1
|
Hu Z, Dai J, Xu T, Chen H, Shen G, Zhou J, Ma H, Wang Y, Jin L. FGF18 alleviates sepsis-induced acute lung injury by inhibiting the NF-κB pathway. Respir Res 2024; 25:108. [PMID: 38419044 PMCID: PMC10902988 DOI: 10.1186/s12931-024-02733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a devastating clinical disorder with a high mortality rate, and there is an urgent need for more effective therapies. Fibroblast growth factor 18 (FGF18) has potent anti-inflammatory properties and therefore has become a focus of research for the treatment of lung injury. However, the precise role of FGF18 in the pathological process of ALI and the underlying mechanisms have not been fully elucidated. METHODS A mouse model of ALI and human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS) was established in vivo and in vitro. AAV-FGF18 and FGF18 proteins were used in C57BL/6J mice and HUVEC, respectively. Vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and p65 protein levels were determined by western blotting or immunofluorescent staining. Afterward, related inhibitors were used to explore the potential mechanism by which FGF18 relieves inflammation. RESULTS In this study, we found that FGF18 was significantly upregulated in LPS-induced ALI mouse lung tissues and LPS-stimulated HUVECs. Furthermore, our studies demonstrated that overexpressing FGF18 in the lung or HUVEC could significantly alleviate LPS-induced lung injury and inhibit vascular leakage. CONCLUSIONS Mechanically, FGF18 treatment dramatically inhibited the NF-κB signaling pathway both in vivo and in vitro. In conclusion, these results indicate that FGF18 attenuates lung injury, at least partially, via the NF-κB signaling pathway and therefore may be a potential therapeutic target for ALI.
Collapse
Affiliation(s)
- Zhenyu Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jindan Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tianpeng Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guoxiu Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jie Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongfang Ma
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yang Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Litai Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Marega M, Chen C, Bellusci S. Cross-Talk Between Inflammation and Fibroblast Growth Factor 10 During Organogenesis and Pathogenesis: Lessons Learnt From the Lung and Other Organs. Front Cell Dev Biol 2021; 9:656883. [PMID: 34136479 PMCID: PMC8201783 DOI: 10.3389/fcell.2021.656883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022] Open
Abstract
The adult human lung is constantly exposed to irritants like particulate matter, toxic chemical compounds, and biological agents (bacteria and viruses) present in the external environment. During breathing, these irritants travel through the bronchi and bronchioles to reach the deeper lung containing the alveoli, which constitute the minimal functional respiratory units. The local biological responses in the alveoli that follow introduction of irritants need to be tightly controlled in order to prevent a massive inflammatory response leading to loss of respiratory function. Cells, cytokines, chemokines and growth factors intervene collectively to re-establish tissue homeostasis, fight the aggression and replace the apoptotic/necrotic cells with healthy cells through proliferation and/or differentiation. Among the important growth factors at play during inflammation, members of the fibroblast growth factor (Fgf) family regulate the repair process. Fgf10 is known to be a key factor for organ morphogenesis and disease. Inflammation is influenced by Fgf10 but can also impact Fgf10 expression per se. Unfortunately, the connection between Fgf10 and inflammation in organogenesis and disease remains unclear. The aim of this review is to highlight the reported players between Fgf10 and inflammation with a focus on the lung and to propose new avenues of research.
Collapse
Affiliation(s)
- Manuela Marega
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Member of the German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, Giessen, Germany
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Member of the German Center for Lung Research (DZL), Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
3
|
McAuley DF, Cross LM, Hamid U, Gardner E, Elborn JS, Cullen KM, Dushianthan A, Grocott MP, Matthay MA, O'Kane CM. Keratinocyte growth factor for the treatment of the acute respiratory distress syndrome (KARE): a randomised, double-blind, placebo-controlled phase 2 trial. THE LANCET RESPIRATORY MEDICINE 2017; 5:484-491. [PMID: 28526233 DOI: 10.1016/s2213-2600(17)30171-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Data from in-vitro, animal, and human lung injury models suggest that keratinocyte growth factor (KGF) might be beneficial in acute respiratory distress syndrome (ARDS). The objective of this trial was to investigate the effect of KGF in patients with ARDS. METHODS We did a double-blind, allocation concealed, randomised, placebo-controlled phase 2 trial in two intensive care units in the UK, involving patients fulfilling the American-European Consensus Conference Definition of ARDS. Patients were randomly assigned (1:1) by computer-generated randomisation schedule with variable block size stratified by site and presence of severe sepsis requiring vasopressors to receive either recombinant human KGF (palifermin 60 μg/kg) or placebo (0·9% sodium chloride solution) daily for a maximum of 6 days. Both patients and investigators were masked to treatment. The primary endpoint was oxygenation index (OI) at day 7. Analyses were by intention to treat. The trial is registered with International Standard Randomised Controlled Trial Registry, number ISRCTN95690673. FINDINGS Between Feb 23, 2011, and Feb 26, 2014, 368 patients were assessed for eligibility for inclusion in the trial. Of the 60 patients recruited, 29 patients were randomly assigned to receive KGF and 31 to placebo; all were included in the analysis of the primary outcome. There was no significant difference between the two groups in OI at day 7 (mean 62·3 [SD 57·8] in the KGF group, 43·1 [33·5] in the placebo group; mean difference 19·2, 95% CI -5·6 to 44·0, p=0·13). Of interest, although not defined as outcome measures a priori, the KGF group, compared with placebo, had fewer median ventilator-free days (1 day [IQR 0 to 17] in the KGF group vs 20 days [13-22] in the placebo group; difference -8 days, 95% CI -17 to -2; p=0·0002), a longer median duration of ventilation in survivors to day 90 (16 days [IQR 13-30] in the KGF group vs 11 days [8-16] in the placebo group; difference 6 days, 95% CI 2 to 14; p=0·002), and a higher mortality at 28 days (nine [31%] vs three [10%] deaths; risk ratio 3·2, 95% CI 1·0 to 10·7, p=0·054). Adverse events were more frequent in the KGF group than the placebo group (14 vs 5 events; odds ratio 4·9, 95% CI 1·3 to 20·3, p=0·008). The two adverse events assessed as related to KGF were due to pyrexia. INTERPRETATION KGF did not improve physiological or clinical outcomes in ARDS and might be harmful to patient health. FUNDING The Northern Ireland Public Health Agency Research and Development Division.
Collapse
Affiliation(s)
- Daniel F McAuley
- Centre for Experimental Medicine, The Wellcome Wolfson Building, The Queen's University Belfast, Belfast, UK; Regional Intensive Care Unit, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK; Northern Ireland Clinical Trials Unit, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK.
| | - Lj Mark Cross
- Centre for Experimental Medicine, The Wellcome Wolfson Building, The Queen's University Belfast, Belfast, UK; Regional Intensive Care Unit, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK
| | - Umar Hamid
- Centre for Experimental Medicine, The Wellcome Wolfson Building, The Queen's University Belfast, Belfast, UK; Regional Intensive Care Unit, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK
| | - Evie Gardner
- Northern Ireland Clinical Trials Unit, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK
| | - J Stuart Elborn
- Centre for Experimental Medicine, The Wellcome Wolfson Building, The Queen's University Belfast, Belfast, UK
| | - Kathy M Cullen
- Centre for Experimental Medicine, The Wellcome Wolfson Building, The Queen's University Belfast, Belfast, UK; Regional Intensive Care Unit, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK
| | - Ahilanandan Dushianthan
- Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Critical Care Research Area, Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Michael Pw Grocott
- Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Critical Care Research Area, Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Michael A Matthay
- Department of Medicine and Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Cecilia M O'Kane
- Centre for Experimental Medicine, The Wellcome Wolfson Building, The Queen's University Belfast, Belfast, UK
| |
Collapse
|
5
|
Chao CM, Yahya F, Moiseenko A, Tiozzo C, Shrestha A, Ahmadvand N, El Agha E, Quantius J, Dilai S, Kheirollahi V, Jones M, Wilhem J, Carraro G, Ehrhardt H, Zimmer KP, Barreto G, Ahlbrecht K, Morty RE, Herold S, Abellar RG, Seeger W, Schermuly R, Zhang JS, Minoo P, Bellusci S. Fgf10 deficiency is causative for lethality in a mouse model of bronchopulmonary dysplasia. J Pathol 2016; 241:91-103. [PMID: 27770432 DOI: 10.1002/path.4834] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/31/2016] [Accepted: 10/12/2016] [Indexed: 12/17/2022]
Abstract
Inflammation-induced FGF10 protein deficiency is associated with bronchopulmonary dysplasia (BPD), a chronic lung disease of prematurely born infants characterized by arrested alveolar development. So far, experimental evidence for a direct role of FGF10 in lung disease is lacking. Using the hyperoxia-induced neonatal lung injury as a mouse model of BPD, the impact of Fgf10 deficiency in Fgf10+/- versus Fgf10+/+ pups was investigated. In normoxia, no lethality of Fgf10+/+ or Fgf10+/- pups was observed. By contrast, all Fgf10+/- pups died within 8 days of hyperoxic injury, with lethality starting at day 5, whereas Fgf10+/+ pups were all alive. Lungs of pups from the two genotypes were collected on postnatal day 3 following normoxia or hyperoxia exposure for further analysis. In hyperoxia, Fgf10+/- lungs exhibited increased hypoalveolarization. Analysis by FACS of the Fgf10+/- versus control lungs in normoxia revealed a decreased ratio of alveolar epithelial type II (AECII) cells over total Epcam-positive cells. In addition, gene array analysis indicated reduced AECII and increased AECI transcriptome signatures in isolated AECII cells from Fgf10+/- lungs. Such an imbalance in differentiation is also seen in hyperoxia and is associated with reduced mature surfactant protein B and C expression. Attenuation of the activity of Fgfr2b ligands postnatally in the context of hyperoxia also led to increased lethality with decreased surfactant expression. In summary, decreased Fgf10 mRNA levels lead to congenital lung defects, which are compatible with postnatal survival, but which compromise the ability of the lungs to cope with sub-lethal hyperoxic injury. Fgf10 deficiency affects quantitatively and qualitatively the formation of AECII cells. In addition, Fgfr2b ligands are also important for repair after hyperoxia exposure in neonates. Deficient AECII cells could be an additional complication for patients with BPD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Cho-Ming Chao
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany.,University Children's Hospital Gießen, Division of General Pediatrics and Neonatology, Justus-Liebig-University, Member of the German Lung Center (DZL), Gießen, Germany
| | - Faady Yahya
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Alena Moiseenko
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Caterina Tiozzo
- Division of Neonatology, Department of Pediatrics, Columbia University, New York, NY, USA
| | - Amit Shrestha
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Negah Ahmadvand
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Elie El Agha
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Jennifer Quantius
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Salma Dilai
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Vahid Kheirollahi
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Matthew Jones
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Jochen Wilhem
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Gianni Carraro
- Departments of Medicine and Biomedical Sciences, Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Harald Ehrhardt
- University Children's Hospital Gießen, Division of General Pediatrics and Neonatology, Justus-Liebig-University, Member of the German Lung Center (DZL), Gießen, Germany
| | - Klaus-Peter Zimmer
- University Children's Hospital Gießen, Division of General Pediatrics and Neonatology, Justus-Liebig-University, Member of the German Lung Center (DZL), Gießen, Germany
| | - Guillermo Barreto
- LOEWE Research Group, Lung Cancer Epigenetic, Max Planck Institute for Heart and Lung Research, Member of the German Lung Center (DZL), 61231, Bad Nauheim, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Lung Center (DZL), 61231, Bad Nauheim, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Lung Center (DZL), 61231, Bad Nauheim, Germany
| | - Susanne Herold
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Rosanna G Abellar
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany.,Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Lung Center (DZL), 61231, Bad Nauheim, Germany
| | - Ralph Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany
| | - Jin-San Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325027, PR China
| | - Parviz Minoo
- Department of Pediatrics, Division of Newborn Medicine, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Saverio Bellusci
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Department of Internal Medicine II, Aulweg 130, 35392, Giessen, Germany.,College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325027, PR China.,Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles and University of Southern California, Los Angeles, CA, 90027, USA
| |
Collapse
|
6
|
Katsirntaki K, Mauritz C, Olmer R, Schmeckebier S, Sgodda M, Puppe V, Eggenschwiler R, Duerr J, Schubert SC, Schmiedl A, Ochs M, Cantz T, Salwig I, Szibor M, Braun T, Rathert C, Martens A, Mall MA, Martin U. Bronchoalveolar sublineage specification of pluripotent stem cells: effect of dexamethasone plus cAMP-elevating agents and keratinocyte growth factor. Tissue Eng Part A 2014; 21:669-82. [PMID: 25316003 DOI: 10.1089/ten.tea.2014.0097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Respiratory progenitors can be efficiently generated from pluripotent stem cells (PSCs). However, further targeted differentiation into bronchoalveolar sublineages is still in its infancy, and distinct specifying effects of key differentiation factors are not well explored. Focusing on airway epithelial Clara cell generation, we analyzed the effect of the glucocorticoid dexamethasone plus cAMP-elevating agents (DCI) on the differentiation of murine embryonic and induced pluripotent stem cells (iPSCs) into bronchoalveolar epithelial lineages, and whether keratinocyte growth factor (KGF) might further influence lineage decisions. We demonstrate that DCI strongly induce expression of the Clara cell marker Clara cell secretory protein (CCSP). While KGF synergistically supports the inducing effect of DCI on alveolar markers with increased expression of surfactant protein (SP)-C and SP-B, an inhibitory effect on CCSP expression was shown. In contrast, neither KGF nor DCI seem to have an inducing effect on ciliated cell markers. Furthermore, the use of iPSCs from transgenic mice with CCSP promoter-dependent lacZ expression or a knockin of a YFP reporter cassette in the CCSP locus enabled detection of derivatives with Clara cell typical features. Collectively, DCI was shown to support bronchoalveolar specification of mouse PSCs, in particular Clara-like cells, and KGF to inhibit bronchial epithelial differentiation. The targeted in vitro generation of Clara cells with their important function in airway protection and regeneration will enable the evaluation of innovative cellular therapies in animal models of lung diseases.
Collapse
Affiliation(s)
- Katherina Katsirntaki
- 1 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School , Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|