1
|
Akgul I, Isik B, Ugraskan V. Preparation and characterization of oat hulls-filled-sodium alginate biocomposite microbeads for the effective adsorption of toxic methylene blue dye. Int J Biol Macromol 2024; 280:135800. [PMID: 39307506 DOI: 10.1016/j.ijbiomac.2024.135800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
In this work, the performance of oat hull-filled sodium alginate (SA-O) biocomposite microbeads in the adsorptive removal of methylene blue (MB) dye was examined. First, oat hulls were pulverized and biocomposite gels containing different weight ratios of oat hulls (10 %, 20 %, and 30 %, concerning the SA amount) were prepared by dispersing them in SA solution by ultrasonic homogenization method. Finally, gels were cross-linked by dropping into a 2 % CaCl2 solution. The study revealed that the optimal adsorbent dosage was 0.025 g/50 mL, pH was roughly 6-8, and the contact time was 120 min. According to isotherm models, the non-linear Sips and Langmuir model was more appropriate compare to other isotherms from error analysis, with a maximum adsorption capacity of 687.65 mg/g and 757.57 mg/g at 298 K, respectively. Furthermore, the non-linear kinetic data and error analyzes demonstrated that the process followed the pseudo-second-order kinetic. The adsorption process was exothermic (∆H°=-17.71 kJ/mol) and spontaneous (∆G°=-26.23 kJ/mol) at 298 K, based on thermodynamic characteristics. Furthermore, reusability investigations demonstrated that the adsorbent retained its performance with no major changes in characteristics. This work reveals that highly efficient, low-cost, sustainable, and eco-friendly SA-O composites with properties might be useful adsorbents for cationic dye adsorption.
Collapse
Affiliation(s)
- Irem Akgul
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Birol Isik
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Volkan Ugraskan
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey.
| |
Collapse
|
2
|
Zahakifar F, Khanramaki F. Continuous removal of thorium from aqueous solution using functionalized graphene oxide: study of adsorption kinetics in batch system and fixed bed column. Sci Rep 2024; 14:14888. [PMID: 38937613 PMCID: PMC11211423 DOI: 10.1038/s41598-024-65709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
This article investigated the kinetic studies of thorium adsorption from an aqueous solution with graphene oxide functionalized with aminomethyl phosphonic acid (AMPA) as an adsorbent. First, the AMPA-GO adsorbent was characterized using TEM, XRD, and FTIR methods. Experiments were performed in two batch and continuous modes. In batch mode, adsorption kinetics were studied in different pH (1-4), temperature (298-328 K), initial concentration (50-500 mg L-1), and dosages (0.1-2 g L-1). The results showed that thorium adsorption kinetic follows pseudo-first-order kinetic model and that the adsorption reaction is endothermic. The maximum experimental adsorption capacity of thorium ions was observed 138.84 mg g-1 at a pH of 3, adsorbent dosage of 0.5 g L-1, and a temperature of 328 K. The results showed that AMPA-GO adsorbent can be used seven times with an acceptable change in adsorption capacity. In continuous conditions, the effect of feed flow rate (2-8 mL min-1), initial concentration (50-500 mg L-1), and column bed height (2-8 cm) was investigated. The continuous data was analyzed using the Thomas, Yoon-Nelson, and Bohart-Adams models. The experimental data of the column were well matched with the Thomas, and Yoon-Nelson models. The research results showed that the use of functionalized graphene oxide adsorbents has a great ability to remove thorium from aqueous solutions.
Collapse
Affiliation(s)
- Fazel Zahakifar
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 11365-8486, Tehran, Iran.
| | - Fereshte Khanramaki
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 11365-8486, Tehran, Iran
| |
Collapse
|
3
|
Sun Y, Zhao X, Song X, Fan J, Yang J, Miao Y, Xiao S. An all-in-one FeO x-rGO sponge fabricated by solid-phase microwave thermal shock for water evaporation and purification. J Environ Sci (China) 2024; 138:671-683. [PMID: 38135430 DOI: 10.1016/j.jes.2023.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/22/2023] [Accepted: 04/22/2023] [Indexed: 12/24/2023]
Abstract
Developing high-efficiency photothermal seawater desalination devices is of significant importance in addressing the shortage of freshwater. Despite much effort made into photothermal materials, there is an urgent need to design a rapidly synthesized photothermal evaporator for the comprehensive purification of complex seawater. Therefore, we report on all-in-one FeOx-rGO photothermal sponges synthesized via solid-phase microwave thermal shock. The narrow band gap of the semiconductor material Fe3O4 greatly reduces the recombination of electron-hole pairs, enhancing non-radiative relaxation light absorption. The abundant π orbitals in rGO promote electron excitation and thermal vibration between the lattices. Control of the surface hydrophilicity and hydrophobicity promotes salt resistance while simultaneously achieving the purification of various complex polluted waters. The optimized GFM-3 sponge exhibitedan enhanced photothermal conversion rate of 97.3% and a water evaporation rate of 2.04 kg/(m2·hr), showing promising synergistic water purification properties. These findings provide a highly efficient photothermal sponge for practical applicationsof seawater desalination and purification,as well as develop a super-rapid processing methodology for evaporation devices.
Collapse
Affiliation(s)
- Youkun Sun
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiuwen Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueling Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junhe Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; Prytula Igor Collaborate Innovation Center for Diamond, Shanghai Jian Qiao University, Shanghai 201306, China
| | - Yingchun Miao
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Shuning Xiao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
4
|
Kar A, Deole S, Gadratagi BG, Patil N, Guru-Pirasanna-Pandi G, Mahapatra B, Adak T. Facile synthesis of novel magnesium oxide nanoparticles for pesticide sorption from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101467-101482. [PMID: 37653192 DOI: 10.1007/s11356-023-29562-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
The quantum of pesticides in surface as well as drinking water has become a serious health hazard. In this experiment, magnesium oxide nanoparticles (MgO NPs) were synthesized using leaves of purple-colored rice variety (Crossa) and utilized for simultaneous removal of three pesticides, namely, thiamethoxam, chlorpyriphos, and fenpropathrin from water. The biogenic MgO NPs were characterized using SEM-EDX, FTIR, XRD, DLS, etc. The optimum synthesis parameters (1 M NaOH, 80 °C, and 2 h) resulted in maximum yield of MgO NPs (87.7 mg), minimum hydrodynamic diameter (35.12 nm), poly dispersity index (0.14) and mean zeta potential (-11 mV). Sorption data of the three pesticides fitted well with non-linear Langmuir and Freundlich isotherm models and non-linear pseudo-second-order kinetic model. The maximum adsorption capacity of MgO NPs for the three pesticides was 87.66 µg/mg, as obtained from the Langmuir isotherm model. Under optimum conditions (initial concentration, 40 mg/L; dose, 30 mg/30 mL; and pH, 9), 60.13, 80.53, and 92.49% removal of thiamethoxam, chlorpyriphos, and fenpropathrin was achieved with a 100% desirability, respectively. Thus, the biogenic MgO NPs could be an efficient adsorbent of pesticides and could be recommended for pesticide decontamination in water treatment plants and domestic water purifier systems.
Collapse
Affiliation(s)
- Abhijit Kar
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
- Indira Gandhi Krishi Vishwavidyalaya, Krishak Nagar, Raipur, Chhattisgarh, 492012, India
- Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, 751003, India
| | - Sonali Deole
- Indira Gandhi Krishi Vishwavidyalaya, Krishak Nagar, Raipur, Chhattisgarh, 492012, India
| | - Basana Gowda Gadratagi
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Naveenkumar Patil
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | | - Bibhab Mahapatra
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
- Fakir Mohan University, Balasore, Odisha, 756019, India
| | - Totan Adak
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India.
| |
Collapse
|
5
|
Natesan G, Rajappan K. GO-CuO nanocomposites assimilated into CA-PES polymer membrane in adsorptive removal of organic dyes from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42658-42678. [PMID: 35821317 DOI: 10.1007/s11356-022-21821-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Textile industries are one of the leading environmental pollutants by releasing harmful dye effluents. In many textile distrts, the amount of excess color in treated textile effluent that exceeds regulatory limitations is still being a major concern. The combining usage of nanomaterials and polymer material to solve these issues using various techniques. In this research, graphene oxide-copper oxide (GO-CuO) nanomaterial have been incorporated into cellulose-acetate (CA), poly-ether sulfone (PES) blend polymer by using phase inversion process to fabricate thin film nanocomposite (TFN) membrane for removal of dye pollutant. The physiochemical properties of prepared TFN materials were studied by Fourier transform infra-red spectroscopy (FT-IR), X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), thermo gravimetric analysis (TGA), and mechanical strength analysis. Dye adsorption experiments were performed with four typical water-soluble organic dyes methylene blue (MB), rhodamine blue (Rh. B), methyl orange (MO) and Congo red (CR). After reaching adsorption equilibrium, the composite membrane final removal effectiveness for MB 92.42%, Rh. B 89.39%, CR 68.39%, and MO 58.82% respectively. As a result, the fabricated TFN material proves to be an effective adsorbent material for cationic dye molecules. Also, when the fabricated material was tested with textile industry effluent sample, all physio-chemical properties exhibited a considerable decrease in concentrations when compared to the real textile effluent concentration. The treated effluents permitted for a relatively greater growth and germination index of Tropical amaranth roots than the textile effluent, this demonstrates that phytotoxicity testing was also successful. The most effective temperature, concentration and pH were found to be 273 K, 1 × 10-5 M and pH 9. The fabricated TFN membrane material (GO-CuO @ CA-PES) can be recommended for water treatment applications.
Collapse
Affiliation(s)
- Gowriboy Natesan
- Department of Chemistry SRM Institute of Science & Technology, Kattankulathur, Chengalpattu, 603203, India
| | - Kalaivizhi Rajappan
- Department of Chemistry SRM Institute of Science & Technology, Kattankulathur, Chengalpattu, 603203, India.
| |
Collapse
|
6
|
Joshi NC, Rawat BS, Semwal P, Kumar N. Effective removal of highly toxic Pb 2+ and Cd 2+ ions using reduced graphene oxide, polythiophene, and silica-based nanocomposite. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2127752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - B. S. Rawat
- Department of Physics, Uttaranchal University, Dehradun, India
| | - Prashant Semwal
- Department of Physics, Uttaranchal University, Dehradun, India
| | - Niraj Kumar
- Division of Research & Innovation, Uttaranchal University, Dehradun, India
| |
Collapse
|
7
|
An Intelligent Carbon-Based Prediction of Wastewater Treatment Plants Using Machine Learning Algorithms. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/8448489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purification of polluted water and return back to the agriculture field is the wastewater treatment for plants. Contaminated water causes illness and health emergencies of public. Also, health risk due release of toxic contaminants brings problem to all living beings. At present, sensors are used in waste water treatment and transfer data via internet of things (IoT). Prediction of wastewater quality content which is presence of total nitrogen (T-N) and total phosphorous (T-P) elements, chemical oxygen demand (COD), biochemical demand (BOD), and total suspended solids (TSS) is associated with eutrophication that should be prevented. This may leads to algal bloom and spoils aquatic life which is consumed by human. The presence of nitrogen and phosphorous elements is in the content of wastewater, and these elements are associated with eutrophication which should be prevented. Adsorption of T-N and T-P activated carbon was predictable as one of the most promising methods for wastewater treatment. Many research works have been done. The issues are inefficiency in the prediction of wastewater treatment. To overcome this issue, this paper proposed fusion of B-KNN with the ELM algorithm that is used. The accuracy of the BKNN-ELM algorithm in classification of water quality status produced the highest accuracy of the highest accuracy which is
and
with rate of accuracy which is 93.56%, and the lowest accuracy is
. Experiment evaluation shows that a total suspended solid predicted by proposed model is 91 with accuracy of 93%. The relative error rate of prediction is 12.03 which is lesser than existing models.
Collapse
|
8
|
Murariu AC, Macarie L, Crisan L, Pleşu N. Experimental Investigations of AlMg3 Components with Polyurethane and Graphene Oxide Nanosheets Composite Coatings, after Accelerated UV-Aging. Molecules 2021; 27:84. [PMID: 35011316 PMCID: PMC8746964 DOI: 10.3390/molecules27010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022] Open
Abstract
The use of graphene (Gr) and its derivates graphene oxide (GO) showed that these materials are good candidates to enhance the properties of polyurethane (PU) coatings, especially the anticorrosion ones since graphene absorbs most of the light and provides hydrophobicity for repelling water. An important aspect of these multifunctional materials is that all these improvements can be realized even at very low filler loadings in the polymer matrix. In this work, an ultrasound cavitation technique was used for the proper dispersion of GO nanosheets (GON) in polyurethane (PU) resin to obtain a composite coating to protect the AlMg3 substrate. The addition of GON considerably improved the physical properties of coatings, as demonstrated by electrochemical impedance spectroscopy (EIS) analysis, promising improved anticorrosion performance after accelerated UV-ageing. Computational methods and Differential Scanning Calorimetry (DSC) measurements showed that GON facilitates the formation of additional bonds and stabilizes the PU structures during the ultraviolet (UV) exposure and aggressive attack of corrosive species. Limiting oxygen index (LOI) data reveal a slow burning behaviour of PU-GON coatings during UV exposure, which is better than PU alone.
Collapse
Affiliation(s)
- Alin Constantin Murariu
- National R & D Institute for Welding and Material Testing–ISIM Timisoara, 30 M. Viteazu Blv., 300222 Timisoara, Romania;
| | - Lavinia Macarie
- “Coriolan Dragulescu” Institute of Chemistry, 24 M. Viteazu Blv., 300223 Timisoara, Romania;
| | - Luminita Crisan
- “Coriolan Dragulescu” Institute of Chemistry, 24 M. Viteazu Blv., 300223 Timisoara, Romania;
| | - Nicoleta Pleşu
- “Coriolan Dragulescu” Institute of Chemistry, 24 M. Viteazu Blv., 300223 Timisoara, Romania;
| |
Collapse
|
9
|
Nie Y, Tian M, Zhang Q, Wang L, Ji Z, Chen X, Yang S, Song W, Wu C, Xu H, Cao M. Controlled fabrication of biocompatible graphene oxide Langmuir–Blodgett films by size and surface property manipulation. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1880430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yan Nie
- Centre for Bioengineering and Biotechnology and State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, P. R. China
| | - Maozhang Tian
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing, P. R. China
| | - Qun Zhang
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing, P. R. China
| | - Lu Wang
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing, P. R. China
| | - Zemin Ji
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing, P. R. China
| | - Xi Chen
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing, P. R. China
| | - Shengjian Yang
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing, P. R. China
| | - Wenfeng Song
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing, P. R. China
| | - Chunxian Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Hualong Xu
- Unit 69007 of P.L.A, Urumqi, P. R. China
| | - Meiwen Cao
- Centre for Bioengineering and Biotechnology and State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, P. R. China
| |
Collapse
|
10
|
Abstract
Batch adsorption experiments have been conducted to investigate the removal of methyl orange from aqueous solution by an activated carbon prepared from prickly pear seed cake by phosphoric acid activation. The adsorption process has been described by using kinetic and isotherm models. The kinetic of adsorption was examined by pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. Adsorption isotherm was modeled using Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms. The adsorption process of methyl orange was well explained by the pseudo-second-order model and Freundlich isotherm. Also, pseudo-n-order model has been applied to estimate the order of adsorption kinetic and it was found equal to 2 which confirm the good accuracy of the pseudo-second order. Moreover, Dubinin–Radushkevich isotherm reveals that the adsorption of methyl orange onto activated carbon was a physisorption process in nature. The adsorption capacity of activated carbon was found to be 336.12 mg/g at temperature 20°C andpH∼7. These results demonstrated that the prickly pear seed cake is a suitable precursor for the preparation of appropriate activated carbon for dyes removal from aqueous solution.
Collapse
|
11
|
Adsorption Thermodynamic and Kinetic Studies of Methyl Orange onto Sugar Scum Powder as a Low-Cost Inorganic Adsorbent. J CHEM-NY 2020. [DOI: 10.1155/2020/9165874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the present study, batch adsorption experiments were carried out to investigate the removal of methyl orange (MO) from aqueous solution using sugar scum powder as an effective inorganic adsorbent which is a cheap precursor and abundant. The characteristics of this material were determined using XRD, SEM/EDX, and FTIR. The adsorption performance of sugar scum powder was evaluated using MO as the model adsorbate. Effects of various parameters such as initial dye concentration, contact time, and adsorbent dose were studied. The adsorption process can be best described by the pseudo-second-order kinetic and Langmuir adsorption isotherm models. Maximum monolayer adsorption capacity for MO removal was found to be 15.24 mg/g at temperature 22°C and pH 7.2. Moreover, thermodynamic parameters suggested that the adsorption of MO onto sugar scum powder was a spontaneous and exothermic process. The results demonstrated that sugar scum is a suitable precursor for the preparation of efficient adsorbent for dye removal from wastewater.
Collapse
|
12
|
A comparative study of micro- and nano-structured di-nuclear Co(II) complex, designed to produce efficient nano-sorbent of Co3O4 applicable in the removal of Pb2+. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|