1
|
van den Biggelaar RHGA, Hoefnagel MHN, Vandebriel RJ, Sloots A, Hendriksen CFM, van Eden W, Rutten VPMG, Jansen CA. Overcoming scientific barriers in the transition from in vivo to non-animal batch testing of human and veterinary vaccines. Expert Rev Vaccines 2021; 20:1221-1233. [PMID: 34550041 DOI: 10.1080/14760584.2021.1977628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Before release, vaccine batches are assessed for quality to evaluate whether they meet the product specifications. Vaccine batch tests, in particular of inactivated and toxoid vaccines, still largely rely on in vivo methods. Improved vaccine production processes, ethical concerns, and suboptimal performance of some in vivo tests have led to the development of in vitro alternatives. AREAS COVERED This review describes the scientific constraints that need to be overcome for replacement of in vivo batch tests, as well as potential solutions. Topics include the critical quality attributes of vaccines that require testing, the use of cell-based assays to mimic aspects of in vivo vaccine-induced immune responses, how difficulties with testing adjuvanted vaccines in vitro can be overcome, the use of altered batches to validate new in vitro test methods, and how cooperation between different stakeholders is key to moving the transition forward. EXPERT OPINION For safety testing, many in vitro alternatives are already available or at an advanced level of development. For potency testing, in vitro alternatives largely comprise immunochemical methods that assess several, but not all critical vaccine properties. One-to-one replacement by in vitro alternatives is not always possible and a combination of methods may be required.
Collapse
Affiliation(s)
- Robin H G A van den Biggelaar
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Rob J Vandebriel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Arjen Sloots
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | | | - Willem van Eden
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Victor P M G Rutten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Christine A Jansen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
2
|
Thiriard A, Raze D, Locht C. Development and Standardization of a High-Throughput Bordetella pertussis Growth-Inhibition Assay. Front Microbiol 2020; 11:777. [PMID: 32425912 PMCID: PMC7212404 DOI: 10.3389/fmicb.2020.00777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/31/2020] [Indexed: 12/24/2022] Open
Abstract
Bordetella pertussis, the main causative agent of whooping cough, is a reemerging pathogen, and recent vaccine-resistant strain outbreaks and emergence of macrolides-resistant strains in China raised new concerns for control of the disease. New vaccines and potentially new antibiotics are thus needed. B. pertussis is tedious to culture and requires several days of growth to count isolated colonies on agar-based media, making large-scale screening of new anti-B. pertussis compounds or functional evaluation of large sample sizes of immune sera difficult. Here, we developed a scalable, rapid, high-throughput luminescence-based Bordetella growth inhibition assay (BGIA) to quantify surviving bacteria after treatment with anti-B. pertussis compounds. A strong correlation between luminescence and colony-forming units (r2 = 0.9345, p < 0.0001) was found and the BGIA showed high sensitivity and reproducibility. We demonstrate here that the BGIA can be used to quantify resistance of B. pertussis to antibiotics, sensitivity to complement and to human serum in an easy-to-operate and fast manner. We have optimized the assay and tested the effects of different B. pertussis strains and growth conditions on serum and complement sensitivity. We also uncovered complement-independent antibody-mediated inhibition of B. pertussis growth. The BGIA can thus effectively be implemented for large-scale serum studies to further investigate anti-B. pertussis immune responses at a functional level, as well as for screening of B. pertussis strains for their resistance to antibiotics or complement, and for high-throughput screening of novel anti-B. pertussis compounds.
Collapse
Affiliation(s)
- Anaïs Thiriard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Dominique Raze
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
3
|
Mulder CK, Dong Y, Brugghe HF, Timmermans HAM, Tilstra W, Westdijk J, van Riet E, van Steeg H, Hoogerhout P, Eisel ULM. Immunization with Small Amyloid-β-derived Cyclopeptide Conjugates Diminishes Amyloid-β-Induced Neurodegeneration in Mice. J Alzheimers Dis 2017; 52:1111-23. [PMID: 27060957 PMCID: PMC4927839 DOI: 10.3233/jad-151136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background: Soluble oligomeric (misfolded) species of amyloid-β (Aβ) are the main mediators of toxicity in Alzheimer’s disease (AD). These oligomers subsequently form aggregates of insoluble fibrils that precipitate as extracellular and perivascular plaques in the brain. Active immunization against Aβ is a promising disease modifying strategy. However, eliciting an immune response against Aβ in general may interfere with its biological function and was shown to cause unwanted side-effects. Therefore, we have developed a novel experimental vaccine based on conformational neo-epitopes that are exposed in the misfolded oligomeric Aβ, inducing a specific antibody response. Objective: Here we investigate the protective effects of the experimental vaccine against oligomeric Aβ1-42-induced neuronal fiber loss in vivo. Methods: C57BL/6 mice were immunized or mock-immunized. Antibody responses were measured by enzyme-linked immunosorbent assay. Next, mice received a stereotactic injection of oligomeric Aβ1-42 into the nucleus basalis of Meynert (NBM) on one side of the brain (lesion side), and scrambled Aβ1-42 peptide in the contralateral NBM (control side). The densities of choline acetyltransferase-stained cholinergic fibers origination from the NBM were measured in the parietal neocortex postmortem. The percentage of fiber loss in the lesion side was determined relative to the control side of the brain. Results: Immunized responders (79%) showed 23% less cholinergic fiber loss (p = 0.01) relative to mock-immunized mice. Moreover, fiber loss in immunized responders correlated negatively with the measured antibody responses (R2 = 0.29, p = 0.02). Conclusion: These results may provide a lead towards a (prophylactic) vaccine to prevent or at least attenuate (early onset) AD symptoms.
Collapse
Affiliation(s)
- Cornelis K Mulder
- University of Groningen, Groningen Institute of Evolutionary Life Sciences, Groningen, The Netherlands
| | - Yun Dong
- University of Groningen, Groningen Institute of Evolutionary Life Sciences, Groningen, The Netherlands
| | - Humphrey F Brugghe
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Hans A M Timmermans
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Wichard Tilstra
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Janny Westdijk
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Elly van Riet
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Harry van Steeg
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Peter Hoogerhout
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Ulrich L M Eisel
- University of Groningen, Groningen Institute of Evolutionary Life Sciences, Groningen, The Netherlands
| |
Collapse
|
4
|
von Stosch M, Oliveria R, Peres J, de Azevedo SF. Hybrid modeling framework for process analytical technology: Application to Bordetella pertussis cultures. Biotechnol Prog 2011; 28:284-91. [DOI: 10.1002/btpr.706] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/13/2011] [Indexed: 11/09/2022]
|
5
|
Hoogerhout P, Kamphuis W, Brugghe HF, Sluijs JA, Timmermans HAM, Westdijk J, Zomer G, Boog CJP, Hol EM, van den Dobbelsteen GPJM. A cyclic undecamer peptide mimics a turn in folded Alzheimer amyloid β and elicits antibodies against oligomeric and fibrillar amyloid and plaques. PLoS One 2011; 6:e19110. [PMID: 21526148 PMCID: PMC3079747 DOI: 10.1371/journal.pone.0019110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/17/2011] [Indexed: 01/17/2023] Open
Abstract
The 39- to 42-residue amyloid β (Aβ) peptide is deposited in extracellular fibrillar plaques in the brain of patients suffering from Alzheimer's Disease (AD). Vaccination with these peptides seems to be a promising approach to reduce the plaque load but results in a dominant antibody response directed against the N-terminus. Antibodies against the N-terminus will capture Aβ immediately after normal physiological processing of the amyloid precursor protein and therefore will also reduce the levels of non-misfolded Aβ, which might have a physiologically relevant function. Therefore, we have targeted an immune response on a conformational neo-epitope in misfolded amyloid that is formed in advance of Aβ-aggregation. A tetanus toxoid-conjugate of the 11-meric cyclic peptide Aβ(22-28)-YNGK' elicited specific antibodies in Balb/c mice. These antibodies bound strongly to the homologous cyclic peptide-bovine serum albumin conjugate, but not to the homologous linear peptide-conjugate, as detected in vitro by enzyme-linked immunosorbent assay. The antibodies also bound--although more weakly--to Aβ(1-42) oligomers as well as fibrils in this assay. Finally, the antibodies recognized Aβ deposits in AD mouse and human brain tissue as established by immunohistological staining. We propose that the cyclic peptide conjugate might provide a lead towards a vaccine that could be administered before the onset of AD symptoms. Further investigation of this hypothesis requires immunization of transgenic AD model mice.
Collapse
Affiliation(s)
- Peter Hoogerhout
- Department of Vaccinology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Fast, antigen-saving multiplex immunoassay to determine levels and avidity of mouse serum antibodies to pertussis, diphtheria, and tetanus antigens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:595-603. [PMID: 21325488 DOI: 10.1128/cvi.00061-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To enhance preclinical evaluation of serological immune responses to the individual diphtheria, tetanus, and pertussis (DTP) components of DTP combination vaccines, a fast hexavalent bead-based method was developed. This multiplex immunoassay (MIA) can simultaneously determine levels of specific mouse serum IgG antibodies to P antigens P.69 pertactin (P.69 Prn), filamentous hemagglutinin (FHA), pertussis toxin (Ptx), and combined fimbria type 2 and 3 antigens (Fim2/3) and to diphtheria toxin (Dtx) and tetanus toxin (TT) in a single well. The mouse DTP MIA was shown to be specific and sensitive and to correlate with the six single in-house enzyme-linked immunosorbent assays (ELISAs) for all antigens. Moreover, the MIA was expanded to include avidity measurements of DTP antigens in a multivalent manner. The sensitivities of the mouse DTP avidity MIA per antigen were comparable to those of the six individual in-house avidity ELISAs, and good correlations between IgG concentrations obtained by both methods for all antigens tested were shown. The regular and avidity mouse DTP MIAs were reproducible, with good intra- and interassay coefficients of variability (CV) for all antigens. Finally, the usefulness of the assay was demonstrated in a longitudinal study of the development and avidity maturation of specific IgG antibodies in mice having received different DTP vaccines. We conclude that the hexaplex mouse DTP MIA is a specific, sensitive, and high-throughput alternative for ELISA to investigate the quantity and quality of serological responses to DTP antigens in preclinical vaccine studies.
Collapse
|
7
|
Stenger RM, Smits M, Kuipers B, van Gaans-van den Brink J, Poelen M, Boog CJP, van Els CACM. Impaired long-term maintenance and function of Bordetella pertussis specific B cell memory. Vaccine 2010; 28:6637-46. [PMID: 20637762 DOI: 10.1016/j.vaccine.2010.06.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/19/2010] [Accepted: 06/30/2010] [Indexed: 01/26/2023]
Abstract
Frequent occurrence of whooping cough in vaccinated populations suggests limited duration of vaccine-induced immunological memory. To investigate peculiarities in B cell memory specific for pertussis antigens P.69 pertactin (P.69 Prn), pertussis toxin (Ptx) and filamentous hemagglutinin (FHA), we monitored the induction and maintenance of specific serum IgG, long-lived bone marrow (BM)-derived plasma cell (PC) and splenic memory B cell (B(mem)) populations in a long-term preclinical vaccination model. Groups of BALB/c mice were primed and boosted (day 28) with a combined diphtheria (D), tetanus (T), acellular pertussis (aP) vaccine (DTaP) or whole cell pertussis (P) vaccine (DTP) and the immune status was followed over time. Levels of pertussis specific IgG, induced after primary and booster immunization, peaked at day 98 to decline thereafter. This was not paralleled by a decay, but rather an increase in BM resident specific PC, over time (>1 year). In contrast, splenic B(mem) peaked after booster immunization to decline till background levels. Late recall of immunological memory more than 1 year after primary and booster vaccination, however, did reveal a rapid proliferative response of pre-existing B(mem) but failed to evoke an anamnestic IgG response. A combination of waning P-antigen specific IgG production by PC and poor functions of the B(mem) compartment such as self-maintenance and anamnestic IgG responses could be a hallmark of waning pertussis immunity. A better understanding of the mechanisms of limited immunological memory to pertussis may help to improve current vaccines.
Collapse
Affiliation(s)
- Rachel M Stenger
- Laboratory of Vaccine Research, Netherlands Vaccine Institute, Bilthoven, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
8
|
Improving the cellular pertussis vaccine: increased potency and consistency. Vaccine 2007; 26:653-63. [PMID: 18155325 DOI: 10.1016/j.vaccine.2007.11.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 11/15/2007] [Accepted: 11/19/2007] [Indexed: 11/26/2022]
Abstract
Although Europe, Canada and the US have switched from cellular to acellular pertussis vaccines, most developing countries will continue to use the more cost effective cellular vaccine. Consistency of production however is the typical problem inherent to cellular vaccines. Optimising the production process of cellular pertussis bulk suspensions using product potency as a measure is not possible, since the mandatory animal test to measure potency has little discriminatory power. To circumvent this problem, this study focussed on measuring process parameters related to consistency and potency instead, even though the extent of those relationships could not be quantified. Critical evaluation and modification of individual process steps lead to 2 optimised production processes, NVP-96 and NVP-THIJS. These were compared to the original NVP production process in terms of antigen and biomass content, potency, toxicity and immunogenicity in mice. The batch to batch variation for both optimised products was clearly less than the original product for all parameters tested. The biomass content of the NVP-THIJS product was 15% lower than that of the NVP-96 product, while the immunogenicity in mice was twofold to threefold higher. The stability of the NVP-THIJS product remained higher than the NVP-96 product over a period of 2 years, while the decline of the potency of both suspensions was comparable.
Collapse
|
9
|
Nakamura MM, Liew SY, Cummings CA, Brinig MM, Dieterich C, Relman DA. Growth phase- and nutrient limitation-associated transcript abundance regulation in Bordetella pertussis. Infect Immun 2006; 74:5537-48. [PMID: 16988229 PMCID: PMC1594893 DOI: 10.1128/iai.00781-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To survive in a host environment, microbial pathogens must sense local conditions, including nutrient availability, and adjust their growth state and virulence functions accordingly. No comprehensive investigation of growth phase-related gene regulation in Bordetella pertussis has been reported previously. We characterized changes in genome-wide transcript abundance of B. pertussis as a function of growth phase and availability of glutamate, a key nutrient for this organism. Using a Bordetella DNA microarray, we discovered significant changes in transcript abundance for 861 array elements during the transition from log phase to stationary phase, including declining transcript levels of many virulence factor genes. The responses to glutamate depletion exhibited similarities to the responses induced by exit from log phase, including decreased virulence factor transcript levels. However, only 23% of array elements that showed at least a fourfold growth phase-associated difference in transcript abundance also exhibited glutamate depletion-associated changes, suggesting that nutrient limitation may be one of several interacting factors affecting gene regulation during stationary phase. Transcript abundance patterns of a Bvg+ phase-locked mutant revealed that the BvgAS two-component regulatory system is a key determinant of growth phase- and nutrient limitation-related transcriptional control. Several adhesin genes exhibited lower transcript abundance during stationary phase and under glutamate restriction conditions. The predicted bacterial phenotype was confirmed: adherence to bronchoepithelial cells decreased 3.3- and 4.4-fold at stationary phase and with glutamate deprivation, respectively. Growth phase and nutrient availability may serve as cues by which B. pertussis regulates virulence according to the stage of infection or the location within the human airway.
Collapse
Affiliation(s)
- Mari M Nakamura
- Department of Pediatrics/Infectious Diseases, Stanford University, Stanford, California, USA
| | | | | | | | | | | |
Collapse
|
10
|
Soons ZITA, Voogt JA, van Straten G, van Boxtel AJB. Constant specific growth rate in fed-batch cultivation of Bordetella pertussis using adaptive control. J Biotechnol 2006; 125:252-68. [PMID: 16621094 DOI: 10.1016/j.jbiotec.2006.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 02/08/2006] [Accepted: 03/03/2006] [Indexed: 11/21/2022]
Abstract
Monitoring and control of production processes for biopharmaceuticals have become standard requirements to support consistency and quality. In this paper, a constant specific growth rate in fed-batch cultivation of Bordetella pertussis is achieved by a newly designed specific growth rate controller. The performance of standard control methods is limited because of the time-varying characteristics due to the exponentially increasing biomass and volume. To cope with the changing dynamics, a stable model reference adaptive controller is designed which adapts the controller settings as volume and biomass increase. An important asset of the design is that dissolved oxygen is the only required online measurement. An original design without considering the dissolved oxygen dynamics resulted experimentally in oscillatory behaviour. Hence, in contrast to common believes, it is essential to include dissolved oxygen dynamics. The robustness of this novel design was tested in simulation. The validity of the design was confirmed by laboratory experiments for small-scale production of B. pertussis. The controller was able to regulate the specific growth rate at the desired set point, even during a long fed-batch cultivation time with exponentially increasing demands for substrates and oxygen.
Collapse
Affiliation(s)
- Z I T A Soons
- Wageningen University, Agrotechnology and Food Sciences, Systems and Control Group, 6700 AA Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
11
|
Thalen M, Venema M, van den IJssel J, Berwald L, Beuvery C, Martens D, Tramper J. Effect of relevant culture parameters on Pertussis Toxin expression by Bordetella pertussis. Biologicals 2006; 34:213-20. [PMID: 16497513 DOI: 10.1016/j.biologicals.2005.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 11/04/2005] [Accepted: 11/11/2005] [Indexed: 11/25/2022] Open
Abstract
Whooping cough vaccines are produced using different ranges of cultivation conditions and medium compositions, which are known to influence growth rate, virulence factor production and degradation, as well as the virulence factors' association to the cell. This study quantifies the impact of individual parameters on Pertussis Toxin (PT) production, using an optimized chemically defined medium as starting point, rather than a complex medium. A number of chemicals that are identified affect both growth rate and virulence factor production, which occur at similar levels in various commonly used production media. Also, degradation by proteolytic activity is shown to be an important parameter to monitor, since it significantly affects the PT yield. Low sodium concentrations, i.e. 50-75 mM rather than the conventional 100-140 mM, significantly increase the growth rate of the organism, the final optical density, as well as the association of PT to the cells. The absolute amount of biomass produced measured as dry weight, is similar for all sodium concentrations tested, contrary to earlier work. While it is known that high iron concentrations inhibit virulence factor production, it is shown here that iron-limited growth results in very high specific PT production. This finding may be used to produce a whole-cell vaccine with little biomass per dose, reducing whole-cell vaccine toxicity. The Bordetella pertussis strain 509 used here produces 30% more PT at 34 than at 37 degrees C, a commonly used cultivation temperature. The data in this study show that existing production processes for cellular and acellular vaccines can in principle be optimised considerably by taking simple measures.
Collapse
Affiliation(s)
- Marcel Thalen
- Synco Bio-Partners, Paasheuvelweg 30, 1105 BJ Amsterdam ZO, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
12
|
Arigita C, Kersten GFA, Hazendonk T, Hennink WE, Crommelin DJA, Jiskoot W. Restored functional immunogenicity of purified meningococcal PorA by incorporation into liposomes. Vaccine 2003; 21:950-60. [PMID: 12547608 DOI: 10.1016/s0264-410x(02)00546-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The impact of the conformation, lipooligosaccharide (LOS)-depletion and the presentation form of outer membrane protein PorA from Neisseria meningitidis (PorA) subtype P1.7-2,4 on the immune response in mice was studied. Native PorA was purified from outer membrane vesicles (OMVs) derived from meningococci and reconstituted into liposomes. The conformation of PorA after purification from OMVs and reconstitution in liposomes was monitored by use of electrophoretic and spectroscopic techniques and compared with the conformation of PorA in outer membrane complexes (OMCs) and heat-denatured PorA. The antigenicity of the PorA formulations was measured by ELISA by using a bactericidal anti-P1.4 monoclonal antibody. Immunogenicity was determined in Balb/c mice. PorA-specific IgG, isotype distribution and bactericidal activity were measured after subcutaneous immunization. In all formulations except in heat-denatured OMVs, PorA was present as trimers. The lipooligosaccharide (LOS) content was reduced by 96% in the purified protein with respect to the original OMVs. The antigenicity of purified PorA (i.e. ELISA response) was substantially higher as compared to PorA in liposomes, OMVs or OMCs. The results of the immunogenicity studies showed that all formulations were able to induce comparable IgG titers. However, whereas the antibodies raised by OMVs were bactericidal, the antibodies elicited by immunization with purified PorA were unable to kill meningococci. Remarkably, the ability to induce bactericidal antibodies was fully recovered by incorporation of the purified PorA into liposomes, in the absence of other adjuvants, as compared to LOS-containing OMVs.
Collapse
Affiliation(s)
- Carmen Arigita
- Department of Pharmaceutics, Faculty of Pharmacy, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, PO Box 80082, 3508 TB, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|