Jiang K, Zhou X, He T. The synthesis of bacterial cellulose-chitosan zwitterionic hydrogels with pH responsiveness for drug release mechanism of the naproxen.
Int J Biol Macromol 2022;
209:814-824. [PMID:
35390402 DOI:
10.1016/j.ijbiomac.2022.03.216]
[Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 01/25/2023]
Abstract
The human digestive and absorption system has a specific pH environment, which makes it difficult to for accurate drug-release. Zwitterionic hydrogel, as a kind of drug carrier, is a feasible response strategy. In this work, a facile method was employed to prepare a series zwitterionic hydrogels composed of BC and chitosan. The composite gels could in-situ formed via Schiff's base reaction between partially oxidated bacterial cellulose and chitosan which exhibited relatively well mechanical properties. Besides, the rich amino and carboxyl groups endowed the hydrogels with excellent pH responsive performance. The minimum swelling rate of the hydrogels appeared at pH 3.5-pH 5.0. In lower or higher pH solutions, the swelling rate was greatly increased. The drug (naproxen) loading of the hydrogels was above 110 mg/g. The release amount of naproxen in the simulated gastric juice was less than intestinal fluid with the sustained release time exceeded 24 h. Through kinetic simulation analysis, the drug release behavior is in accordance with zero-order release model. Such kind of composite hydrogel is suggested to be a potential drug carrier for clinical therapy.
Collapse