1
|
Di Cicco M, Peroni D, Sepich M, Tozzi MG, Comberiati P, Cutrera R. Hyaluronic acid for the treatment of airway diseases in children: Little evidence for few indications. Pediatr Pulmonol 2020; 55:2156-2169. [PMID: 32530559 DOI: 10.1002/ppul.24901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/10/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Hyaluronic acid (HA) is major physiological component of the extracellular matrix, which, in its high molecular weight form (HMW-HA) has anti-inflammatory properties. The diffusion of many different medical devices for inhalation therapy containing HA has led to an increase in their prescription, also in children. Here, we systematically review the published evidence on the efficacy and safety of HA for the treatment of upper and lower airway diseases in childhood. METHODS Relevant published studies (randomized controlled trials) for the efficacy of HA inhalation in children with upper airways diseases, asthma, cystic fibrosis (CF), and non-CF bronchiectasis were searched in Pubmed, Scopus, and Web of Knowledge databases by combining the adequate Medical Subject Headings terms and keywords, with no limit for the year of publication. RESULTS We identified seven relevant publications for upper airways diseases, one for asthma, and five for CF, while we found no clinical trial including children with non-CF bronchiectasis. Meta-analysis was not conducted due to the heterogeneity of the included studies. CONCLUSIONS The evidence of HA efficacy in the treatment of the upper and lower airways is still limited in children. Available data suggest that inhaled HMW-HA could be useful in the treatment of recurrent upper respiratory infections and chronic or recurrent inflammation of the middle ear and adenoids as well as of the lower airways in cystic fibrosis in association with hypertonic saline solution. Studies on larger populations and on the different formulations and nebulization methods, especially in pediatric age, are urgently needed.
Collapse
Affiliation(s)
- Maria Di Cicco
- Pediatrics Unit, Allergology Section, Pisa University Hospital, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Diego Peroni
- Pediatrics Unit, Allergology Section, Pisa University Hospital, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Margherita Sepich
- Pediatrics Unit, Allergology Section, Pisa University Hospital, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria Giulia Tozzi
- Pediatrics Unit, Allergology Section, Pisa University Hospital, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Pasquale Comberiati
- Pediatrics Unit, Allergology Section, Pisa University Hospital, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Renato Cutrera
- Department of Academic Pediatric, Respiratory unit, Pediatric Hospital "Bambino Gesù", Rome, Italy
| |
Collapse
|
2
|
Markasz L, Savani RC, Sedin G, Sindelar R. The receptor for hyaluronan-mediated motility (RHAMM) expression in neonatal bronchiolar epithelium correlates negatively with lung air content. Early Hum Dev 2018; 127:58-68. [PMID: 30312861 DOI: 10.1016/j.earlhumdev.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/21/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Hyaluronan (HA) and the receptor for hyaluronan-mediated motility (RHAMM) may play an important role in lung development. We examined the expression of HA content and RHAMM during postnatal lung development by analyzing human lung specimens from newborn infants with a variety of lung diseases at different gestational (GA) and postnatal (PNA) ages. MATERIALS AND METHODS Ninety-four patients were evaluated. Immunohistochemical RHAMM expression was studied with digital image analysis, followed by hierarchical cluster analysis of both these data and clinical data to define subgroups. The air content of the lung was determined by computerized analysis. HA content was estimated by radiometric assay. RESULTS Cluster analysis defined six distinct patient groups (Group 1-2: 34-41 weeks GA; Group 3-5: 23-27 weeks GA; Group 6: mixed population). Group 1-5 showed individual patterns in RHAMM expression and HA content (Group 1: high RHAMM/low HA; Group 2: low RHAMM/low HA; Group 3: low RHAMM/low HA; Group 4: low RHAMM/high HA; Group 5: high RHAMM/high HA). HA content decreased with increasing PNA independently of GA. Negative correlation was observed between air content and RHAMM expression in the bronchiolar epithelium irrespective of clustered groups. Lung hypoplasia appeared in two distinctive groups, with significant differences in lung development and RHAMM expression. CONCLUSIONS RHAMM expression may show dynamic changes during pathological processes in the neonatal lung. The distribution of RHAMM in the lung tissue is heterogeneous with a predominance to the bronchiolar epithelium. We found a negative correlation between lung air content and RHAMM expression in bronchiolar epithelium.
Collapse
Affiliation(s)
- Laszlo Markasz
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden..
| | - Rashmin C Savani
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Gunnar Sedin
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Richard Sindelar
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Cantor J, Ma S, Turino G. A pilot clinical trial to determine the safety and efficacy of aerosolized hyaluronan as a treatment for COPD. Int J Chron Obstruct Pulmon Dis 2017; 12:2747-2752. [PMID: 29075107 PMCID: PMC5609793 DOI: 10.2147/copd.s142156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A novel therapy for COPD involving the use of aerosolized hyaluronan (HA) was tested on a small cohort of COPD patients to determine both its safety and efficacy in reducing levels of desmosine and isodesmosine (DID), biomarkers for elastin degradation. In a 2-week, randomized, double-blind trial, 8 patients receiving 150 kDa HA (mean molecular weight) and 3 others given placebo did not show significant adverse effects with regard to spirometry, electrocardiograms, and hematological indices. Furthermore, measurements of DID in plasma from HA-treated patients indicated a progressive decrease over a 3-week period following initiation of treatment (r=−0.98; p=0.02), whereas patients receiving placebo showed no reduction in DID (r=−0.70; p=0.30). Measurements of sputum in the HA-treated group also revealed a progressive decrease in DID (r=−0.97; p=0.03), but this finding was limited by the absence of similar measurements in the placebo group. Nevertheless, the results of this small, pilot study support a longer-term trial of HA in a larger population of COPD patients.
Collapse
Affiliation(s)
- Jerome Cantor
- Department of Pharmaceutical Sciences, St John's University
| | - Shuren Ma
- Department of Medicine, St Luke's Mount Sinai Hospital Center, New York, NY, USA
| | - Gerard Turino
- Department of Medicine, St Luke's Mount Sinai Hospital Center, New York, NY, USA
| |
Collapse
|
4
|
The Rise and Fall of Hyaluronan in Respiratory Diseases. Int J Cell Biol 2015; 2015:712507. [PMID: 26448757 PMCID: PMC4581576 DOI: 10.1155/2015/712507] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/11/2015] [Accepted: 05/03/2015] [Indexed: 12/24/2022] Open
Abstract
In normal airways, hyaluronan (HA) matrices are primarily located within the airway submucosa, pulmonary vasculature walls, and, to a lesser extent, the alveoli. Following pulmonary injury, elevated levels of HA matrices accumulate in these regions, and in respiratory secretions, correlating with the extent of injury. Animal models have provided important insight into the role of HA in the onset of pulmonary injury and repair, generally indicating that the induction of HA synthesis is an early event typically preceding fibrosis. The HA that accumulates in inflamed airways is of a high molecular weight (>1600 kDa) but can be broken down into smaller fragments (<150 kDa) by inflammatory and disease-related mechanisms that have profound effects on HA pathobiology. During inflammation in the airways, HA is often covalently modified with heavy chains from inter-alpha-inhibitor via the enzyme tumor-necrosis-factor-stimulated-gene-6 (TSG-6) and this modification promotes the interaction of leukocytes with HA matrices at sites of inflammation. The clearance of HA and its return to normal levels is essential for the proper resolution of inflammation. These data portray HA matrices as an important component of normal airway physiology and illustrate its integral roles during tissue injury and repair among a variety of respiratory diseases.
Collapse
|
5
|
Xu C, Chen G, Yang W, Xu Y, Xu Y, Huang X, Liu J, Feng Y, Xu Y, Liu B. Hyaluronan ameliorates LPS-induced acute lung injury in mice via Toll-like receptor (TLR) 4-dependent signaling pathways. Int Immunopharmacol 2015; 28:1050-8. [PMID: 26321117 DOI: 10.1016/j.intimp.2015.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 08/02/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
Toll-like receptor-4 (TLR4) signaling has been implicated in innate immunity and acute inflammation following acute lung injury (ALI). As such, modulating inflammatory response through TLR4 represents an attractive therapeutic approach to treat ALI. Increasing evidence demonstrates that hyaluronan (HA) can modulate TLR4 activation and has shown early promise as a therapeutic agent in ALI. However, the mechanism associated with HA has not been fully elucidated. In the current study, we sought to determine the effects of HA on lipopolysaccharide (LPS)-induced inflammatory response and gain insights into the mechanism of action in mice with intratracheal instillation of LPS. Our results demonstrate that in contrast to mice challenged with LPS, pretreatment with HA significantly inhibited inflammatory cell recruitment, attenuated lung injury and suppressed the level of cytokine/chemokine in bronchial alveolar lavage fluid (BALF). Investigation of the mechanism responsible for inhibition of LPS activation showed HA treatment significantly inhibited the nuclear translocation of NF-κB p65 and protein expression of myeloid differentiation primary response protein (MyD88) and TIR-domain-containing adapter-inducing interferon-β (TRIF) and p38 MAPK, JNK and ERK activation in lung tissue. Furthermore, we compared the protection effect of HA in TLR4-deficient mice with those of genetically matched wild type (WT) mice in an acute model of lung injury. However, in TLR4-deficient mice, HA pretreatment before LPS instillation fail to affect the LPS response. Therefore, our findings suggest that HA pretreatment attenuated LPS-induced ALI and the anti-inflammatory function of HA was partial dependent on TLR4, which shed new light on potential elements that regulate the lung injury response.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Respiration, Affiliated Hospital, School of Medicine, Hangzhou Normal University, 16 Wen Zhou Road, Hangzhou 311121, China
| | - Gang Chen
- Department of Respiration, Affiliated Hospital, School of Medicine, Hangzhou Normal University, 16 Wen Zhou Road, Hangzhou 311121, China
| | - Weiwei Yang
- Department of Respiration, Affiliated Hospital, School of Medicine, Hangzhou Normal University, 16 Wen Zhou Road, Hangzhou 311121, China
| | - Yizhe Xu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Yongfang Xu
- Department of Respiration, Affiliated Hospital, School of Medicine, Hangzhou Normal University, 16 Wen Zhou Road, Hangzhou 311121, China
| | - Xuqing Huang
- Department of Respiration, Affiliated Hospital, School of Medicine, Hangzhou Normal University, 16 Wen Zhou Road, Hangzhou 311121, China
| | - Jiangang Liu
- Maternal and Child Health Hospital Affiliated to Zhejiang University, Hangzhou 311121, China
| | - Yuejuan Feng
- Department of Respiration, Affiliated Hospital, School of Medicine, Hangzhou Normal University, 16 Wen Zhou Road, Hangzhou 311121, China
| | - Yanchun Xu
- Department of Physiology and Pharmacology, West Virginia University, WV 26506, USA
| | - Baojun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
| |
Collapse
|
6
|
Ghosh S, Hoselton SA, Dorsam GP, Schuh JM. Hyaluronan fragments as mediators of inflammation in allergic pulmonary disease. Immunobiology 2014; 220:575-88. [PMID: 25582403 DOI: 10.1016/j.imbio.2014.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 12/22/2022]
Abstract
Asthma is frequently caused and/or exacerbated by sensitization to allergens, which are ubiquitous in many indoor and outdoor environments. Severe asthma is characterized by airway hyperresponsiveness and bronchial constriction in response to an inhaled allergen, leading to a disease course that is often very difficult to treat with standard asthma therapies. As a result of interactions among inflammatory cells, structural cells, and the intercellular matrix of the allergic lung, patients with sensitization to allergens may experience a greater degree of tissue injury followed by airway wall remodeling and progressive, accumulated pulmonary dysfunction as part of the disease sequela. In addition, turnover of extracellular matrix (ECM) components is a hallmark of tissue injury and repair. This review focuses on the role of the glycosaminoglycan hyaluronan (HA), a component of the ECM, in pulmonary injury and repair with an emphasis on allergic asthma. Both the synthesis and degradation of the ECM are critical contributors to tissue repair and remodeling. Fragmented HA accumulates during tissue injury and functions in ways distinct from the larger native polymer. There is gathering evidence that HA degradation products are active participants in stimulating the expression of inflammatory genes in a variety of immune cells at the injury site. In this review, we will consider recent advances in the understanding of the mechanisms that are associated with HA accumulation and inflammatory cell recruitment in the asthmatic lung.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Scott A Hoselton
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Glenn P Dorsam
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jane M Schuh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
7
|
Gavina M, Luciani A, Villella VR, Esposito S, Ferrari E, Bressani I, Casale A, Bruscia EM, Maiuri L, Raia V. Nebulized hyaluronan ameliorates lung inflammation in cystic fibrosis mice. Pediatr Pulmonol 2013; 48:761-71. [PMID: 22825912 DOI: 10.1002/ppul.22637] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 06/21/2012] [Indexed: 11/10/2022]
Abstract
RATIONALE Chronic lung inflammation with increased susceptibility to bacterial infections cause much of the morbidity and mortality in patients with cystic fibrosis (CF), the most common severe, autosomal recessively inherited disease in the Caucasian population. Exogenous inhaled hyaluronan (HA) can exert a protective effect against injury and beneficial effects of HA have been shown in experimental models of chronic respiratory diseases. Our objective was to examine whether exogenous administration of nebulized HA might interfere with lung inflammation in CF. STUDY DESIGN/METHODS F508del homozygous mice (Cftr(F508del) ) and transgenic mice overexpressing the ENaC channel β-subunit (Scnn1b-Tg) were treated with nebulized HA (0.5 mg/mouse/day for 7 days). Tumor necrosis factor-alpha (TNFα), macrophage inflammatory protein-2 (MIP-2), myeloperoxidase (MPO) levels, and macrophage infiltration were assessed on lung tissues. IB3-1 and CFBE41o-epithelial cell lines were cultured with HA (24 hr, 100 µg/ml) and Reactive Oxygen Species (ROS), Tissue Transglutaminase (TG2) SUMOylation and Peroxisome Proliferator Activated Receptor gamma (PPARγ) and phospho-p42/p44 levels were measured by dichlorodihydrofluorescein assay, or fluorescence resonance energy transfer (FRET) microscopy or immunoblots. RESULTS Nebulized HA reduced TNFα expression (P < 0.005); TNFα, MIP-2, and MPO protein levels (P < 0.05); MPO activity (P < 0.05); and CD68+ cells counts (P < 0.005) in lung tissues of Cftr(F508del) and Scnn1b-Tg mice, compared with saline-treated mice. HA reduced ROS, TG2 SUMOylation, TG2 activity, phospho-p42-44, and increased PPARγ protein in both IB3-1 and CFBE41o cells (P < 0.05). CONCLUSIONS Nebulized HA is effective in controlling inflammation in vivo in mice CF airways and in vitro in human airway epithelial cells. We provide the proof of concept for the use of inhaled HA as a potential anti-inflammatory drug in CF therapy.
Collapse
Affiliation(s)
- Manuela Gavina
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS), have high mortality rates with few treatment options. An important regulatory factor in the pathology observed in ALI/ARDS is a disruption of the pulmonary endothelial barrier which, in combination with epithelial barrier disruption, causes leakage of fluid, protein and cells into lung airspaces. Degradation of the glycosaminoglycan, hyaluronan (HA), is involved in reduction of the endothelial glycocalyx, disruption of endothelial cell-cell contacts and activation of HA binding proteins upregulated in ALI/ARDS which promote a loss of pulmonary vascular integrity. In contrast, exogenous administration of high molecular weight HA has been shown to be protective in several models of ALI. This review focuses on the dichotomous role of HA to both promote and inhibit ALI based on its size and the HA binding proteins present. Further, potential therapeutic applications of high molecular weight HA in treating ALI/ARDS are discussed.
Collapse
Affiliation(s)
- Patrick A Singleton
- Department of Medicine, Section of Pulmonary and Critical Care, The University of Chicago, Chicago, IL 60637, USA ; Department of Anesthesia and Critical Care, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
9
|
Lennon FE, Singleton PA. Role of hyaluronan and hyaluronan-binding proteins in lung pathobiology. Am J Physiol Lung Cell Mol Physiol 2011; 301:L137-47. [PMID: 21571904 DOI: 10.1152/ajplung.00071.2010] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hyaluronan (HA) has diverse functions in normal lung homeostasis and pulmonary disease. HA constitutes the major glycosaminoglycan in lung tissue, with HA degradation products, produced by hyaluronidase enzymes and reactive oxygen species, being implicated in several lung diseases, including acute lung injury, asthma, chronic obstructive pulmonary disease, and pulmonary hypertension. The differential activities of HA and its degradation products are due, in part, to regulation of multiple HA-binding proteins, including cluster of differentiation 44 (CD44), Toll-like receptor 4 (TLR4), HA-binding protein 2 (HABP2), and receptor for HA-mediated motility (RHAMM). Recent research indicates that exogenous administration of high-molecular-weight HA can serve as a novel therapeutic intervention for lung diseases, including lipopolysaccharide (LPS)-induced acute lung injury, sepsis/ventilator-induced lung injury, and airway hyperreactivity. This review focuses on the regulatory role of HA and HA-binding proteins in lung pathology and discusses the capacity of HA to augment and inhibit various lung diseases.
Collapse
Affiliation(s)
- Frances E Lennon
- Section of Pulmonary and Critical Care, Department of Medicine, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
10
|
Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev 2011; 91:221-64. [PMID: 21248167 DOI: 10.1152/physrev.00052.2009] [Citation(s) in RCA: 751] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Accumulation and turnover of extracellular matrix components are the hallmarks of tissue injury. Fragmented hyaluronan stimulates the expression of inflammatory genes by a variety of immune cells at the injury site. Hyaluronan binds to a number of cell surface proteins on various cell types. Hyaluronan fragments signal through both Toll-like receptor (TLR) 4 and TLR2 as well as CD44 to stimulate inflammatory genes in inflammatory cells. Hyaluronan is also present on the cell surface of epithelial cells and provides protection against tissue damage from the environment by interacting with TLR2 and TLR4. Hyaluronan and hyaluronan-binding proteins regulate inflammation, tissue injury, and repair through regulating inflammatory cell recruitment, release of inflammatory cytokines, and cell migration. This review focuses on the role of hyaluronan as an immune regulator in human diseases.
Collapse
Affiliation(s)
- Dianhua Jiang
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
11
|
Cantor JO, Cerreta JM, Ochoa M, Ma S, Liu M, Turino GM. Therapeutic effects of hyaluronan on smoke-induced elastic fiber injury: does delayed treatment affect efficacy? Lung 2010; 189:51-6. [PMID: 21153833 DOI: 10.1007/s00408-010-9271-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/07/2010] [Indexed: 01/29/2023]
Abstract
Aerosolized hyaluronan (HA) has been previously shown to prevent cigarette smoke-induced airspace enlargement and elastic fiber injury in mice when given concurrently with smoke. In the present study, a more stringent test of the therapeutic potential of HA was performed by delaying treatment with this agent for 1 month. After treatment with cigarette smoke for 3 h per day for 5 days per week for 1 month, mice (DBA/2J) began receiving aerosolized HA (0.1%) for 1 h prior to smoke exposure (controls were given aerosolized water). The results indicate that much of the damage to the lung elastic fibers occurred within the first several months of smoke exposure, as measured by levels of desmosine and isodesmosine (DID) in bronchoalveolar lavage fluid (BALF). In contrast to previously published studies, where concurrent administration of aerosolized HA significantly reduced BALF DID levels within 3 months of smoke exposure, the same effect was not seen until 6 months when HA treatment was delayed. However, despite the prolonged breakdown of elastic fibers in the current study, a significant reduction in airspace enlargement was observed after only 2 months of HA treatment. These findings provide further support for testing this agent in patients with pre-existing chronic obstructive pulmonary disease.
Collapse
|
12
|
Bhavsar T, Liu XJ, Patel H, Stephani R, Cantor JO. Preferential recruitment of neutrophils by endothelin-1 in acute lung inflammation induced by lipopolysaccharide or cigarette smoke. Int J Chron Obstruct Pulmon Dis 2009; 3:477-81. [PMID: 18990977 PMCID: PMC2629980 DOI: 10.2147/copd.s2837] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
This study examined the role of endothelin-1 (ET-1) in recruiting inflammatory cells to the lung after induction of injury with either lipopolysaccharide (LPS) or cigarette smoke. Hamsters injected with either ET-1 or its precursor peptide (Big ET-1) prior to treatment with LPS or cigarette smoke had markedly increased concentrations of neutrophils in bronchoalveolar lavage fluid (BALF) despite a reduction in total numbers of BALF leukocytes. Furthermore, the effect of ET-1 on smoke-exposed animals was reversed by addition of an endothelin-A receptor antagonist. These results are consistent with preferential recruitment of neutrophils by ET-1, and suggest that inhibition of this proinflammatory mediator may decrease acute pulmonary inflammation associated with cigarette smoke and other pulmonary toxins.
Collapse
Affiliation(s)
- Tapan Bhavsar
- St John's University, School of Pharmacy and Allied Health Sciences, Jamaica, New York 11439, USA
| | | | | | | | | |
Collapse
|
13
|
Kulkarni GS, Nadkarni PP, Cerreta JM, Ma S, Cantor JO. Short-term cigarette smoke exposure potentiates endotoxin-induced pulmonary inflammation. Exp Lung Res 2007; 33:1-13. [PMID: 17364908 DOI: 10.1080/01902140601112957] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Long-term cigarette smoke exposure is associated with chronic obstructive pulmonary disease. However, the effects of short-term smoke inhalation are less clear, because it may adversely affect the lung only if underlying disease is present. To test this hypothesis, Syrian hamsters were passively exposed to cigarette smoke for 2 hours per day over a period of 3 days either before or after intratracheal instillation of low-dose (20 microg) Escherichia coli endotoxin. The results indicate that short-term smoke exposure can potentiate endotoxin-induced lung inflammation. They also suggest that nonsmokers with underlying lung disease may be particularly vulnerable to the adverse effects of second-hand smoke.
Collapse
Affiliation(s)
- Girish S Kulkarni
- School of Pharmacy and Allied Health Sciences, St John's University, and St Luke's-Roosevelt Hospital Center, New York, New York, USA
| | | | | | | | | |
Collapse
|