1
|
Fedorowicz J, Sączewski J. Advances in the Synthesis of Biologically Active Quaternary Ammonium Compounds. Int J Mol Sci 2024; 25:4649. [PMID: 38731869 PMCID: PMC11083083 DOI: 10.3390/ijms25094649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This review provides a comprehensive overview of recent advancements in the design and synthesis of biologically active quaternary ammonium compounds (QACs). The covered scope extends beyond commonly reviewed antimicrobial derivatives to include synthetic agents with antifungal, anticancer, and antiviral properties. Additionally, this review highlights examples of quaternary ammonium compounds exhibiting activity against protozoa and herbicidal effects, as well as analgesic and anesthetic derivatives. The article also embraces the quaternary-ammonium-containing cholinesterase inhibitors and muscle relaxants. QACs, marked by their inherent permanent charge, also find widespread usage across diverse domains such as fabric softeners, hair conditioners, detergents, and disinfectants. The effectiveness of QACs hinges greatly on finding the right equilibrium between hydrophilicity and lipophilicity. The ideal length of the alkyl chain varies according to the unique structure of each QAC and its biological settings. It is expected that this review will provide comprehensive data for medicinal and industrial chemists to design and develop novel QAC-based products.
Collapse
Affiliation(s)
- Joanna Fedorowicz
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Jarosław Sączewski
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| |
Collapse
|
2
|
Liu F, Zhou Y, Liu L, Pan H, Liu H. Effect of 2-ethylbutyric acid on thermodynamics stability of various nonionic surfactants tanshione-loaded micelles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Liu Q, Li Y, Yang X, Xing S, Qiao C, Wang S, Xu C, Li T. O-Carboxymethyl chitosan-based pH-responsive amphiphilic chitosan derivatives: Characterization, aggregation behavior, and application. Carbohydr Polym 2020; 237:116112. [PMID: 32241407 DOI: 10.1016/j.carbpol.2020.116112] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 11/26/2022]
Abstract
Chitosan has attracted much attention in drug delivery, however, carboxymethyl chitosan (CMC)-based self-aggregated nanocarriers are seldom reported. In this paper, two kinds of CMC-based pH-responsive amphiphilic chitosan derivatives, N-2-hydroxylpropyl-3-butyl ether-O-carboxymethyl chitosan (HBCC) and N-2-hydroxylpropyl-3-(2-ethylhexyl glycidyl ether)-O-carboxymethyl chitosan (H2ECC), have been synthesized by the homogeneous reaction. The molecular structures were characterized by FTIR, 1H NMR and 13C NMR. The optimum reaction condition was obtained based on the data of 1H NMR spectrum: reaction time of 4 h, reaction temperature of 80 °C and nepoxyn-NH2 of 3/1, respectively. The XRD patterns showed the crystallinity of HBCC and H2ECC decreased due to the introduction of hydrophobic segments. The thermostability of HBCC and H2ECC was improved for the formation of heat-resistant stereo-complexed structures. The intermolecular hydrophobic interaction hindered the intermolecular mobility by increasing glass transition temperature of ca. 10 °C. Both HBCC and H2ECC have very low critical aggregation concentrations (HBCC: 0.66-1.56 g/L, H2ECC: 0.57-1.07 g/L) and moderate aggregate particle size, which is advantageous for utilization as a drug carrier. The curcumin loaded HBCC and H2ECC aggregates showed nontoxicity, meanwhile, HBCC and H2ECC showed good antibacterial activity against Staphylococcus aureus and Escherichia coli. As a result of these two favorable properties, HBCC and H2ECC could be used as curcumin nanocarriers as well as antibacterial agents.
Collapse
Affiliation(s)
- Qun Liu
- Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Yan Li
- Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Xiaodeng Yang
- Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Shu Xing
- Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Congde Qiao
- Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Shoujuan Wang
- Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Chunlin Xu
- Laboratory of Natural Materials and Technology, Johan Gadolin Process Chemistry Centre, Abo Akademi University, Porthansgatan 3, 20500 Turku, Finland
| | - Tianduo Li
- Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| |
Collapse
|