1
|
Ghebosu RE, Hui L, Wolfram J. Increasing the biomolecular relevance of cell culture practice. J Biomed Sci 2025; 32:3. [PMID: 39748368 PMCID: PMC11697962 DOI: 10.1186/s12929-024-01095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/09/2024] [Indexed: 01/04/2025] Open
Abstract
The biomolecular relevance of medium supplements is a key challenge affecting cell culture practice. The biomolecular composition of commonly used supplements differs from that of a physiological environment, affecting the validity of conclusions drawn from in vitro studies. This article discusses the advantages and disadvantages of common supplements, including context-dependent considerations for supplement selection to improve biomolecular relevance, especially in nanomedicine and extracellular vesicle research.
Collapse
Affiliation(s)
- Raluca E Ghebosu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Lawrence Hui
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia.
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
2
|
Nasso R, D'Errico A, Motti ML, Masullo M, Arcone R. Dietary Protein and Physical Exercise for the Treatment of Sarcopenia. Clin Pract 2024; 14:1451-1467. [PMID: 39194921 DOI: 10.3390/clinpract14040117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Sarcopenia is a multifactorial age-related disorder that causes a decrease in muscle mass, strength, and function, leading to alteration of movement, risk of falls, and hospitalization. This article aims to review recent findings on the factors underlying sarcopenia and the strategies required to delay and counteract its symptoms. We focus on molecular factors linked to ageing, on the role of low-grade chronic and acute inflammatory conditions such as cancer, which contributes to the onset of sarcopenia, and on the clinical criteria for its diagnosis. The use of drugs against sarcopenia is still subject to debate, and the suggested approaches to restore muscle health are based on adequate dietary protein intake and physical exercise. We also highlight the difference in the amount and quality of amino acids within animal- and plant-based diets, as studies have often shown varying results regarding their effect on sarcopenia in elderly people. In addition, many studies have reported that non-pharmacological approaches, such as an optimization of dietary protein intake and training programs based on resistance exercise, can be effective in preventing and delaying sarcopenia. These approaches not only improve the maintenance of skeletal muscle function, but also reduce health care costs and improve life expectancy and quality in elderly people.
Collapse
Affiliation(s)
- Rosarita Nasso
- Department of Medical, Movement and Well-Being Sciences (DiSMMeB), University of Naples "Parthenope", Via Medina 40, 80133 Napoli, Italy
| | - Antonio D'Errico
- Department of Medical, Movement and Well-Being Sciences (DiSMMeB), University of Naples "Parthenope", Via Medina 40, 80133 Napoli, Italy
| | - Maria Letizia Motti
- Department of Medical, Movement and Well-Being Sciences (DiSMMeB), University of Naples "Parthenope", Via Medina 40, 80133 Napoli, Italy
| | - Mariorosario Masullo
- Department of Medical, Movement and Well-Being Sciences (DiSMMeB), University of Naples "Parthenope", Via Medina 40, 80133 Napoli, Italy
| | - Rosaria Arcone
- Department of Medical, Movement and Well-Being Sciences (DiSMMeB), University of Naples "Parthenope", Via Medina 40, 80133 Napoli, Italy
| |
Collapse
|
3
|
Di Lollo V, Canciello A, Peserico A, Orsini M, Russo V, Cerveró-Varona A, Dufrusine B, El Khatib M, Curini V, Mauro A, Berardinelli P, Tournier C, Ancora M, Cammà C, Dainese E, Mincarelli LF, Barboni B. Unveiling the immunomodulatory shift: Epithelial-mesenchymal transition Alters immune mechanisms of amniotic epithelial cells. iScience 2023; 26:107582. [PMID: 37680464 PMCID: PMC10481295 DOI: 10.1016/j.isci.2023.107582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/01/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) changes cell phenotype by affecting immune properties of amniotic epithelial cells (AECs). The present study shows how the response to lipopolysaccharide of cells collected pre- (eAECs) and post-EMT (mAECs) induces changes in their transcriptomics profile. In fact, eAECs mainly upregulate genes involved in antigen-presenting response, whereas mAECs over-express soluble inflammatory mediator transcripts. Consistently, network analysis identifies CIITA and Nrf2 as main drivers of eAECs and mAECs immune response, respectively. As a consequence, the depletion of CIITA and Nrf2 impairs the ability of eAECs and mAECs to inhibit lymphocyte proliferation or macrophage-dependent IL-6 release, thus confirming their involvement in regulating immune response. Deciphering the mechanisms controlling the immune function of AECs pre- and post-EMT represents a step forward in understanding key physiological events wherein these cells are involved (pregnancy and labor). Moreover, controlling the immunomodulatory properties of eAECs and mAECs may be essential in developing potential strategies for regenerative medicine applications.
Collapse
Affiliation(s)
- Valeria Di Lollo
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Angelo Canciello
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Alessia Peserico
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Massimiliano Orsini
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
- Istituto Zooprofilattico Sperimentale delle Venezie, Department of Microbiology, Viale dell’Università 10, 35020 Legnaro (PD), Italy
| | - Valentina Russo
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Adrián Cerveró-Varona
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Beatrice Dufrusine
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Mohammad El Khatib
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Valentina Curini
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Annunziata Mauro
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Paolo Berardinelli
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Cathy Tournier
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Massimo Ancora
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Cesare Cammà
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Enrico Dainese
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Luana Fiorella Mincarelli
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens: Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Barbara Barboni
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
4
|
Balakrishnan R, Garcia PA, Veluthakal R, Huss JM, Hoolachan JM, Thurmond DC. Toward Ameliorating Insulin Resistance: Targeting a Novel PAK1 Signaling Pathway Required for Skeletal Muscle Mitochondrial Function. Antioxidants (Basel) 2023; 12:1658. [PMID: 37759961 PMCID: PMC10525748 DOI: 10.3390/antiox12091658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
The p21-activated kinase 1 (PAK1) is required for insulin-stimulated glucose uptake in skeletal muscle cells. However, whether PAK1 regulates skeletal muscle mitochondrial function, which is a central determinant of insulin sensitivity, is unknown. Here, the effect of modulating PAK1 levels (knockdown via siRNA, overexpression via adenoviral transduction, and/or inhibition of activation via IPA3) on mitochondrial function was assessed in normal and/or insulin-resistant rat L6.GLUT4myc and human muscle (LHCN-M2) myotubes. Human type 2 diabetes (T2D) and non-diabetic (ND) skeletal muscle samples were also used for validation of the identified signaling elements. PAK1 depletion in myotubes decreased mitochondrial copy number, respiration, altered mitochondrial structure, downregulated PGC1α (a core regulator of mitochondrial biogenesis and oxidative metabolism) and PGC1α activators, p38 mitogen-activated protein kinase (p38MAPK) and activating transcription factor 2 (ATF2). PAK1 enrichment in insulin-resistant myotubes improved mitochondrial function and rescued PGC1α expression levels. Activated PAK1 was localized to the cytoplasm, and PAK1 enrichment concurrent with p38MAPK inhibition did not increase PGC1α levels. PAK1 inhibition and enrichment also modified nuclear phosphorylated-ATF2 levels. T2D human samples showed a deficit for PGC1α, and PAK1 depletion in LHCN-M2 cells led to reduced mitochondrial respiration. Overall, the results suggest that PAK1 regulates muscle mitochondrial function upstream of the p38MAPK/ATF2/PGC1α-axis pathway.
Collapse
Affiliation(s)
- Rekha Balakrishnan
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E Duarte Road, Duarte, CA 91010, USA; (R.B.); (R.V.)
| | - Pablo A. Garcia
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E Duarte Road, Duarte, CA 91010, USA; (R.B.); (R.V.)
| | - Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E Duarte Road, Duarte, CA 91010, USA; (R.B.); (R.V.)
| | - Janice M. Huss
- School of Medicine, Washington University, 660 S Euclid Ave, St. Louis, MO 63110, USA;
| | - Joseph M. Hoolachan
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E Duarte Road, Duarte, CA 91010, USA; (R.B.); (R.V.)
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E Duarte Road, Duarte, CA 91010, USA; (R.B.); (R.V.)
| |
Collapse
|
5
|
Allen SL, Elliott BT, Carson BP, Breen L. Improving physiological relevance of cell culture: the possibilities, considerations, and future directions of the ex vivo coculture model. Am J Physiol Cell Physiol 2023; 324:C420-C427. [PMID: 36571441 PMCID: PMC9902212 DOI: 10.1152/ajpcell.00473.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/27/2022]
Abstract
In vitro models provide an important platform for the investigation of cellular growth and atrophy to inform, or extend mechanistic insights from, logistically challenging in vivo trials. Although these models allow for the identification of candidate mechanistic pathways, many models involve supraphysiological dosages, nonphysiological conditions, or experimental changes relating to individual proteins or receptors, all of which limit translation to human trials. To overcome these drawbacks, the use of ex vivo human plasma and serum has been used in cellular models to investigate changes in myotube hypertrophy, cellular protein synthesis, anabolic and catabolic markers in response to differing age, disease states, and nutrient status. However, there are currently no concurrent guidelines outlining the optimal methodology for this model. This review discusses the key methodological considerations surrounding the use of ex vivo plasma and serum with a focus in application to skeletal muscle cell lines (i.e., C2C12, L6, and LHCN-M2) and human primary skeletal muscle cells (HSMCs) as a means to investigate molecular signaling in models of atrophy and hypertrophy, alongside future directions.
Collapse
Affiliation(s)
- Sophie L Allen
- School of Sport Exercise and Rehabilitation Sciences, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom
| | - Bradley T Elliott
- Translational Physiology Research Group, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Brian P Carson
- Department of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Leigh Breen
- School of Sport Exercise and Rehabilitation Sciences, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom
- MRC-Versus Arthritis Centre for Musculoskeletal Aging Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Turner MC, Brett R, Saini A, Stewart CE, Renshaw D. Serum concentration impacts myosin heavy chain expression but not cellular respiration in human LHCN-M2 myoblasts undergoing differentiation. Exp Physiol 2023; 108:169-176. [PMID: 36621799 PMCID: PMC10103887 DOI: 10.1113/ep090564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023]
Abstract
NEW FINDINGS What is the central question of this study? Does the concentration of human serum affect skeletal muscle differentiation and cellular respiration of LHCN-M2 myoblasts? What is the main finding and its importance? The concentration of serum used to differentiate LHCN-M2 skeletal muscle cells impacts the coverage of myosin heavy chain, a marker of terminally differentiated myotubes. Normalisation of mitochondrial function data to total protein negates the differences observed in absolute values, which differ as a result of increased protein content when differentiation occurs with increasing concentration of serum. ABSTRACT The human LHCN-M2 myoblast cell line has the potential to be used to investigate skeletal muscle development and metabolism. Experiments were performed to determine how different concentrations of human serum affect myogenic differentiation and mitochondrial function of LHCN-M2 cells. LHCN-M2 myoblasts were differentiated in serum-free medium, 0.5% or 2% human serum for 5 and 10 days. Myotube formation was assessed by immunofluorescence staining of myosin heavy chain (MHC) and molecularly by mRNA expression of Myogenic differentiation 1 (MYOD1) and Myoregulatory factor 5 (MYF5). Following differentiation, mitochondrial function was assessed to establish the impact of serum concentration on mitochondrial function. Time in differentiation increased mRNA expression of MYOD1 (day 5, 6.58 ± 1.33-fold; and day 10, 4.28 ± 1.71-fold) (P = 0.012), while suppressing the expression of MYF5 (day 5, 0.21 ± 0.11-fold; and day 10, 0.06 ± 0.03-fold) (P = 0.001), regardless of the serum concentration. Higher serum concentrations increased MHC area (serum free, 11.92 ± 0.85%; 0.5%, 23.10 ± 5.82%; 2%, 43.94 ± 8.92%) (P = 0.001). Absolute basal respiration approached significance (P = 0.06) with significant differences in baseline oxygen consumption rate (P = 0.025) and proton leak (P = 0.006) when differentiated in 2% human serum, but these were not different between conditions when normalised to total protein. Our findings show that increasing concentrations of serum of LHCN-M2 skeletal muscle cells into multinucleated myotubes, but this does not affect relative mitochondrial function.
Collapse
Affiliation(s)
- Mark C. Turner
- Centre for Sport, Exercise and Life SciencesInstitute for Health and WellbeingCoventry UniversityCoventryUK
| | - Ryan Brett
- Centre for Sport, Exercise and Life SciencesInstitute for Health and WellbeingCoventry UniversityCoventryUK
| | - Amarjit Saini
- Division of Clinical PhysiologyDepartment of Laboratory MedicineKarolinska, InstitutetKarolinska University Hospital HuddingeStockholmSweden
| | - Claire E. Stewart
- Research Institute of Sport and Exercise ScienceLife Sciences BuildingLiverpool John Moores UniversityLiverpoolUK
| | - Derek Renshaw
- Centre for Sport, Exercise and Life SciencesInstitute for Health and WellbeingCoventry UniversityCoventryUK
| |
Collapse
|
7
|
Orrù S, Imperlini E, Vitucci D, Caterino M, Mandola A, Randers MB, Schmidt JF, Hagman M, Andersen TR, Krustrup P, Ruoppolo M, Buono P, Mancini A. Insight into the Molecular Signature of Skeletal Muscle Characterizing Lifelong Football Players. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15835. [PMID: 36497910 PMCID: PMC9740844 DOI: 10.3390/ijerph192315835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Aging and sedentary behavior are independent risk factors for non-communicable diseases. An active lifestyle and structured physical activity are positively associated with a healthier quality of life in the elderly. Here, we explored the proteomic/metabolomic muscular signature induced by lifelong football training associated with successful aging. METHODS The study was performed on nine lifelong football players (67.3 ± 2.8 yrs) and nine aged-matched untrained subjects. We performed a proteomic/metabolomic approach on V. lateralis muscle biopsies; the obtained data were analyzed by means of different bioinformatic tools. RESULTS Our results indicated that lifelong football training is able to enhance the muscles' oxidative capacity in the elderly by promoting fatty acids as preferential energetic substrates and hence determining a healthier body composition and metabolic profile; furthermore, we showed that the total polyamine content is higher in lifelong football players' muscle, enforcing the involvement of polyamines in muscle growth and hypertrophy. CONCLUSIONS Lifelong football training, as a structured physical activity, significantly influences the expression of the proteins and metabolites involved in oxidative metabolism and muscle hypertrophy associated with successful aging.
Collapse
Affiliation(s)
- Stefania Orrù
- Department of Movement Sciences and Wellness, University Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| | - Esther Imperlini
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | - Daniela Vitucci
- Department of Movement Sciences and Wellness, University Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| | - Marianna Caterino
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Annalisa Mandola
- Department of Movement Sciences and Wellness, University Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| | - Morten Bredsgaard Randers
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, 5230 Odense, Denmark
| | - Jakob Friis Schmidt
- Section for Anaesthesia for ENT, Head Neck & Maxillofacial Surgery and Ortopedi, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Marie Hagman
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, 5230 Odense, Denmark
| | - Thomas Rostgaard Andersen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, 5230 Odense, Denmark
| | - Peter Krustrup
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, 5230 Odense, Denmark
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter EX1 2LU, UK
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, 5230 Odense, Denmark
| | - Margherita Ruoppolo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Pasqualina Buono
- Department of Movement Sciences and Wellness, University Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| | - Annamaria Mancini
- Department of Movement Sciences and Wellness, University Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| |
Collapse
|
8
|
Effects of Different Types of Chronic Training on Bioenergetic Profile and Reactive Oxygen Species Production in LHCN-M2 Human Myoblast Cells. Int J Mol Sci 2022; 23:ijms23147491. [PMID: 35886840 PMCID: PMC9320149 DOI: 10.3390/ijms23147491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Human skeletal muscle contains three different types of fibers, each with a different metabolism. Exercise differently contributes to differentiation and metabolism in human myoblast cells. The aims of the present study were to investigate the effects of different types of chronic training on the human LHCN-M2 myoblast cell bioenergetic profile during differentiation in real time and on the ROS overproduction consequent to H2O2 injury. We demonstrated that exercise differently affects the myoblast bioenergetics: aerobic exercise induced the most efficient glycolytic and oxidative capacity and proton leak reduction compared to untrained or anaerobic trained sera-treated cells. Similarly, ROS overproduction after H2O2 stress was lower in cells treated with differently trained sera compared to untrained sera, indicating a cytoprotective effect of training on the reduction of oxidative stress, and thus the promotion of longevity. In conclusion, for the first time, this study has provided knowledge regarding the modifications induced by different types of chronic training on human myoblast cell bioenergetics during the differentiation process in real time, and on ROS overproduction due to stress, with positive implications in terms of longevity.
Collapse
|
9
|
Regular football training down-regulates miR-1303 muscle expression in veterans. Eur J Appl Physiol 2021; 121:2903-2912. [PMID: 34212217 PMCID: PMC8416864 DOI: 10.1007/s00421-021-04733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/03/2021] [Indexed: 11/02/2022]
Abstract
PURPOSE Regular exercise affects the expression of several genes, proteins and microRNAs (miRNAs) in time- and intensity-dependent manner promoting longevity. We previously identified from GeneChip Array analysis several differentially expressed genes and miRNAs in muscle from veteran football players (VPG) compared to active untrained elderly subjects (CG); here we focussed on miRNA-1303 (miR-1303). The aims of the present research were: to analyse the effects of football training on the expression of miR-1303 and to identify its putative target involved in the longevity pathways in skeletal muscle from VPG compared to CG. METHODS RNA samples from 12 VPG and 12 CG muscle biopsies were used to validate miR-1303 expression. Crossing four different bioinformatic algorithms, we identified 16 putative targets of miR-1303; from these, BAG-2, KLHL7 and KBTBD6 were chosen for further validation by Western blot analysis in LHCN-M2 human myoblasts transiently transfected with miR-1303. RESULTS Football training down-regulates miR-1303 expression in muscle from VPG compared to CG and the expression of BAG-2, a chaperon protein involved in the autophagy pathway, inversely correlated to overexpression of miR-1303 in a time-dependent manner, indicating that it is a miR-1303 potential target. CONCLUSIONS This is the first report, to our knowledge, describing miR-1303 regulation in skeletal muscle by football training and the identification of a target protein, BAG-2, involved in the autophagy pathway. This result contributes to the enlargement of knowledge on the molecular mechanisms linking football training, autophagy and longevity.
Collapse
|
10
|
Catteau M, Gouzi F, Blervaque L, Passerieux E, Blaquière M, Ayoub B, Bughin F, Mercier J, Hayot M, Pomiès P. Effects of a human microenvironment on the differentiation of human myoblasts. Biochem Biophys Res Commun 2020; 525:968-973. [DOI: 10.1016/j.bbrc.2020.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 11/29/2022]
|
11
|
Canciello A, Teti G, Mazzotti E, Falconi M, Russo V, Giordano A, Barboni B. Progesterone Prolongs Viability and Anti-inflammatory Functions of Explanted Preterm Ovine Amniotic Membrane. Front Bioeng Biotechnol 2020; 8:135. [PMID: 32258004 PMCID: PMC7089934 DOI: 10.3389/fbioe.2020.00135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Amniotic membrane (AM) is considered an important medical device with many applications in regenerative medicine. The therapeutic properties of AM are due to its resistant extracellular matrix and to the large number of bioactive molecules released by its cells. An important goal that still remains to be achieved is the identification of cultural and preservation protocols able to maintain in time the membrane morphology and the biological properties of its cells. Recently, our research group demonstrated that progesterone (P4) is crucial in preventing the loss of the epithelial phenotype of amniotic epithelial cells in vitro. Followed by this premise, it has been evaluated whether P4 may also affect AM properties in a short-term culture. Results confirm that P4 preserves AM integrity and architecture with respect to untreated AM, which showed alterations in morphology. Transmission electron microscopy (TEM) analyses demonstrate that P4 also maintains unaltered cell-cell junctions, nuclear status, and intracellular organelles. On the contrary, an untreated AM experienced an extensive cell death and a strong reduction of immunomodulatory properties, measured in terms of anti-inflammatory cytokine expression and secretion. Overall, these results could open to new strategies to ameliorate the protocols for cryopreservation and tissue culture, which represent preliminary stages of AM application in regenerative medicine.
Collapse
Affiliation(s)
- Angelo Canciello
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.,Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States
| | - Gabriella Teti
- Department for Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Eleonora Mazzotti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mirella Falconi
- Department for Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Antonio Giordano
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States.,Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
12
|
Di Lollo V, Canciello A, Orsini M, Bernabò N, Ancora M, Di Federico M, Curini V, Mattioli M, Russo V, Mauro A, Cammà C, Barboni B. Transcriptomic and computational analysis identified LPA metabolism, KLHL14 and KCNE3 as novel regulators of Epithelial-Mesenchymal Transition. Sci Rep 2020; 10:4180. [PMID: 32144311 PMCID: PMC7060278 DOI: 10.1038/s41598-020-61017-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex biological program between physiology and pathology. Here, amniotic epithelial cells (AEC) were used as in vitro model of transiently inducible EMT in order to evaluate the transcriptional insights underlying this process. Therefore, RNA-seq was used to identify the differentially expressed genes and enrichment analyses were carried out to assess the intracellular pathways involved. As a result, molecules exclusively expressed in AEC that experienced EMT (GSTA1-1 and GSTM3) or when this process is inhibited (KLHL14 and KCNE3) were identified. Lastly, the network theory was used to obtain a computational model able to recognize putative controller genes involved in the induction and in the prevention of EMT. The results suggested an opposite role of lysophosphatidic acid (LPA) synthesis and degradation enzymes in the regulation of EMT process. In conclusion, these molecules may represent novel EMT regulators and also targets for developing new therapeutic strategies.
Collapse
Affiliation(s)
- V Di Lollo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy. .,Molecular biology and genomic Unit, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy.
| | - A Canciello
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
| | - M Orsini
- Molecular biology and genomic Unit, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - N Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - M Ancora
- Molecular biology and genomic Unit, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - M Di Federico
- Molecular biology and genomic Unit, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - V Curini
- Molecular biology and genomic Unit, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - M Mattioli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - V Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - A Mauro
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - C Cammà
- Molecular biology and genomic Unit, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - B Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
13
|
Mancini A, Vitucci D, Randers MB, Schmidt JF, Hagman M, Andersen TR, Imperlini E, Mandola A, Orrù S, Krustrup P, Buono P. Lifelong Football Training: Effects on Autophagy and Healthy Longevity Promotion. Front Physiol 2019; 10:132. [PMID: 30837897 PMCID: PMC6390296 DOI: 10.3389/fphys.2019.00132] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/04/2019] [Indexed: 12/30/2022] Open
Abstract
Aging is a physiological process characterized by a progressive decline of biological functions and an increase in destructive processes in cells and organs. Physical activity and exercise positively affects the expression of skeletal muscle markers involved in longevity pathways. Recently, a new mechanism, autophagy, was introduced to the adaptations induced by acute and chronic exercise as responsible of positive metabolic modification and health-longevity promotion. However, the molecular mechanisms regulating autophagy in response to physical activity and exercise are sparsely described. We investigated the long-term adaptations resulting from lifelong recreational football training on the expression of skeletal muscle markers involved in autophagy signaling. We demonstrated that lifelong football training increased the expression of messengers: RAD23A, HSPB6, RAB1B, TRAP1, SIRT2, and HSBPB1, involved in the auto-lysosomal and proteasome-mediated protein degradation machinery; of RPL1, RPL4, RPL36, MRLP37, involved in cellular growth and differentiation processes; of the Bcl-2, HSP70, HSP90, PSMD13, and of the ATG5-ATG12 protein complex, involved in proteasome promotion and autophagy processes in muscle samples from lifelong trained subjects compared to age-matched untrained controls. In conclusion, our results indicated that lifelong football training positively influence exercise-induced autophagy processes and protein quality control in skeletal muscle, thus promoting healthy aging.
Collapse
Affiliation(s)
- Annamaria Mancini
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, Naples, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | | | - Morten Bredsgaard Randers
- Department of Sports and Clinical Biomechanics, Sport and Health Sciences Cluster, University of Southern Denmark, Odense, Denmark
| | - Jakob Friis Schmidt
- Copenhagen Centre for Team Sport and Health, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Marie Hagman
- Department of Sports and Clinical Biomechanics, Sport and Health Sciences Cluster, University of Southern Denmark, Odense, Denmark
| | - Thomas Rostgaard Andersen
- Department of Sports and Clinical Biomechanics, Sport and Health Sciences Cluster, University of Southern Denmark, Odense, Denmark
| | | | - Annalisa Mandola
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, Naples, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Stefania Orrù
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, Naples, Italy.,IRCCS SDN, Naples, Italy
| | - Peter Krustrup
- Department of Sports and Clinical Biomechanics, Sport and Health Sciences Cluster, University of Southern Denmark, Odense, Denmark.,Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Pasqualina Buono
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, Naples, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy.,IRCCS SDN, Naples, Italy
| |
Collapse
|