular and mental health. Cold water therapy, a hydrotherapy technique, has emerged as a lifestyle strategy with the potential capacity to evoke a wide array of health benefits. This review aims to synthesize the extensive body of research surrounding cold water therapy and its beneficial effects on various health systems as well as the underlying biological mechanisms driving these benefits. We conducted a search for interventional and observational cohort studies from MEDLINE and EMBASE up to July 2024. Deliberate exposure of the body to cold water results in distinct physiological responses that may be linked to several health benefits. Evidence, primarily from small interventional studies, suggests that cold water therapy positively impacts cardiometabolic risk factors, stimulates brown adipose tissue and promotes energy expenditure-potentially reducing the risk of cardiometabolic diseases. It also triggers the release of stress hormones, catecholamines and endorphins, enhancing alertness and elevating mood, which may alleviate mental health conditions. Cold water therapy also reduces inflammation, boosts the immune system, promotes sleep and enhances recovery following exercise. The optimal duration and temperature needed to derive maximal benefits is uncertain but current evidence suggests that short-term exposure and lower temperatures may be more beneficial. Overall, cold water therapy presents a potential lifestyle strategy to enhancing physical and mental well-being, promoting healthy aging and extending the healthspan, but definitive interventional evidence is warranted.
Collapse
Affiliation(s)
- Setor K Kunutsor
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R2H 2A6, Canada.
- Leicester Real World Evidence Unit, Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4WP, UK.
| | - Andrea Lehoczki
- Department of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Jari A Laukkanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Department of Medicine, University of Eastern Finland, Kuopio, Finland
- Wellbeing Services County of Central Finland, Department of Medicine, Finland District, Jyväskylä, Finland
| |
Collapse
|
2
|
Jiang WI, De Belly H, Wang B, Wong A, Kim M, Oh F, DeGeorge J, Huang X, Guang S, Weiner OD, Ma DK. Early-life stress triggers long-lasting organismal resilience and longevity via tetraspanin. SCIENCE ADVANCES 2024; 10:eadj3880. [PMID: 38266092 PMCID: PMC10807809 DOI: 10.1126/sciadv.adj3880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Early-life stress experiences can produce lasting impacts on organismal adaptation and fitness. How transient stress elicits memory-like physiological effects is largely unknown. Here, we show that early-life thermal stress strongly up-regulates tsp-1, a gene encoding the conserved transmembrane tetraspanin in C. elegans. TSP-1 forms prominent multimers and stable web-like structures critical for membrane barrier functions in adults and during aging. Increased TSP-1 abundance persists even after transient early-life heat stress. Such regulation requires CBP-1, a histone acetyltransferase that facilitates initial tsp-1 transcription. Tetraspanin webs form regular membrane structures and mediate resilience-promoting effects of early-life thermal stress. Gain-of-function TSP-1 confers marked C. elegans longevity extension and thermal resilience in human cells. Together, our results reveal a cellular mechanism by which early-life thermal stress produces long-lasting memory-like impact on organismal resilience and longevity.
Collapse
Affiliation(s)
- Wei I. Jiang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Henry De Belly
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Bingying Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew Wong
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Minseo Kim
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Fiona Oh
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Jason DeGeorge
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Xinya Huang
- The USTC RNA Institute, Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Shouhong Guang
- The USTC RNA Institute, Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Orion D. Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Dengke K. Ma
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
3
|
Palani SN, Sellegounder D, Wibisono P, Liu Y. The longevity response to warm temperature is neurally controlled via the regulation of collagen genes. Aging Cell 2023; 22:e13815. [PMID: 36895142 PMCID: PMC10186602 DOI: 10.1111/acel.13815] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
Studies in diverse species have associated higher temperatures with shorter lifespan and lower temperatures with longer lifespan. These inverse effects of temperature on longevity are traditionally explained using the rate of living theory, which posits that higher temperatures increase chemical reaction rates, thus speeding up the aging process. Recent studies have identified specific molecules and cells that affect the longevity response to temperature, indicating that this response is regulated, not simply thermodynamic. Here, we demonstrate that in Caenorhabditis elegans, functional loss of NPR-8, a G protein-coupled receptor related to mammalian neuropeptide Y receptors, increases worm lifespan at 25°C but not at 20°C or 15°C, and that the lifespan extension at 25°C is regulated by the NPR-8-expressing AWB and AWC chemosensory neurons as well as AFD thermosensory neurons. Integrative transcriptomic analyses revealed that both warm temperature and old age profoundly alter gene expression and that genes involved in the metabolic and biosynthetic processes increase expression at 25°C relative to 20°C, indicating elevated metabolism at warm temperature. These data demonstrate that the temperature-induced longevity response is neurally regulated and also provide a partial molecular basis for the rate of living theory, suggesting that these two views are not mutually exclusive. Genetic manipulation and functional assays further uncovered that the NPR-8-dependent longevity response to warm temperature is achieved by regulating the expression of a subset of collagen genes. As increased collagen expression is a common feature of many lifespan-extending interventions and enhanced stress resistance, collagen expression could be critical for healthy aging.
Collapse
Affiliation(s)
- Sankara Naynar Palani
- Department of Translational Medicine and Physiology, Elson S. Floyd College of MedicineWashington State UniversitySpokaneWashingtonUSA
| | - Durai Sellegounder
- Department of Translational Medicine and Physiology, Elson S. Floyd College of MedicineWashington State UniversitySpokaneWashingtonUSA
| | - Phillip Wibisono
- Department of Translational Medicine and Physiology, Elson S. Floyd College of MedicineWashington State UniversitySpokaneWashingtonUSA
| | - Yiyong Liu
- Department of Translational Medicine and Physiology, Elson S. Floyd College of MedicineWashington State UniversitySpokaneWashingtonUSA
- Genomics CoreWashington State UniversitySpokaneWashingtonUSA
| |
Collapse
|
4
|
Lee HJ, Alirzayeva H, Koyuncu S, Rueber A, Noormohammadi A, Vilchez D. Cold temperature extends longevity and prevents disease-related protein aggregation through PA28γ-induced proteasomes. NATURE AGING 2023; 3:546-566. [PMID: 37118550 DOI: 10.1038/s43587-023-00383-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 02/17/2023] [Indexed: 04/30/2023]
Abstract
Aging is a primary risk factor for neurodegenerative disorders that involve protein aggregation. Because lowering body temperature is one of the most effective mechanisms to extend longevity in both poikilotherms and homeotherms, a better understanding of cold-induced changes can lead to converging modifiers of pathological protein aggregation. Here, we find that cold temperature (15 °C) selectively induces the trypsin-like activity of the proteasome in Caenorhabditis elegans through PSME-3, the worm orthologue of human PA28γ/PSME3. This proteasome activator is required for cold-induced longevity and ameliorates age-related deficits in protein degradation. Moreover, cold-induced PA28γ/PSME-3 diminishes protein aggregation in C. elegans models of age-related diseases such as Huntington's and amyotrophic lateral sclerosis. Notably, exposure of human cells to moderate cold temperature (36 °C) also activates trypsin-like activity through PA28γ/PSME3, reducing disease-related protein aggregation and neurodegeneration. Together, our findings reveal a beneficial role of cold temperature that crosses evolutionary boundaries with potential implications for multi-disease prevention.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Hafiza Alirzayeva
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Seda Koyuncu
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Amirabbas Rueber
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Alireza Noormohammadi
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Vilchez
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Institute for Genetics, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Genistein Promotes Anti-Heat Stress and Antioxidant Effects via the Coordinated Regulation of IIS, HSP, MAPK, DR, and Mitochondrial Pathways in Caenorhabditis elegans. Antioxidants (Basel) 2023; 12:antiox12010125. [PMID: 36670986 PMCID: PMC9855074 DOI: 10.3390/antiox12010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
To determine the anti-heat stress and antioxidant effects of genistein and the underlying mechanisms, lipofuscin, reactive oxygen species (ROS), and survival under stress were first detected in Caenorhabditis elegans (C. elegans); then the localization and quantification of the fluorescent protein was determined by detecting the fluorescently labeled protein mutant strain; in addition, the aging-related mRNAs were detected by applying real-time fluorescent quantitative PCR in C. elegans. The results indicate that genistein substantially extended the lifespan of C. elegans under oxidative stress and heat conditions; and remarkably reduced the accumulation of lipofuscin in C. elegans under hydrogen peroxide (H2O2) and 35 °C stress conditions; in addition, it reduced the generation of ROS caused by H2O2 and upregulated the expression of daf-16, ctl-1, hsf-1, hsp-16.2, sip-1, sek-1, pmk-1, and eat-2, whereas it downregulated the expression of age-1 and daf-2 in C. elegans; similarly, it upregulated the expression of daf-16, sod-3, ctl-1, hsf-1, hsp-16.2, sip-1, sek-1, pmk-1, jnk-1 skn-1, and eat-2, whereas it downregulated the expression of age-1, daf-2, gst-4, and hsp-12.6 in C. elegans at 35 °C; moreover, it increased the accumulation of HSP-16.2 and SKN-1 proteins in nematodes under 35 °C and H2O2 conditions; however, it failed to prolong the survival time in the deleted mutant MQ130 nematodes under 35 °C and H2O2 conditions. These results suggest that genistein promote anti-heat stress and antioxidant effects in C. elegans via insulin/-insulin-like growth factor signaling (IIS), heat shock protein (HSP), mitogen-activated protein kinase (MAPK), dietary restriction (DR), and mitochondrial pathways.
Collapse
|
6
|
Lee H, Lee SJV. Recent Progress in Regulation of Aging by Insulin/IGF-1 Signaling in Caenorhabditis elegans. Mol Cells 2022; 45:763-770. [PMID: 36380728 PMCID: PMC9676989 DOI: 10.14348/molcells.2022.0097] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022] Open
Abstract
Caenorhabditis elegans has been used as a major model organism to identify genetic factors that regulate organismal aging and longevity. Insulin/insulin-like growth factor 1 (IGF- 1) signaling (IIS) regulates aging in many species, ranging from nematodes to humans. C. elegans is a nonpathogenic genetic nematode model, which has been extensively utilized to identify molecular and cellular components that function in organismal aging and longevity. Here, we review the recent progress in the role of IIS in aging and longevity, which involves direct regulation of protein and RNA homeostasis, stress resistance, metabolism and the activities of the endocrine system. We also discuss recently identified genetic factors that interact with canonical IIS components to regulate aging and health span in C. elegans. We expect this review to provide valuable insights into understanding animal aging, which could eventually help develop anti-aging drugs for humans.
Collapse
Affiliation(s)
- Hanseul Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
7
|
The Thermal Stress Coping Network of the Nematode Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms232314907. [PMID: 36499234 PMCID: PMC9737000 DOI: 10.3390/ijms232314907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Response to hyperthermia, highly conserved from bacteria to humans, involves transcriptional upregulation of genes involved in battling the cytotoxicity caused by misfolded and denatured proteins, with the aim of proteostasis restoration. C. elegans senses and responds to changes in growth temperature or noxious thermal stress by well-defined signaling pathways. Under adverse conditions, regulation of the heat shock response (HSR) in C. elegans is controlled by a single transcription factor, heat-shock factor 1 (HSF-1). HSR and HSF-1 in particular are proven to be central to survival under proteotoxic stress, with additional roles in normal physiological processes. For years, it was a common belief that upregulation of heat shock proteins (HSPs) by HSF-1 was the main and most important step toward thermotolerance. However, an ever-growing number of studies have shown that targets of HSF-1 involved in cytoskeletal and exoskeletal integrity preservation as well as other HSF-1 dependent and independent pathways are equally important. In this review, we follow the thermal stimulus from reception by the nematode nerve endings till the activation of cellular response programs. We analyze the different HSF-1 functions in HSR as well as all the recently discovered mechanisms that add to the knowledge of the heat stress coping network of C. elegans.
Collapse
|
8
|
Chen H, Li R, Zhao F, Luan L, Han T, Li Z. Betulinic acid increases lifespan and stress resistance via insulin/IGF-1 signaling pathway in Caenorhabditis elegans. Front Nutr 2022; 9:960239. [PMID: 35967806 PMCID: PMC9372536 DOI: 10.3389/fnut.2022.960239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/13/2022] [Indexed: 01/14/2023] Open
Abstract
Numerous studies reported that betulinic acid (BA), a natural product extracted from birch bark, exhibited various beneficial effects in vitro. However, its pharmacological activities in aging are rarely understood. In this study, Caenorhabditis elegans was deployed as a whole animal model to investigate the impacts of BA on lifespan and stress resistance. Wild-type C. elegans were fed in the presence or absence of BA and tested for a series of phenotypes, including longevity, mobility, reproductive capacity, pharyngeal pumping, heat stress, and oxidative stress. BA at the optimal dose (50 μg/mL) extended the lifespan, improved the healthspan, and significantly evoked the increased oxidative stress resistance in C. elegans. Incorporating the genetic analysis with different types of longevity mutants, DAF-16, the downstream effector of the Insulin/IGF-1 receptor signaling, was revealed to mediate the protective effects of BA on lifespan and antioxidant activity. Together, these data showcased the potential of BA in promoting healthy aging, which shall facilitate its further development in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Haiyan Chen
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- College of Life Sciences, Changchun Sci-Tech University, Changchun, China
| | - Rongji Li
- College of Food Science and Engineering, Jilin Agriculture University, Changchun, China
| | - Feng Zhao
- College of Food Science and Engineering, Jilin Agriculture University, Changchun, China
| | - Li Luan
- College of Food Science and Engineering, Jilin Agriculture University, Changchun, China
| | - Tiantian Han
- College of Life Sciences, Changchun Sci-Tech University, Changchun, China
| | - Zhong Li
- College of Life Sciences, Changchun Sci-Tech University, Changchun, China
| |
Collapse
|
9
|
van der Voet M, Teunis M, Louter-van de Haar J, Stigter N, Bhalla D, Rooseboom M, Wever KE, Krul C, Pieters R, Wildwater M, van Noort V. Towards a reporting guideline for developmental and reproductive toxicology testing in C. elegans and other nematodes. Toxicol Res (Camb) 2021; 10:1202-1210. [PMID: 34950447 PMCID: PMC8692742 DOI: 10.1093/toxres/tfab109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Implementation of reliable methodologies allowing Reduction, Refinement, and Replacement (3Rs) of animal testing is a process that takes several decades and is still not complete. Reliable methods are essential for regulatory hazard assessment of chemicals where differences in test protocol can influence the test outcomes and thus affect the confidence in the predictive value of the organisms used as an alternative for mammals. Although test guidelines are common for mammalian studies, they are scarce for non-vertebrate organisms that would allow for the 3Rs of animal testing. Here, we present a set of 30 reporting criteria as the basis for such a guideline for Developmental and Reproductive Toxicology (DART) testing in the nematode Caenorhabditis elegans. Small organisms like C. elegans are upcoming in new approach methodologies for hazard assessment; thus, reliable and robust test protocols are urgently needed. A literature assessment of the fulfilment of the reporting criteria demonstrates that although studies describe methodological details, essential information such as compound purity and lot/batch number or type of container is often not reported. The formulated set of reporting criteria for C. elegans testing can be used by (i) researchers to describe essential experimental details (ii) data scientists that aggregate information to assess data quality and include data in aggregated databases (iii) regulators to assess study data for inclusion in regulatory hazard assessment of chemicals.
Collapse
Affiliation(s)
| | - Marc Teunis
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
| | - Johanna Louter-van de Haar
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
| | - Nienke Stigter
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
| | - Diksha Bhalla
- KU Leuven, Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, 3001, Leuven, Belgium
| | - Martijn Rooseboom
- Toxicology group Shell International B.V., 2596 HR, The Hague, the Netherlands
| | - Kimberley E Wever
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department for Health Evidence, 6525 GA, Nijmegen, the Netherlands
| | - Cyrille Krul
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
| | - Raymond Pieters
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
- Utrecht University, Institute for Risk Assessment Sciences, 3584 CM, Utrecht, the Netherlands
| | | | - Vera van Noort
- KU Leuven, Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, 3001, Leuven, Belgium
- Leiden University, Institute of Biology Leiden, 2333 BE, Leiden, the Netherlands
| |
Collapse
|
10
|
Yee Z, Lim SHY, Ng LF, Gruber J. Inhibition of mTOR decreases insoluble proteins burden by reducing translation in C. elegans. Biogerontology 2020; 22:101-118. [PMID: 33159806 DOI: 10.1007/s10522-020-09906-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Aging animals accumulate insoluble proteins as a consequence of a decline of proteostatic maintenance with age. In Caenorhabditis elegans, for instance, levels of detergent-insoluble proteins increase with age. In longer-lived strains of C. elegans, this accumulation occurs more slowly, implying a link to lifespan determination. We further explored this link and found that detergent-insoluble proteins accumulate more rapidly at higher temperatures, a condition where lifespan is short. We employed a C. elegans strain carrying a GFP transcriptional reporter under the control of a heat shock (hsp-16.2) promoter to investigate the dynamics of proteostatic failure in individual nematodes. We found that early, sporadic activation of hsp-16.2 was predictive of shorter remaining lifespan in individual nematodes. Exposure to rapamycin, resulting in reduced mTOR signaling, delayed spurious expression, extended lifespan, and delayed accumulation of insoluble proteins, suggesting that targets downstream of the mTOR pathway regulate the accumulation of insoluble proteins. We specifically explored ribosomal S6 kinase (rsks-1) as one such candidate and found that RNAi against rsks-1 also resulted in less age-dependent accumulation of insoluble proteins and extended lifespan. Our results demonstrate that inhibition of protein translation via reduced mTOR signaling resulted in slower accumulation of insoluble proteins, delayed proteostatic crisis, and extended lifespan in C. elegans.
Collapse
Affiliation(s)
- Zhuangli Yee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shaun Hsien Yang Lim
- Aging Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore
| | - Li Fang Ng
- Aging Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Aging Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore.
| |
Collapse
|
11
|
Alcedo J, Prahlad V. Neuromodulators: an essential part of survival. J Neurogenet 2020; 34:475-481. [PMID: 33170042 PMCID: PMC7811185 DOI: 10.1080/01677063.2020.1839066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
The coordination between the animal's external environment and internal state requires constant modulation by chemicals known as neuromodulators. Neuromodulators, such as biogenic amines, neuropeptides and cytokines, promote organismal homeostasis. Over the past several decades, Caenorhabditiselegans has grown into a powerful model organism that allows the elucidation of the mechanisms of action of neuromodulators that are conserved across species. In this perspective, we highlight a collection of articles in this issue that describe how neuromodulators optimize C. elegans survival.
Collapse
Affiliation(s)
- Joy Alcedo
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|