3
|
Zhu L, Liu F, Hao Q, Feng T, Chen Z, Luo S, Xiao R, Sun M, Zhang T, Fan X, Zeng X, He J, Yuan P, Liu J, Ruiz M, Dupuis J, Hu Q. Dietary Geranylgeranyl Pyrophosphate Counteracts the Benefits of Statin Therapy in Experimental Pulmonary Hypertension. Circulation 2021; 143:1775-1792. [PMID: 33660517 DOI: 10.1161/circulationaha.120.046542] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The mevalonate pathway generates endogenous cholesterol and intermediates including geranylgeranyl pyrophosphate (GGPP). By reducing GGPP production, statins exert pleiotropic or cholesterol-independent effects. The potential regulation of GGPP homeostasis through dietary intake and the interaction with concomitant statin therapy is unknown. METHODS We developed a sensitive high-pressure liquid chromatography technique to quantify dietary GGPP and conducted proteomics, qualitative real-time polymerase chain reaction screening, and Western blot to determine signaling cascades, gene expression, protein-protein interaction, and protein membrane trafficking in wild-type and transgenic rats. RESULTS GGPP contents were highly variable depending on food source that differentially regulated blood GGPP levels in rats. Diets containing intermediate and high GGPP reduced or abolished the effects of statins in rats with hypoxia- and monocrotaline-induced pulmonary hypertension: this was rescuable by methyl-allylthiosulfinate and methyl-allylthiosulfinate-rich garlic extracts. In human pulmonary artery smooth muscle cells treated with statins, hypoxia activated RhoA in an extracellular GGPP-dependent manner. Hypoxia-induced ROCK2 (Rho associated coiled-coil containing protein kinase 2)/Rab10 (Ras-related protein rab-10) signaling was prevented by statin and recovered by exogenous GGPP. The hypoxia-activated RhoA/ROCK2 pathway in rat and human pulmonary artery smooth muscle cells upregulated the expression of Ca2+-sensing receptor (CaSR) and HIMF (hypoxia-induced mitogenic factor), a mechanism attenuated by statin treatment and regained with exogenous GGPP. Rab10 knockdown almost abrogated hypoxia-promoted CaSR membrane trafficking, a process diminished by statin and resumed by exogenous GGPP. Hypoxia-induced pulmonary hypertension was reduced in rats with CaSR mutated at the binding motif of HIMF and the interaction between dietary GGPP and statin efficiency was abolished. In humans fed a high GGPP diet, blood GGPP levels were increased. This abolished statin-lowering effects on plasma GGPP, and also on hypoxia-enhanced RhoA activity of blood monocytes that was rescued by garlic extracts. CONCLUSIONS There is important dietary regulation of GGPP levels that interferes with the effects of statin therapy in experimental pulmonary hypertension. These observations rely on a key and central role of RhoA-ROCK2 cascade activation and Rab10-faciliated CaSR membrane trafficking with subsequent overexpression and binding of HIMF to CaSR. These findings warrant clinical investigation for the treatment of pulmonary hypertension and perhaps other diseases by combining statin with garlic-derived methyl-allylthiosulfinate or garlic extracts and thus circumventing dietary GGPP variations.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangbo Liu
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Hao
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Feng
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeshuai Chen
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengquan Luo
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xiao
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengxiang Sun
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhang
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohang Fan
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianqin Zeng
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianguo He
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.H.)
| | - Ping Yuan
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, China (P.Y., J.L.)
| | - Jinming Liu
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, China (P.Y., J.L.)
| | - Matthieu Ruiz
- Departments of Nutrition (M.R.), Université de Montréal, Canada.,Montreal Heart Institute Research Center, Canada (M.R., J.D.)
| | - Jocelyn Dupuis
- Medicine (J.D.), Université de Montréal, Canada.,Montreal Heart Institute Research Center, Canada (M.R., J.D.)
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|