1
|
Albash R, Abdelbari MA, Elbesh RM, Khaleel EF, Badi RM, Eldehna WM, Elkaeed EB, El Hassab MA, Ahmed SM, Mosallam S. Sonophoresis mediated diffusion of caffeine loaded Transcutol® enriched cerosomes for topical management of cellulite. Eur J Pharm Sci 2024; 201:106875. [PMID: 39121922 DOI: 10.1016/j.ejps.2024.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The goal of this research was to augment the deposition of caffeine loaded Transcutol® enriched cerosomes (TECs) gel for efficient topical treatment of cellulite utilizing the sonophoresis technique. Caffeine-loaded TECs were prepared using thin film hydration method applying 23 factorial design to study the impact of different factors, each with two levels on the entrapment efficiency (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP) of the formulated TECs. The studied factors were cetyl trimethyl ammonium bromide (CTAB) amount (mg) (X1), phosphatidylcholine (PC) amount (mg) (X2), and Transcutol® amount (mg) (X3). Design-Expert® software was utilized to determine the optimum TECs formulation. Afterward, the optimum TECs formulation was loaded into a gel and subjected to extra investigations. The optimum TECs formulation was (TEC5) which was prepared using 10 mg of CTAB, 150 mg of PC, and 10 mg of Transcutol®. TEC5 presented EE% of 87.44 ± 0.14 %, PS of 308.60 ± 13.38 nm, PDI of 0.455 ± 0.030, and ZP of 50.20 ± 1.55 mV. TEC5 had a fiber-like morphology, with elongated tubules of ceramide. Further, the optimum TECs formulation showed a high stability profile. Moreover, an in vivo dermatokinetic study showed superior deposition of caffeine from TEC5 gel coupled with the sonophoresis on rat skin compared to TEC5 gel and caffeine gel. Moreover, the histopathological study of TEC5 on rat skin confirmed the non-irritant nature of TEC 5 gel mediated by ultrasonic waves through the skin. Overall, the outcomes exposed the obvious superiority of sonophoresis delivered TECs-gel for topical delivery of caffeine for cellulite management.
Collapse
Affiliation(s)
- Rofida Albash
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt.
| | - Manar Adel Abdelbari
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Rovan M Elbesh
- Department of Physical Therapy for Women's Health, Faculty of Physical Therapy, Misr University for Science and Technology, Giza, Egypt
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, King Khalid University, Asir 61421, Saudi Arabia
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, King Khalid University, Asir 61421, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria; Canal El Mahmoudia St., Alexandria 21648, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Sara Mohamed Ahmed
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| |
Collapse
|
2
|
Paes Dutra JA, Gonçalves Carvalho S, Soares de Oliveira A, Borges Monteiro JR, Rodrigues Pereira de Oliveira Borlot J, Tavares Luiz M, Bauab TM, Rezende Kitagawa R, Chorilli M. Microparticles and nanoparticles-based approaches to improve oral treatment of Helicobacter pylori infection. Crit Rev Microbiol 2024; 50:728-749. [PMID: 37897442 DOI: 10.1080/1040841x.2023.2274835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Helicobacter pylori is a gram-negative, spiral-shaped, flagellated bacterium that colonizes the stomach of half the world's population. Helicobacter pylori infection causes pathologies of varying severity. Standard oral therapy fails in 15-20% since the barriers of the oral route decrease the bioavailability of antibiotics and the intrinsic factors of bacteria increase the rates of resistance. Nanoparticles and microparticles are promising strategies for drug delivery into the gastric mucosa and targeting H. pylori. The variety of building blocks creates systems with distinct colloidal, surface, and biological properties. These features improve drug-pathogen interactions, eliminate drug depletion and overuse, and enable the association of multiple actives combating H. pylori on several fronts. Nanoparticles and microparticles are successfully used to overcome the barriers of the oral route, physicochemical inconveniences, and lack of selectivity of current therapy. They have proven efficient in employing promising anti-H. pylori compounds whose limitation is oral route instability, such as some antibiotics and natural products. However, the current challenge is the applicability of these strategies in clinical practice. For this reason, strategies employing a rational design are necessary, including in the development of nano- and microsystems for the oral route.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcela Tavares Luiz
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Tais Maria Bauab
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
3
|
Almeida Furquim de Camargo B, Fonseca-Santos B, Gonçalves Carvalho S, Corrêa Carvalho G, Delello Di Filippo L, Sousa Araújo VH, Lobato Duarte J, Polli Silvestre AL, Bauab TM, Chorilli M. Functionalized lipid-based drug delivery nanosystems for the treatment of human infectious diseases. Crit Rev Microbiol 2023; 49:214-230. [PMID: 35634703 DOI: 10.1080/1040841x.2022.2047007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infectious diseases are still public health problems. Microorganisms such as fungi, bacteria, viruses, and parasites are the main causing agents related to these diseases. In this context, the search for new effective strategies in prevention and/or treatment is considered essential, since current drugs often have side effects or end up, causing microbial resistance, making it a serious health problem. As an alternative to these limitations, nanotechnology has been widely used. The use of lipid-based drug delivery nanosystems (DDNs) has some advantages, such as biocompatibility, low toxicity, controlled release, the ability to carry both hydrophilic and lipophilic drugs, in addition to be easel scalable. Besides, as an improvement, studies involving the conjugation of signalling molecules on the surfaces of these nanocarriers can allow the target of certain tissues or cells. Thus, this review summarizes the performance of functionalized lipid-based DDNs for the treatment of infectious diseases caused by viruses, including SARS-CoV-2, bacteria, fungi, and parasites.
Collapse
Affiliation(s)
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, Campinas State University (UNICAMP), Campinas, Brazil
| | | | | | | | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Taís Maria Bauab
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
4
|
Itoo AM, Paul M, Padaga SG, Ghosh B, Biswas S. Nanotherapeutic Intervention in Photodynamic Therapy for Cancer. ACS OMEGA 2022; 7:45882-45909. [PMID: 36570217 PMCID: PMC9773346 DOI: 10.1021/acsomega.2c05852] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The clinical need for photodynamic therapy (PDT) has been growing for several decades. Notably, PDT is often used in oncology to treat a variety of tumors since it is a low-risk therapy with excellent selectivity, does not conflict with other therapies, and may be repeated as necessary. The mechanism of action of PDT is the photoactivation of a particular photosensitizer (PS) in a tumor microenvironment in the presence of oxygen. During PDT, cancer cells produce singlet oxygen (1O2) and reactive oxygen species (ROS) upon activation of PSs by irradiation, which efficiently kills the tumor. However, PDT's effectiveness in curing a deep-seated malignancy is constrained by three key reasons: a tumor's inadequate PS accumulation in tumor tissues, a hypoxic core with low oxygen content in solid tumors, and limited depth of light penetration. PDTs are therefore restricted to the management of thin and superficial cancers. With the development of nanotechnology, PDT's ability to penetrate deep tumor tissues and exert desired therapeutic effects has become a reality. However, further advancement in this field of research is necessary to address the challenges with PDT and ameliorate the therapeutic outcome. This review presents an overview of PSs, the mechanism of loading of PSs, nanomedicine-based solutions for enhancing PDT, and their biological applications including chemodynamic therapy, chemo-photodynamic therapy, PDT-electroporation, photodynamic-photothermal (PDT-PTT) therapy, and PDT-immunotherapy. Furthermore, the review discusses the mechanism of ROS generation in PDT advantages and challenges of PSs in PDT.
Collapse
|
5
|
Roque-Borda CA, Bento da Silva P, Rodrigues MC, Di Filippo LD, Duarte JL, Chorilli M, Vicente EF, Garrido SS, Rogério Pavan F. Pharmaceutical nanotechnology: Antimicrobial peptides as potential new drugs against WHO list of critical, high, and medium priority bacteria. Eur J Med Chem 2022; 241:114640. [PMID: 35970075 DOI: 10.1016/j.ejmech.2022.114640] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 12/29/2022]
Abstract
Nanobiotechnology is a relatively unexplored area that has, nevertheless, shown relevant results in the fight against some diseases. Antimicrobial peptides (AMPs) are biomacromolecules with potential activity against multi/extensively drug-resistant bacteria, with a lower risk of generating bacterial resistance. They can be considered an excellent biotechnological alternative to conventional drugs. However, the application of several AMPs to biological systems is hampered by their poor stability and lifetime, inactivating them completely. Therefore, nanotechnology plays an important role in the development of new AMP-based drugs, protecting and carrying the bioactive to the target. This is the first review article on the different reported nanosystems using AMPs against bacteria listed on the WHO priority list. The current shortage of information implies a nanobiotechnological potential to obtain new drugs or repurpose drugs based on the AMP-drug synergistic effect.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil; Universidad Católica de Santa María, Vicerrectorado de Investigación, Facultad de Ciencias Farmacéuticas Bioquímicas y Biotecnológicas, Brazil
| | - Patricia Bento da Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Mosar Corrêa Rodrigues
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Leonardo Delello Di Filippo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Jonatas L Duarte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Eduardo Festozo Vicente
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo, CEP 17602-496, Brazil
| | - Saulo Santesso Garrido
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, CEP 14801-902, Brazil
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil.
| |
Collapse
|
6
|
dos Santos AM, Junior AGT, Carvalho SG, Chorilli M. An updated review on properties, nanodelivery systems, and analytical methods for the determination of 5-fluorouracil in pharmaceutical and biological samples. Curr Pharm Des 2022; 28:1501-1512. [DOI: 10.2174/1381612828666220509150918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
5-Fluorouracil (5-FU) is an antimetabolite drug used for over 70 years as first-line chemotherapy to treat various types of cancer, such as head, neck, breast and colorectal cancer. 5-FU acts mainly by inhibiting thymidylate synthase, thereby interfering with deoxyribonucleic acid (DNA) replication or by 5-FU incorporating into DNA, causing damage to the sequence of nucleotides. Being analogous to uracil, 5-FU enters cells using the same transport mechanism, where a is converted into active metabolites such as fluorouridine triphosphate (FUTP), fluorodeoxyuridine monophosphate (FdUMP), and fluorodeoxyuridine triphosphate (FdUTP). Currently, there are several nanodelivery systems being developed and evaluated at the preclinical level to overcome existing limitations to 5-FU chemotherapy, including liposomes, polymeric nanoparticles, polymeric micelles, nanoemulsions, mesoporous silica nanoparticles, and solid lipid nanoparticles. Therefore, it is essential to choose and develop suitable analytical methods for the quantification of 5-FU and its metabolites (5-fluorouridine and 5-fluoro-2-deoxyuridine) in pharmaceutical and biological samples. Among the analytical techniques, chromatographic methods are commonly the most used for the quantification of 5-FU from different matrices. However, other analytical methods have also been developed for the determination of 5-FU, such as electrochemical methods, a sensitive, selective, and precise technique, in addition to having a reduced cost. Here, we first review the physicochemical properties, mechanism of action, and advances in 5-FU nanodelivery systems. Next, we summarize the current progress of other chromatographic methods described to determine 5-FU. Lastly, we discuss the advantages of electrochemical methods for the identification and quantification of 5-FU and its metabolites in pharmaceutical and biological samples.
Collapse
Affiliation(s)
- Aline Martins dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| | | | - Suzana Gonçalves Carvalho
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| |
Collapse
|
7
|
D'Angelo NA, Noronha MA, Câmara MCC, Kurnik IS, Feng C, Araujo VHS, Santos JHPM, Feitosa V, Molino JVD, Rangel-Yagui CO, Chorilli M, Ho EA, Lopes AM. Doxorubicin nanoformulations on therapy against cancer: An overview from the last 10 years. BIOMATERIALS ADVANCES 2022; 133:112623. [PMID: 35525766 DOI: 10.1016/j.msec.2021.112623] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Doxorubicin (DOX) is a natural antibiotic with antineoplastic activity. It has been used for over 40 years and remains one of the most used drugs in chemotherapy for a variety of cancers. However, cardiotoxicity limits its use for long periods. To overcome this limitation, encapsulation in smart drug delivery systems (DDS) brings advantages in comparison with free drug administration (i.e., conventional anticancer drug therapy). In this review, we present the most relevant nanostructures used for DOX encapsulation over the last 10 years, such as liposomes, micelles and polymeric vesicles (i.e., polymersomes), micro/nanoemulsions, different types of polymeric nanoparticles and hydrogel nanoparticles, as well as novel approaches for DOX encapsulation. The studies highlighted here show these nanoformulations achieved higher solubility, improved tumor cytotoxicity, prolonged DOX release, as well as reduced side effects, among other interesting advantages.
Collapse
Affiliation(s)
- Natália A D'Angelo
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariana A Noronha
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mayra C C Câmara
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabelle S Kurnik
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Chuying Feng
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, 10 Victoria St S, Kitchener, Ontario N2G1C5, Canada
| | - Victor H S Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - João H P M Santos
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo (USP), São Paulo, Brazil; Micromanufacturing Laboratory, Center for Bionanomanufacturing, Institute for Technological Research (IPT), São Paulo, Brazil
| | - Valker Feitosa
- Micromanufacturing Laboratory, Center for Bionanomanufacturing, Institute for Technological Research (IPT), São Paulo, Brazil
| | | | - Carlota O Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo (USP), São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Emmanuel A Ho
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, 10 Victoria St S, Kitchener, Ontario N2G1C5, Canada
| | - André M Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
8
|
QbD based formulation optimization of semi-solid lipid nanoparticles as nano-cosmeceuticals. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Kaur G, Garg P, Kaur N, Mittal M, Chaudhary GR, Gawali SL, Hassan PA. Assessment of structural integrity of lysozyme in the presence of newly formed uni/multivesicular metallosomes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Striking Back against Fungal Infections: The Utilization of Nanosystems for Antifungal Strategies. Int J Mol Sci 2021; 22:ijms221810104. [PMID: 34576268 PMCID: PMC8466259 DOI: 10.3390/ijms221810104] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Fungal infections have become a major health concern, given that invasive infections by Candida, Cryptococcus, and Aspergillus species have led to millions of mortalities. Conventional antifungal drugs including polyenes, echinocandins, azoles, allylamins, and antimetabolites have been used for decades, but their limitations include off-target toxicity, drug-resistance, poor water solubility, low bioavailability, and weak tissue penetration, which cannot be ignored. These drawbacks have led to the emergence of novel antifungal therapies. In this review, we discuss the nanosystems that are currently utilized for drug delivery and the application of antifungal therapies.
Collapse
|
11
|
Abstract
Caffeine is not only a widely consumed active stimulant, but it is also a model molecule commonly used in pharmaceutical sciences. In this work, by performing quartz-crystal microbalance and neutron reflectometry experiments we investigate the interaction of caffeine molecules with a model lipid membrane. We determined that caffeine molecules are not able to spontaneously partition from an aqueous environment, enriched in caffeine, into a bilayer. Caffeine could be however included in solid-supported lipid bilayers if present with lipids during self-assembly. In this case, thanks to surface-sensitive techniques, we determined that caffeine molecules are preferentially located in the hydrophobic region of the membrane. These results are highly relevant for the development of new drug delivery vectors, as well as for a deeper understanding of the membrane permeation role of purine molecules.
Collapse
Affiliation(s)
- Letizia Tavagnacco
- CNR-ISC and Department of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Giacomo Corucci
- Institut Laue-Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Yuri Gerelli
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60121 Ancona, Italy
| |
Collapse
|
12
|
de Souza Von Zuben E, Eloy JO, Araujo VHS, Gremião MPD, Chorilli M. Insulin-loaded liposomes functionalized with cell-penetrating peptides: influence on drug release and permeation through porcine nasal mucosa. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Baveloni FG, Riccio BVF, Di Filippo LD, Fernandes MA, Meneguin AB, Chorilli M. Nanotechnology-based Drug Delivery Systems as Potential for Skin Application: A Review. Curr Med Chem 2021; 28:3216-3248. [PMID: 32867631 DOI: 10.2174/0929867327666200831125656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 11/22/2022]
Abstract
Administration of substances through the skin represents a promising alternative, in relation to other drug administration routes, due to its large body surface area, in order to offer ideal and multiple sites for drug administration. In addition, the administration of drugs through the skin avoids the first-pass metabolism, allowing an increase in the bioavailability of drugs, as well as reducing their side effects. However, the stratum corneum (SC) comprises the main barrier of protection against external agents, mainly due to its structure, composition and physicochemical properties, becoming the main limitation for the administration of substances through the skin. In view of the above, pharmaceutical technology has allowed the development of multiple drug delivery systems (DDS), which include liquid crystals (LC), cubosomes, liposomes, polymeric nanoparticles (PNP), nanoemulsions (NE), as well as cyclodextrins (CD) and dendrimers (DND). It appears that the DDS circumvents the problems of drug absorption through the SC layer of the skin, ensuring the release of the drug, as well as optimizing the therapeutic effect locally. This review aims to highlight the DDS that include LC, cubosomes, lipid systems, PNP, as well as CD and DND, to optimize topical skin therapies.
Collapse
Affiliation(s)
- Franciele Garcia Baveloni
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| | - Bruno Vincenzo Fiod Riccio
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| | - Leonardo Delello Di Filippo
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| | - Mariza Aires Fernandes
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| | - Andréia Bagliotti Meneguin
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara-Jau, km 01, Araraquara, SP, CEP 14800-903, Brazil
| |
Collapse
|
14
|
Dos Santos Ramos MA, de Toledo LG, Spósito L, Marena GD, de Lima LC, Fortunato GC, Araújo VHS, Bauab TM, Chorilli M. Nanotechnology-based lipid systems applied to resistant bacterial control: A review of their use in the past two decades. Int J Pharm 2021; 603:120706. [PMID: 33991597 DOI: 10.1016/j.ijpharm.2021.120706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
The rate of infections caused by resistant bacteria to the antimicrobials available for human use grows exponentially every year, which generates major impacts on human health and the world economy. In the last two decades, human beings can witness the expressive increase in the Science and Technology worldwide, and areas such as Health Sciences have benefited from these advances in favor of human health, such as the advent of Pharmaceutical Nanotechnology as an important approach applied for bacterial infections treatment with resistance profile to available antibiotics. This review of the scientific literature brings the applicability of nanotechnology-based lipid systems as an innovative tool in the improvement of bacterial infections treatment. Important studies involving the use of liposomes, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, microemulsions and lipid nanocapsules were verified in the period from 2000 to 2020, where important scientific results were found and will serve as a basis for the use of these systems to remain in constant updating. This manuscript shows the use of these drug delivery systems as potential vehicles for antibacterial compounds, which opens a new hope in the complement of the antibacterial therapeutic arsenal. Important studies developed in the last 20 years are present in this review, and thus guarantees an update on the use of these drug delivery systems for researchers from different areas of Health Sciences.
Collapse
Affiliation(s)
- Matheus Aparecido Dos Santos Ramos
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil.
| | - Luciani Gaspar de Toledo
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Larissa Spósito
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Gabriel Davi Marena
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Laura Caminitti de Lima
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Giovanna Capaldi Fortunato
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Victor Hugo Sousa Araújo
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil
| | - Marlus Chorilli
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, 14.800-903 São Paulo State, Brazil.
| |
Collapse
|
15
|
de Souza MPC, de Camargo BAF, Spósito L, Fortunato GC, Carvalho GC, Marena GD, Meneguin AB, Bauab TM, Chorilli M. Highlighting the use of micro and nanoparticles based-drug delivery systems for the treatment of Helicobacter pylori infections. Crit Rev Microbiol 2021; 47:435-460. [PMID: 33725462 DOI: 10.1080/1040841x.2021.1895721] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Due to the high adaptability of Helicobacter pylori and the low targeting specificity of the drugs normally used in pharmacological therapy, the strains are becoming increasingly resistant to these drugs, making it difficult to eradicate the infection. Thus, the search for new therapeutic approaches has been considered urgent. The incorporation of drugs in advanced drug delivery systems, such as nano and microparticles, would allow the improvement of the retention time in the stomach and the prolongation of drug release rates at the target site. Because of this, the present review article aims to highlight the use of micro and nanoparticles as important technological tools for the treatment of H. pylori infections, focussing on the main nanotechnological systems, including nanostructured lipid carriers, liposomes, nanoemulsion, metallic nanoparticles, and polymeric nanoparticles, as well as microtechnological systems such as gastroretentive dosage forms, among them mucoadhesive, magnetic and floating systems were highlighted.
Collapse
Affiliation(s)
| | | | - Larissa Spósito
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil São Paulo
| | | | - Gabriela Corrêa Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil São Paulo
| | - Gabriel Davi Marena
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil São Paulo
| | | | - Taís Maria Bauab
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil São Paulo
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil São Paulo
| |
Collapse
|
16
|
de Araújo JTC, Duarte JL, Di Filippo LD, Araújo VHS, Carvalho GC, Chorilli M. Nanosystem functionalization strategies for prostate cancer treatment: a review. J Drug Target 2021; 29:808-821. [PMID: 33645369 DOI: 10.1080/1061186x.2021.1892121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PC) has a high morbidity and mortality rate worldwide, and the current clinical guidelines can vary depending on the stage of the disease. Drug delivery nanosystems (DDNs) can improve biopharmaceutical properties of encapsulated anti-cancer drugs by modulating their release kinetics, improving physicochemical stability and reducing toxicity. DDN can also enhance the ability of specific targeting through surface modification by coupling ligands (antibodies, nucleic acids, peptides, aptamer, proteins), thus favouring the cell internalisation process by endocytosis. The purposes of this review are to describe the limitations in the treatment of PC, explore different functionalization such as polymeric, lipid and inorganic nanosystems aimed at the treatment of PC, and demonstrate the improvement of this modification for an active target, as alternative and promising candidates for new therapies.
Collapse
Affiliation(s)
| | - Jonatas Lobato Duarte
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Leonardo Delello Di Filippo
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Victor Hugo Sousa Araújo
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
17
|
Chitosan Nanocarrier Entrapping Hydrophilic Drugs as Advanced Polymeric System for Dual Pharmaceutical and Cosmeceutical Application: A Comprehensive Analysis Using Box-Behnken Design. Polymers (Basel) 2021; 13:polym13050677. [PMID: 33668161 PMCID: PMC7956268 DOI: 10.3390/polym13050677] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
The objective of the present research is to propose chitosan as a nanocarrier for caffeine—a commonly used drug in combating cellulite. Being a hydrophilic drug, caffeine suffers from insufficient topical penetration upon application on the skin. Chitosan nanoparticles loaded with caffeine were prepared via the ionic gelation technique and optimized according to a Box–Behnken design. The effect of (A) chitosan concentration, (B) chitosan solution pH, and (C) chitosan to sodium tripolyphosphate mass ratio on (Y1) entrapment efficiency percent, (Y2) particle size, (Y3) polydispersity index, and (Y4) zeta potential were studied. Subsequently, the desired constraints on responses were applied, and validation of the optimization procedure was confirmed by the parameters exhibited by the optimal formulation. A caffeine entrapment efficiency percent of 17.25 ± 1.48%, a particle size of 173.03 ± 4.32 nm, a polydispersity index of 0.278 ± 0.01, and a surface charge of 41.7 ± 3.0 mV were attained. Microscopical evaluation using transmission electron microscope revealed a typical spherical nature of the nanoparticles arranged in a network with a further confirmation of the formation of particles in the nano range. The results proved the successful implementation of the Box–Behnken design for optimization of chitosan-based nanoparticles in the field of advanced polymeric systems for pharmaceutical and cosmeceutical applications.
Collapse
|
18
|
Silvestre ALP, Di Filippo LD, Besegato JF, de Annunzio SR, Almeida Furquim de Camargo B, de Melo PBG, Rastelli ANDS, Fontana CR, Chorilli M. Current applications of drug delivery nanosystems associated with antimicrobial photodynamic therapy for oral infections. Int J Pharm 2021; 592:120078. [DOI: 10.1016/j.ijpharm.2020.120078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/26/2020] [Accepted: 11/08/2020] [Indexed: 12/26/2022]
|
19
|
Di Filippo LD, Duarte JL, Luiz MT, de Araújo JTC, Chorilli M. Drug Delivery Nanosystems in Glioblastoma Multiforme Treatment: Current State of the Art. Curr Neuropharmacol 2021; 19:787-812. [PMID: 32867643 PMCID: PMC8686306 DOI: 10.2174/1570159x18666200831160627] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/08/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant Central Nervous System cancer, responsible for about 4% of all deaths associated with neoplasia, characterized as one of the fatal human cancers. Tumor resection does not possess curative character, thereby radio and/or chemotherapy are often necessary for the treatment of GBM. However, drugs used in GBM chemotherapy present some limitations, such as side effects associated with non-specific drug biodistribution as well as limited bioavailability, which limits their clinical use. To attenuate the systemic toxicity and overcome the poor bioavailability, a very attractive approach is drug encapsulation in drug delivery nanosystems. The main focus of this review is to explore the actual cancer global problem, enunciate barriers to overcome in the pharmacological treatment of GBM, as well as the most updated drug delivery nanosystems for GBM treatment and how they influence biopharmaceutical properties of anti-GBM drugs. The discussion will approach lipid-based and polymeric nanosystems, as well as inorganic nanoparticles, regarding their technical aspects as well as biological effects in GBM treatment. Furthermore, the current state of the art, challenges to overcome and future perspectives in GBM treatment will be discussed.
Collapse
Affiliation(s)
| | | | - Marcela Tavares Luiz
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Brazil
| |
Collapse
|
20
|
Drug delivery systems integrated with conventional and advanced treatment approaches toward cellulite reduction. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Araujo VHS, Duarte JL, Carvalho GC, Silvestre ALP, Fonseca-Santos B, Marena GD, Ribeiro TDC, Dos Santos Ramos MA, Bauab TM, Chorilli M. Nanosystems against candidiasis: a review of studies performed over the last two decades. Crit Rev Microbiol 2020; 46:508-547. [PMID: 32795108 DOI: 10.1080/1040841x.2020.1803208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The crescent number of cases of candidiasis and the increase in the number of infections developed by non-albicans species and by multi-resistant strains has taken the attention of the scientific community, which has been searching for new therapeutic alternatives. Among the alternatives found the use of nanosystems for delivery of drugs already commercialized and new biomolecules have grown, in order to increase stability, solubility, optimize efficiency and reduce adverse effects. In view of the growing number of studies involving technological alternatives for the treatment of candidiasis, the present review came with the intention of gathering studies from the last two decades that used nanotechnology for the treatment of candidiasis, as well as analysing them critically and pointing out the future perspectives for their application with this purpose. Different studies were considered for the development of this review, addressing nanosystems such as metallic nanoparticles, mesoporous silica nanoparticles, polymeric nanoparticles, liposomes, nanoemulsion, microemulsion, solid lipid nanoparticle, nanostructured lipid carrier, lipidic nanocapsules and liquid crystals; and different clinical presentations of candidiasis. As a general overview, nanotechnology has proven to be an important ally for the treatment against the diversity of candidiasis found in the clinic, whether in increasing the effectiveness of commercialized drugs and reducing their adverse effects, as well as allowing exploring more effectively properties therapeutics of new biomolecules.
Collapse
Affiliation(s)
- Victor Hugo Sousa Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Gabriela Corrêa Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriel Davi Marena
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.,Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Tais de Cassia Ribeiro
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Matheus Aparecido Dos Santos Ramos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.,Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
22
|
Victorelli FD, Cardoso VMDO, Ferreira NN, Calixto GMF, Fontana CR, Baltazar F, Gremião MPD, Chorilli M. Chick embryo chorioallantoic membrane as a suitable in vivo model to evaluate drug delivery systems for cancer treatment: A review. Eur J Pharm Biopharm 2020; 153:273-284. [PMID: 32580050 DOI: 10.1016/j.ejpb.2020.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022]
|
23
|
Filippo LDD, Dos Santos KC, Hanck-Silva G, de Lima FT, Gremião MPD, Chorilli M. A Critical Review of Biological Properties, Delivery Systems and Analytical/Bioanalytical Methods for Determination of Bevacizumab. Crit Rev Anal Chem 2020; 51:445-453. [PMID: 32295395 DOI: 10.1080/10408347.2020.1743641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bevacizumab is a chimeric monoclonal human-murine antibody originated from murine monoclonal antibody (muMAb A4.6.1) with the human immunoglobulin IgG1. BVZ binds the extracellular portion of vascular endothelial growth factor receptors (VEGFR), which have tyrosine kinase activity. The mechanism of action of BVZ involves binding to VEGFR, Flt-1 (VEGFR-1) and KDR/Flk-1 (VEGFR-2), inducing homodimerization of two receptor subunits, and, consequently, autophosphorylation of their tyrosine kinase domains located inside the cytoplasm. With the advent of nanostructured systems it is increasingly necessary to look for safe analytical methods, ensuring the reliability of the results obtained by them, becoming essential to ensure the quality of medicines. In this work, the incorporation of bevacizumab in to different drug delivery systems was presented. Moreover, detailed investigation was performed about methods for qualitative and quantitative analyses of bevacizumab, including, biological fluids, and drug delivery systems, were investigated. Most recently high performance liquid chromatography coupled with various detectors, liquid chromatography, mass spectrometry and ELISA were used for this purpose. Thus, this review was performed to evaluate the benefits of bevacizumab carried by nanostructured systems and the analytical methods available for detection and quantification of these drugs.
Collapse
Affiliation(s)
| | - Karen Cristina Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Gilmar Hanck-Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Felipe Tita de Lima
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
24
|
Mehta PP, Ghoshal D, Pawar AP, Kadam SS, Dhapte-Pawar VS. Recent advances in inhalable liposomes for treatment of pulmonary diseases: Concept to clinical stance. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101509] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Zambom CR, da Fonseca FH, Crusca E, da Silva PB, Pavan FR, Chorilli M, Garrido SS. A Novel Antifungal System With Potential for Prolonged Delivery of Histatin 5 to Limit Growth of Candida albicans. Front Microbiol 2019; 10:1667. [PMID: 31417503 PMCID: PMC6683761 DOI: 10.3389/fmicb.2019.01667] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
Currently 75-88% of fungal infections are caused by Candida species, and Candida albicans is the main microorganism that causes these infections, especially oral candidiasis. An option for treatment involves the use of the antifungal peptide Histatin 5 (Hst 5), which is naturally found in human saliva but undergoes rapid degradation when present in the oral cavity, its site of action. For this reason, it is important to develop a way of applying this peptide to the oral lesions, which promotes the gradual release of the peptide. In the present study, we have evaluated the development of liposomes of different lipid compositions, loaded with the peptide as a way to promote its release slowly and gradually, preserving its antifungal potential. For this, the peptide 0WHistatin 5, an analog of the peptide Hst 5, was synthesized, which contains the amino acid tryptophan in its sequence. The solid phase synthesis method was used, followed by cleavage and purification. The liposomes were produced by thin film hydration technique in three different lipid compositions, F1, F2, and F3 and were submitted to an extrusion and sonication process to standardize the size and study the best technique for their production. The liposomes were characterized by dynamic light scattering, and tests were performed to determine the encapsulation efficiency, release kinetics, stability, and evaluation of antifungal activity. The extruded liposomes presented average size in the range of 100 nm, while sonicated liposomes presented a smaller size in the range of 80 nm. The encapsulation efficiency was higher for the sonicated liposomes, being 34.5% for F1. The sonicated F3 presented better stability when stored for 60 days at 4°C. The liposomes showed the ability to release the peptide for the total time of 96 h, with the first peak after 5 h, and a further increase of the released after 30 h. Time-kill assay showed that the liposomes were able to control yeast growth for 72 h. The data suggest that the liposomes loaded with 0WHistatin 5 maintained the action of the peptide and were able to limit the growth of C. albicans, being a suitable system for use in the treatment of oral candidiasis.
Collapse
Affiliation(s)
- Carolina R. Zambom
- Department of Biochemistry and Chemical Technology, Institute of Chemistry, UNESP – São Paulo State University, Araraquara, Brazil
| | - Fauller H. da Fonseca
- Department of Biochemistry and Chemical Technology, Institute of Chemistry, UNESP – São Paulo State University, Araraquara, Brazil
| | - Edson Crusca
- Department of Biochemistry and Chemical Technology, Institute of Chemistry, UNESP – São Paulo State University, Araraquara, Brazil
| | - Patrícia B. da Silva
- Department of Biological Sciences, School of Pharmaceutical Sciences of Araraquara, UNESP – São Paulo State University, Araraquara, Brazil
| | - Fernando R. Pavan
- Department of Drugs and Medicines, School of Pharmaceutical Sciences of Araraquara, UNESP – São Paulo State University, Araraquara, Brazil
| | - Marlus Chorilli
- Department of Biological Sciences, School of Pharmaceutical Sciences of Araraquara, UNESP – São Paulo State University, Araraquara, Brazil
| | - Saulo S. Garrido
- Department of Biochemistry and Chemical Technology, Institute of Chemistry, UNESP – São Paulo State University, Araraquara, Brazil
| |
Collapse
|
26
|
Liposomes for delivery of antioxidants in cosmeceuticals: Challenges and development strategies. J Control Release 2019; 300:114-140. [PMID: 30853528 DOI: 10.1016/j.jconrel.2019.03.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/24/2022]
Abstract
Antioxidants (AOs) play a crucial role in the protection and maintenance of health and are also integral ingredients in beauty products. Unfortunately, most of them are sensitive due to their instability and insolubility. The use of liposomes to protect AOs and expand their applicability to cosmeceuticals, thereby, is one of the most effective solutions. Notwithstanding their offered advantages for the delivery of AOs, liposomes, in their production and application, present many challenges. Here, we provide a critical review of the major problems complicating the development of liposomes for AO delivery. Along with issues related to preparation techniques and encapsulation efficiency, the loss of protective function and inefficiency of skin permeability are the main disadvantages of liposomes. Corresponding development strategies for resolving these problems, with their respective advantages and drawbacks, are introduced, discussed in some depth, and summarized in these pages as well. Advanced liposomes have a vital role to play in the development and delivery of AOs in practical cosmeceutical product applications.
Collapse
|
27
|
Massella D, Celasco E, Salaün F, Ferri A, Barresi AA. Overcoming the Limits of Flash Nanoprecipitation: Effective Loading of Hydrophilic Drug into Polymeric Nanoparticles with Controlled Structure. Polymers (Basel) 2018; 10:E1092. [PMID: 30961017 PMCID: PMC6403626 DOI: 10.3390/polym10101092] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/06/2018] [Accepted: 09/29/2018] [Indexed: 12/26/2022] Open
Abstract
Flash nanoprecipitation (FNP) is a widely used technique to prepare particulate carriers based on various polymers, and it was proven to be a promising technology for the industrial production of drug loaded nanoparticles. However, up to now, only its application to hydrophobic compounds has been deeply studied and the encapsulation of some strongly hydrophilic compounds, such as caffeine, remains a challenge. Caffeine loaded poly-ε-caprolactone (PCL) nanoparticles were produced in a confined impinging jet mixer using acetone as the solvent and water as the antisolvent. Caffeine was dissolved either in acetone or in water to assess the effects of two different process conditions. Nanoparticles properties were assessed in terms of loading capacity (LC%), encapsulation efficiency (EE%), and in vitro release kinetics. Samples were further characterized by dynamic light scattering, scanning electron microscopy, X-ray photo electron spectroscopy, and infrared spectroscopy to determine the size, morphology, and structure of nanoparticles. FNP was proved an effective technique for entrapping caffeine in PCL and to control its release behavior. The solvent used to solubilize caffeine influences the final structure of the obtained particles. It was observed that the active principle was preferentially adsorbed at the surface when using acetone, while with water, it was embedded in the matrix structure. The present research highlights the possibility of extending the range of applications of FNP to hydrophilic molecules.
Collapse
Affiliation(s)
- Daniele Massella
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy.
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France.
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Edvige Celasco
- Dipartimento di Fisica dell'Università degli studi di Genova, Via Dodecaneso 33, 16146 Genova (GE), Italy.
| | - Fabien Salaün
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France.
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Ada Ferri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy.
| | - Antonello A Barresi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy.
| |
Collapse
|
28
|
Garg P, Kaur G, Chaudhary GR, Gawali SL, Hassan PA. Fabrication of metalosomes (metal containing cationic liposomes) using single chain surfactants as a precursor via formation of inorganic organic hybrids. Phys Chem Chem Phys 2017; 19:25764-25773. [DOI: 10.1039/c7cp02908j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This work reveals a methodology to modify a single chain surfactant to fabricate a liposome-like assembly by controlling the stoichiometry by virtue of a metallic counter ion. It is a noteworthy advancement in the area of self-assembled molecular structures.
Collapse
Affiliation(s)
- Preeti Garg
- Department of Chemistry and Centre of Advanced studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Gurpreet Kaur
- Department of Chemistry and Centre of Advanced studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Santosh L. Gawali
- Homi Bhabha National Institute
- Training School Complex
- Mumbai – 400 094
- India
| | - P. A. Hassan
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai – 400 085
- India
| |
Collapse
|
29
|
Calixto GMF, Bernegossi J, de Freitas LM, Fontana CR, Chorilli M. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review. Molecules 2016; 21:342. [PMID: 26978341 PMCID: PMC6274468 DOI: 10.3390/molecules21030342] [Citation(s) in RCA: 313] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is a promising alternative approach for improved cancer treatment. In PDT, a photosensitizer (PS) is administered that can be activated by light of a specific wavelength, which causes selective damage to the tumor and its surrounding vasculature. The success of PDT is limited by the difficulty in administering photosensitizers (PSs) with low water solubility, which compromises the clinical use of several molecules. Incorporation of PSs in nanostructured drug delivery systems, such as polymeric nanoparticles (PNPs), solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), gold nanoparticles (AuNPs), hydrogels, liposomes, liquid crystals, dendrimers, and cyclodextrin is a potential strategy to overcome this difficulty. Additionally, nanotechnology-based drug delivery systems may improve the transcytosis of a PS across epithelial and endothelial barriers and afford the simultaneous co-delivery of two or more drugs. Based on this, the application of nanotechnology in medicine may offer numerous exciting possibilities in cancer treatment and improve the efficacy of available therapeutics. Therefore, the aim of this paper is to review nanotechnology-based drug delivery systems for photodynamic therapy of cancer.
Collapse
Affiliation(s)
- Giovana Maria Fioramonti Calixto
- Faculdade de Ciências Farmacêuticas, UNESP-Univ. Estadual Paulista, Campus Araraquara, Departamento de Fármacos e Medicamentos, Araraquara 14800-903 SP, Brazil.
| | - Jéssica Bernegossi
- Faculdade de Ciências Farmacêuticas, UNESP-Univ. Estadual Paulista, Campus Araraquara, Departamento de Fármacos e Medicamentos, Araraquara 14800-903 SP, Brazil.
| | - Laura Marise de Freitas
- Faculdade de Ciências Farmacêuticas, UNESP-Univ. Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Araraquara 14800-903 SP, Brazil.
| | - Carla Raquel Fontana
- Faculdade de Ciências Farmacêuticas, UNESP-Univ. Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Araraquara 14800-903 SP, Brazil.
| | - Marlus Chorilli
- Faculdade de Ciências Farmacêuticas, UNESP-Univ. Estadual Paulista, Campus Araraquara, Departamento de Fármacos e Medicamentos, Araraquara 14800-903 SP, Brazil.
| |
Collapse
|
30
|
Evans KO, Compton DL, Whitman NA, Laszlo JA, Appell M, Vermillion KE, Kim S. Octadecyl ferulate behavior in 1,2-Dioleoylphosphocholine liposomes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:333-343. [PMID: 26332862 DOI: 10.1016/j.saa.2015.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 07/17/2015] [Accepted: 08/04/2015] [Indexed: 06/05/2023]
Abstract
Octadecyl ferulate was prepared using solid acid catalyst, monitored using Supercritical Fluid Chromatography and purified to a 42% yield. Differential scanning calorimetry measurements determined octadecyl ferulate to have melting/solidification phase transitions at 67 and 39°C, respectively. AFM imaging shows that 5-mol% present in a lipid bilayer induced domains to form. Phase behavior measurements confirmed that octadecyl ferulate increased transition temperature of phospholipids. Fluorescence measurements demonstrated that octadecyl ferulate stabilized liposomes against leakage, maintained antioxidant capacity within liposomes, and oriented such that the feruloyl moiety remained in the hydrophilic region of the bilayer. Molecular modeling calculation indicated that antioxidant activity was mostly influenced by interactions within the bilayer.
Collapse
Affiliation(s)
- Kervin O Evans
- Renewable Products Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA.
| | - David L Compton
- Renewable Products Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA
| | - Nathan A Whitman
- Renewable Products Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA
| | - Joseph A Laszlo
- Renewable Products Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA
| | - Michael Appell
- Bacterial Foodborne Pathogens and Mycology, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA
| | - Karl E Vermillion
- Functional Foods Research, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA
| | - Sanghoon Kim
- Plant Polymer Research, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA
| |
Collapse
|
31
|
Bai C, Luo G, Liu Y, Zhao S, Zhu X, Zhao Q, Peng H, Xiong H. A Comparison Investigation of Coix Seed Oil Liposomes Prepared by Five Different Methods. J DISPER SCI TECHNOL 2014. [DOI: 10.1080/01932691.2014.893524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|