1
|
Souza IMS, García-Villén F, Viseras C, Perger SBC. Zeolites as Ingredients of Medicinal Products. Pharmaceutics 2023; 15:pharmaceutics15051352. [PMID: 37242594 DOI: 10.3390/pharmaceutics15051352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Development of new medicinal products for particular therapeutic treatment or for better manipulations with better quality and less side effects are possible as a result of advanced inorganic and organic materials application, among which zeolites, due to their properties and versatility, have been gaining attention. This paper is an overview of the development in the use of zeolite materials and their composites and modifications as medicinal products for several purposes such as active agents, carriers, for topical treatments, oral formulations, anticancer, the composition of theragnostic systems, vaccines, parenteral dosage forms, tissue engineering, etc. The objective of this review is to explore the main properties of zeolites and associate them with their drug interaction, mainly addressing the advances and studies related to the use of zeolites for different types of treatments due to their zeolite characteristics such as molecule storage capacity, physical and chemical stability, cation exchange capacity, and possibility of functionalization. The use of computational tools to predict the drug-zeolite interaction is also explored. As conclusion was possible to realize the possibilities and versatility of zeolite applications as being able to act in several aspects of medicinal products.
Collapse
Affiliation(s)
- Iane M S Souza
- Laboratório de Peneiras Moleculares, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
| | - Fátima García-Villén
- NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus Cartuja s/n, 18071 Granada, Spain
- Andalusian Institute of Earth Sciences, CSIC-University of Granada, Armilla, 18100 Granada, Spain
| | - Sibele B C Perger
- Laboratório de Peneiras Moleculares, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
2
|
T. M. Kadja G, T. U. Culsum N, Putri RM. Recent advances in the utilization of zeolite-based materials for controlled drug delivery. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
3
|
Lee H, Bang JB, Na YG, Lee JY, Cho CW, Baek JS, Lee HK. Development and Evaluation of Tannic Acid-Coated Nanosuspension for Enhancing Oral Bioavailability of Curcumin. Pharmaceutics 2021; 13:pharmaceutics13091460. [PMID: 34575537 PMCID: PMC8468675 DOI: 10.3390/pharmaceutics13091460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
Curcumin (CUR) has been used in the treatment of various diseases such as cough, fever, skin disease, and infection because of various biological benefits such as anti-inflammatory, antiviral, antibacterial, and antitumor activity. However, CUR is a BCS class 4 group and has a limitation of low bioavailability due to low solubility and permeability. Therefore, the purpose of this study is to prepare a nanosuspension (NSP) loaded with CUR (CUR-NSP) using a statistical design approach to improve the oral bioavailability of CUR, and then to develop CUR-NSP coated with tannic acid to increase the mucoadhesion in the GI tract. Firstly, the optimized CUR-NSP, composed of sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone/vinyl acetate (PVP/VA), was modified with tannic acid (TA). The particle size and polydispersity index of the formulation measured by laser scattering analyzer were 127.7 ± 1.3 nm and 0.227 ± 0.010, respectively. In addition, the precipitation in distilled water (DW) was 1.52 ± 0.58%. Using a differential scanning calorimeter and X-ray diffraction analysis, the stable amorphous form of CUR was confirmed in the formulation, and it was confirmed that CUR-NSP formulation was coated with TA through a Fourier transform-infrared spectroscopy. In the mucoadhesion assay using the turbidity, it was confirmed that TA-CUR-NSP had higher affinity for mucus than CUR-NSP under all pH conditions. This means that the absorption of CUR can be improved by increasing the retention time in the GI tract of the formulation. In addition, the drug release profile showed more than 80% release, and in the cellular uptake study, the absorption of the formulation (TA-CUR-NSP) containing TA acting as an inhibitor of P-gp was increased by 1.6-fold. In the evaluation of antioxidant activity, the SOD activity of TA-CUR-NSP was remarkably high due to TA, which improves cellular uptake and has antioxidant activity. In the pharmacokinetic evaluation, the maximum drug plasma concentration of the TA-coated NSP formulation was 7.2-fold higher than that of the pure drug. In all experiments, it was confirmed that the TA-CUR-NSP is a promising approach to overcome the low oral bioavailability of CUR.
Collapse
Affiliation(s)
- Hyeonmin Lee
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.L.); (J.-B.B.); (Y.-G.N.); (J.-Y.L.)
| | - Jun-Bae Bang
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.L.); (J.-B.B.); (Y.-G.N.); (J.-Y.L.)
| | - Young-Guk Na
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.L.); (J.-B.B.); (Y.-G.N.); (J.-Y.L.)
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.L.); (J.-B.B.); (Y.-G.N.); (J.-Y.L.)
- Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Cheong-Weon Cho
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.L.); (J.-B.B.); (Y.-G.N.); (J.-Y.L.)
- Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
- Correspondence: (C.-W.C.); (J.-S.B.); (H.-K.L.); Tel.: +82-42-821-5934 (C.-W.C.); Fax: +82-42-823-6566 (C.-W.C.)
| | - Jong-Suep Baek
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea
- Department of Herbal Medicine Resource, Kangwon National University, 346 Hwangjo-gil, Dogye-eup, Samcheok-si 25949, Korea
- Correspondence: (C.-W.C.); (J.-S.B.); (H.-K.L.); Tel.: +82-42-821-5934 (C.-W.C.); Fax: +82-42-823-6566 (C.-W.C.)
| | - Hong-Ki Lee
- Animal Model Research Group, Jeonbuk Branch, Korea Institute of Toxicology (KIT), Jeongeup 53212, Korea
- Correspondence: (C.-W.C.); (J.-S.B.); (H.-K.L.); Tel.: +82-42-821-5934 (C.-W.C.); Fax: +82-42-823-6566 (C.-W.C.)
| |
Collapse
|
5
|
Khodadadi Yazdi M, Zarrintaj P, Hosseiniamoli H, Mashhadzadeh AH, Saeb MR, Ramsey JD, Ganjali MR, Mozafari M. Zeolites for theranostic applications. J Mater Chem B 2020; 8:5992-6012. [PMID: 32602516 DOI: 10.1039/d0tb00719f] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Theranostic platforms bring about a revolution in disease management. During recent years, theranostic nanoparticles have been utilized for imaging and therapy simultaneously. Zeolites, because of their porous structure and tunable properties, which can be modified with various materials, can be used as a delivery agent. The porous structure of a zeolite enables it to be loaded and unloaded with various molecules such as therapeutic agents, photosensitizers, biological macromolecules, MRI contrast agents, radiopharmaceuticals, near-infrared (NIR) fluorophores, and microbubbles. Furthermore, theranostic zeolite nanocarriers can be further modified with targeting ligands, which is highly interesting for targeted cancer therapies.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhang C, Huang Y, Zhang H, Ye Z, Liu P, Wang S, Zhang Y, Tang Y. Selectively Functionalized Zeolite NaY Composite Materials for High-Efficiency Multiple Protection of Paper Relics. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Chunna Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yanyan Huang
- Institute for Preservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China
| | - Hongbin Zhang
- Institute for Preservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China
| | - Zhaoqi Ye
- Department of Chemistry, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Peng Liu
- Institute for Preservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China
| | - Sinong Wang
- Institute for Preservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China
| | - Yahong Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yi Tang
- Department of Chemistry, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|