1
|
Ward J, Simner J, Simpson I, Rae C, del Rio M, Eccles JA, Racey C. Synesthesia is linked to large and extensive differences in brain structure and function as determined by whole-brain biomarkers derived from the HCP (Human Connectome Project) cortical parcellation approach. Cereb Cortex 2024; 34:bhae446. [PMID: 39548352 PMCID: PMC11567774 DOI: 10.1093/cercor/bhae446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
There is considerable interest in understanding the developmental origins and health implications of individual differences in brain structure and function. In this pre-registered study we demonstrate that a hidden subgroup within the general population-people with synesthesia (e.g. who "hear" colors)-show a distinctive behavioral phenotype and wide-ranging differences in brain structure and function. We assess the performance of 13 different brain-based biomarkers (structural and functional MRI) for classifying synesthetes against general population samples, using machine learning models. The features in these models were derived from subject-specific parcellations of the cortex using the Human Connectome Project approach. All biomarkers performed above chance with intracortical myelin being a particularly strong predictor that has not been implicated in synesthesia before. Resting state data show widespread changes in the functional connectome (including less hub-based connectivity). These brain-based individual differences within the neurotypical population can be as large as those that differentiate neurotypical from clinical brain states.
Collapse
Affiliation(s)
- Jamie Ward
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, BN1 9QH, United Kingdom
| | - Julia Simner
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, BN1 9QH, United Kingdom
| | - Ivor Simpson
- School of Engineering and Informatics, University of Sussex, Brighton, BN1 9QH, United Kingdom
| | - Charlotte Rae
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, BN1 9QH, United Kingdom
| | - Magda del Rio
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, BN1 9QH, United Kingdom
| | - Jessica A Eccles
- Department of Clinical Neuroscience, Brighton and Sussex Medical School (BSMS), Brighton, BN1 9QH, United Kingdom
- Neurodevelopmental Service, Sussex Partnership NHS Foundation Trust, Worthing, BN13 3EP, United Kingdom
| | - Chris Racey
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, BN1 9QH, United Kingdom
| |
Collapse
|
2
|
Lin IF, Kondo HM. Brain circuits in autonomous sensory meridian response and related phenomena. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230252. [PMID: 39005041 PMCID: PMC11444242 DOI: 10.1098/rstb.2023.0252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/19/2024] [Indexed: 07/16/2024] Open
Abstract
Autonomous sensory meridian response (ASMR) is characterized by a tingling sensation with a feeling of relaxation and a state of flow. We explore the neural underpinnings and comorbidities of ASMR and related phenomena with altered sensory processing. These phenomena include sensory processing sensitivity (SPS), synaesthesia, Alice in Wonderland syndrome and misophonia. The objective of this article is to uncover the shared neural substrates and distinctive features of ASMR and its counterparts. ASMR, SPS and misophonia exhibit common activations in the brain regions associated with social cognition, emotion regulation and empathy. Nevertheless, ASMR responders display reduced connectivity in the salience network (SN), while individuals with SPS exhibit increased connectivity in the SN. Furthermore, ASMR induces relaxation and temporarily reduces symptoms of depression, in contrast to SPS and misophonia, which are linked to depression. These observations lead us to propose that ASMR is a distinct phenomenon owing to its attention dispatch mechanism and its connection with emotion regulation. We suggest that increased activations in the insula, along with reduction in connectivity within the salience and default mode networks in ASMR responders, may account for their experiences of relaxation and flow states. This article is part of the theme issue 'Sensing and feeling: an integrative approach to sensory processing and emotional experience'.
Collapse
Affiliation(s)
- I-Fan Lin
- Department of Occupational Medicine and Clinical Toxicology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Hirohito M Kondo
- School of Psychology, Chukyo University, Nagoya, Aichi 466-8666, Japan
| |
Collapse
|
3
|
Reeder RR, Sala G, van Leeuwen TM. A novel model of divergent predictive perception. Neurosci Conscious 2024; 2024:niae006. [PMID: 38348335 PMCID: PMC10860603 DOI: 10.1093/nc/niae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Predictive processing theories state that our subjective experience of reality is shaped by a balance of expectations based on previous knowledge about the world (i.e. priors) and confidence in sensory input from the environment. Divergent experiences (e.g. hallucinations and synaesthesia) are likely to occur when there is an imbalance between one's reliance on priors and sensory input. In a novel theoretical model, inspired by both predictive processing and psychological principles, we propose that predictable divergent experiences are associated with natural or environmentally induced prior/sensory imbalances: inappropriately strong or inflexible (i.e. maladaptive) high-level priors (beliefs) combined with low sensory confidence can result in reality discrimination issues, a characteristic of psychosis; maladaptive low-level priors (sensory expectations) combined with high sensory confidence can result in atypical sensory sensitivities and persistent divergent percepts, a characteristic of synaesthesia. Crucially, we propose that whether different divergent experiences manifest with dominantly sensory (e.g. hallucinations) or nonsensory characteristics (e.g. delusions) depends on mental imagery ability, which is a spectrum from aphantasia (absent or weak imagery) to hyperphantasia (extremely vivid imagery). We theorize that imagery is critically involved in shaping the sensory richness of divergent perceptual experience. In sum, to predict a range of divergent perceptual experiences in both clinical and general populations, three factors must be accounted for: a maladaptive use of priors, individual level of confidence in sensory input, and mental imagery ability. These ideas can be expressed formally using nonparametric regression modeling. We provide evidence for our theory from previous work and deliver predictions for future research.
Collapse
Affiliation(s)
- Reshanne R Reeder
- Department of Psychology, Institute of Population Health, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Giovanni Sala
- Department of Psychology, Institute of Population Health, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Tessa M van Leeuwen
- Department of Communication and Cognition, Tilburg School of Humanities and Digital Sciences, Tilburg University, Tilburg, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Rządeczka M, Wodziński M, Moskalewicz M. Cognitive biases as an adaptive strategy in autism and schizophrenia spectrum: the compensation perspective on neurodiversity. Front Psychiatry 2023; 14:1291854. [PMID: 38116384 PMCID: PMC10729319 DOI: 10.3389/fpsyt.2023.1291854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
This article presents a novel theoretical perspective on the role of cognitive biases within the autism and schizophrenia spectrum by integrating the evolutionary and computational approaches. Against the background of neurodiversity, cognitive biases are presented as primary adaptive strategies, while the compensation of their shortcomings is a potential cognitive advantage. The article delineates how certain subtypes of autism represent a unique cognitive strategy to manage cognitive biases at the expense of rapid and frugal heuristics. In contrast, certain subtypes of schizophrenia emerge as distinctive cognitive strategies devised to navigate social interactions, albeit with a propensity for overdetecting intentional behaviors. In conclusion, the paper emphasizes that while extreme manifestations might appear non-functional, they are merely endpoints of a broader, primarily functional spectrum of cognitive strategies. The central argument hinges on the premise that cognitive biases in both autism and schizophrenia spectrums serve as compensatory mechanisms tailored for specific ecological niches.
Collapse
Affiliation(s)
- Marcin Rządeczka
- Institute of Philosophy, Maria Curie-Sklodowska University in Lublin, Lublin, Poland
- IDEAS NCBR, Warsaw, Poland
| | | | - Marcin Moskalewicz
- Institute of Philosophy, Maria Curie-Sklodowska University in Lublin, Lublin, Poland
- IDEAS NCBR, Warsaw, Poland
- Philosophy of Mental Health Unit, Department of Social Sciences and the Humanities, Poznan University of Medical Sciences, Poznań, Poland
- Phenomenological Psychopathology and Psychotherapy, Psychiatric Clinic, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Racey C, Kampoureli C, Bowen-Hill O, Bauer M, Simpson I, Rae C, Del Rio M, Simner J, Ward J. An Open Science MRI Database of over 100 Synaesthetic Brains and Accompanying Deep Phenotypic Information. Sci Data 2023; 10:766. [PMID: 37925503 PMCID: PMC10625562 DOI: 10.1038/s41597-023-02664-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
We provide a neuroimaging database consisting of 102 synaesthetic brains using state-of-the-art 3 T MRI protocols from the Human Connectome Project (HCP) which is freely available to researchers. This database consists of structural (T1- and T2-weighted) images together with approximately 24 minutes of resting state data per participant. These protocols are designed to be inter-operable and reproducible so that others can add to the dataset or directly compare it against other normative or special samples. In addition, we provide a 'deep phenotype' of our sample which includes detailed information about each participant's synaesthesia together with associated clinical and cognitive measures. This behavioural dataset, which also includes data from (N = 109) non-synaesthetes, is of importance in its own right and is openly available.
Collapse
Affiliation(s)
- Chris Racey
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Christina Kampoureli
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Oscar Bowen-Hill
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Mathilde Bauer
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Ivor Simpson
- School of Engineering and Informatics, University of Sussex, Brighton, UK
| | - Charlotte Rae
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Magda Del Rio
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Julia Simner
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK
| | - Jamie Ward
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK.
| |
Collapse
|
6
|
Taylor MJ, van Leeuwen TM, Kuja-Halkola R, Lundström S, Larsson H, Lichtenstein P, Bölte S, Neufeld J. Genetic and environmental architecture of synaesthesia and its association with the autism spectrum-a twin study. Proc Biol Sci 2023; 290:20231888. [PMID: 37876199 PMCID: PMC10598415 DOI: 10.1098/rspb.2023.1888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Synaesthesia is a sensory phenomenon where external stimuli, such as sounds or letters, trigger additional sensations (e.g. colours). Synaesthesia aggregates in families but its heritability is unknown. The phenomenon is more common in people on the autism spectrum compared with the general population and associated with higher autistic traits. Using classical twin design, we assessed the heritability of individual differences in self-reported synaesthesia and the genetic and environmental contributions to their association with autistic traits within a population twin cohort (n = 4262, age = 18 years). We estimated individual differences in synaesthesia to be heritable and influenced by environmental factors not shared between twins. The association between individual differences in synaesthesia and autistic traits was estimated to be predominantly under genetic influence and seemed to be mainly driven by non-social autistic traits (repetitive behaviours, restricted interests and attention to detail). Our study suggests that the link between synaesthesia and autism might reside in shared genetic causes, related to non-social autistic traits such as alterations in perception. Future studies building on these findings may attempt to identify specific groups of genes that influence both autism, synaesthesia and perception.
Collapse
Affiliation(s)
- Mark J. Taylor
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Tessa M. van Leeuwen
- Tilburg School of Humanities and Digital Sciences, Department of Communication and Cognition, Tilburg University, 5037 AB Tilburg, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
| | - Ralf Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Sebastian Lundström
- Gillberg Neuropsychiatry Centre, Centre for Ethics, Law and Mental Health, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17165 Stockholm, Sweden
- School of Medical Sciences, Örebro University, 70281 Örebro, Sweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, 11364 Stockholm, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, WA 66102 Perth, Western Australia
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, 11364 Stockholm, Sweden
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, 11364 Stockholm, Sweden
- Swedish Collegium for Advanced Study (SCAS), 75238 Uppsala, Sweden
| |
Collapse
|
7
|
Park HO. Autism Spectrum Disorder and Savant Syndrome: A Systematic Literature Review. Soa Chongsonyon Chongsin Uihak 2023; 34:76-92. [PMID: 37035789 PMCID: PMC10080257 DOI: 10.5765/jkacap.230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 04/11/2023] Open
Abstract
Objectives This study aimed to analyze research trends in autism spectrum disorder (ASD) and savant syndrome and their cognitive characteristics through a systematic literature review. The objectives of this study were to establish an overview of research trends in ASD and savant syndrome, analyze the overall characteristics of individuals with ASD and savant syndrome, and examine their cognitive characteristics. Methods For the systematic literature review, three criteria were used to select review articles: 1) literature from peer-reviewed journals, published in the past 15 years, from 2008 to 2022; 2) subjects with ASD and savant syndrome; 3) study objectives focused on the basic phenomenon and cognitive characteristics of ASD and savant syndrome. Finally, based on the selection criteria, a total of 40 articles were included. Results Five themes and nine subthemes were derived from the analysis of 40 studies. The five main themes were as follows: 1) What is savant syndrome? 2) Demographic characteristics of savant syndrome; 3) Spectra of savant syndrome; 4) Savant syndrome and ASD; and 5) Cognitive characteristics of ASD with savant syndrome. The subthemes of the cognitive characteristics were weak central coherence, detail-focused cognitive processing, enhanced perceptual functioning, and hyper-systemizing. Conclusion Several studies have been conducted to understand ASD and savant syndrome; however, no single theory can specify the cognitive characteristics of people with ASD and savant syndrome. Therefore, further systematic and multi-layered research on ASD and savant syndrome are required for more comprehensive results.
Collapse
Affiliation(s)
- Hyun Ok Park
- Department of Early Childhood Special Education, Baekseok University, Cheonan, Korea
- Address for correspondence: Hyun Ok Park, Department of Early Childhood Special Education, 1 Baekseokdaehak-ro, Dongnam-gu, Cheonan 31065, Korea Tel: +82-41-550-2467, Fax: +82-41-550-9089, E-mail:
| |
Collapse
|
8
|
Benítez-Burraco A, Adornetti I, Ferretti F, Progovac L. An evolutionary account of impairment of self in cognitive disorders. Cogn Process 2023; 24:107-127. [PMID: 36180662 PMCID: PMC9898376 DOI: 10.1007/s10339-022-01110-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/05/2022] [Indexed: 02/06/2023]
Abstract
Recent research has proposed that certain aspects of psychosis, as experienced in, e.g., schizophrenia (SCZ), but also aspects of other cognitive conditions, such as autism spectrum disorders (ASD) and synesthesia, can be related to a shattered sense of the notion of self. In this paper, our goal is to show that altered processing of self can be attributed to an abnormal functioning of cortico-striatal brain networks supporting, among other, one key human distinctive cognitive ability, namely cross-modality, which plays multiple roles in human cognition and language. Specifically, our hypothesis is that this cognitive mechanism sheds light both on some basic aspects of the minimal self and on some aspects related to higher forms of self, such as the narrative self. We further link the atypical functioning in these conditions to some recent evolutionary changes in our species, specifically, an atypical presentation of human self-domestication (HSD) features. In doing so, we also lean on previous work concerning the link between cognitive disorders and language evolution under the effects of HSD. We further show that this approach can unify both linguistic and non-linguistic symptoms of these conditions through deficits in the notion of self. Our considerations provide further support for the hypothesis that SCZ and ASD are diametrically opposed cognitive conditions, as well for the hypothesis that their etiology is associated with recent human evolution, leading to a deeper understanding of the causes and symptoms of these disorders, and providing new cues, which can be used for an earlier and more accurate diagnostics.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, Seville, Spain.
| | - Ines Adornetti
- Cosmic Lab, Department of Philosophy, Communication and Performing Arts, Roma Tre University, Rome, Italy
| | - Francesco Ferretti
- Cosmic Lab, Department of Philosophy, Communication and Performing Arts, Roma Tre University, Rome, Italy
| | - Ljiljana Progovac
- Linguistics Program, Department of English, Wayne State University, Detroit, USA
| |
Collapse
|
9
|
Abstract
INTRODUCTION This study determines whether there is a familial aggregation between synaesthesia and two neuropsychiatric conditions (autism and schizophrenia). METHOD We examined the prevalence of autism and schizophrenia among synaesthetes and non-synaesthetic controls, and among their first-degree relatives. RESULTS As predicted, autism occurred at elevated levels among synaesthetes and-we document for the first time-amongst their relatives. This was not found for schizophrenia, where a link may be expected, or in a control condition (type 1 diabetes) where we had no a priori reason to assume a link. Synaesthetes, compared to controls, were also more likely to have other synaesthetes in their family. People with three or more types of synaesthesia were more likely (compared to synaesthetes with fewer types) to have synaesthetic relatives and to report autism in themselves. People with two or more types of synaesthesia (compared to synaesthetes with only one type) were more likely to report familial autism. CONCLUSIONS The results suggest a shared genetic predisposition between synaesthesia and autism, and more extreme synaesthetes may tend to hail from more neurodiverse families.
Collapse
Affiliation(s)
- Max Nugent
- School of Psychology University of Sussex, Brighton, UK
| | - Jamie Ward
- School of Psychology University of Sussex, Brighton, UK
| |
Collapse
|
10
|
Kramer P. Iconic Mathematics: Math Designed to Suit the Mind. Front Psychol 2022; 13:890362. [PMID: 35769758 PMCID: PMC9234488 DOI: 10.3389/fpsyg.2022.890362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Mathematics is a struggle for many. To make it more accessible, behavioral and educational scientists are redesigning how it is taught. To a similar end, a few rogue mathematicians and computer scientists are doing something more radical: they are redesigning mathematics itself, improving its ergonomic features. Charles Peirce, an important contributor to ordinary symbolic logic, also introduced a rigorous but non-symbolic, graphical alternative to it that is easier to picture. In the spirit of this iconic logic, George Spencer-Brown founded iconic mathematics. Performing iconic arithmetic, algebra, and even trigonometry, resembles doing calculations on an abacus, which is still popular in education today, has aided humanity for millennia, helps even when it is merely imagined, and ameliorates severe disability in basic computation. Interestingly, whereas some intellectually disabled individuals excel in very complex numerical tasks, others of normal intelligence fail even in very simple ones. A comparison of their wider psychological profiles suggests that iconic mathematics ought to suit the very people traditional mathematics leaves behind.
Collapse
Affiliation(s)
- Peter Kramer
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
11
|
van Leeuwen TM, Wilsson L, Norrman HN, Dingemanse M, Bölte S, Neufeld J. Perceptual processing links autism and synesthesia: A co-twin control study. Cortex 2021; 145:236-249. [PMID: 34763130 DOI: 10.1016/j.cortex.2021.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/21/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
Synesthesia occurs more commonly in individuals fulfilling criteria for an autism spectrum diagnosis than in the general population. It is associated with autistic traits and autism-related perceptual processing characteristics, including a more detail-focused attentional style and altered sensory sensitivity. In addition, these characteristics correlate with the degree of grapheme-color synesthesia (consistency of grapheme-color associations) in non-synesthetes. We investigated a predominantly non-synesthetic twin sample, including individuals fulfilling criteria for an autism spectrum diagnosis or other neurodevelopmental disorders (n = 65, 14-34 years, 60% female). We modelled linear relationships between the degree of grapheme-color synesthesia and autistic traits, sensory sensitivity, and visual perception, both within-twin pairs (22 pairs) where all factors shared by twins are implicitly controlled (including 50-100% genetics), and across the entire cohort. We found that the degree of grapheme-color synesthesia was associated with autistic traits within the domain of Attention to Details and with sensory hyper-, but not hypo-sensitivity. These associations were stronger within-twin pairs than across the sample. Further, twins with a higher degree of grapheme-color synesthesia were better than their co-twins at identifying fragmented images (Fragmented Pictures Test). This is the first twin study on the association between synesthesia and autism-related perceptual features and traits. The results suggest that investigating these associations within-twin pairs, implicitly adjusting for potential confounding factors shared by twins, is more sensitive than doing so in non-related individuals. Consistent with previous findings, the results suggest an association between the degree of grapheme-color synesthesia and autism-related perceptual features, while utilizing a different measure for sensory sensitivity. The novel finding of enhanced fragmented picture integration in twins with a higher degree of grapheme-color synesthesia challenges the view of a generally more detail-focused attentional style in synesthesia and might be related to enhanced memory or mental imagery in more synesthetic individuals.
Collapse
Affiliation(s)
- Tessa M van Leeuwen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Communication and Cognition, Tilburg School of Humanities and Digital Sciences, Tilburg University, Tilburg, the Netherlands
| | - Lowe Wilsson
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Hjalmar Nobel Norrman
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Mark Dingemanse
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Centre for Language Studies, Radboud University, Nijmegen, the Netherlands
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden; Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden; Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
| |
Collapse
|
12
|
Perinatal Fentanyl Exposure Leads to Long-Lasting Impairments in Somatosensory Circuit Function and Behavior. J Neurosci 2021. [PMID: 33853934 DOI: 10.1523/jneurosci.2470-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One consequence of the opioid epidemic are lasting neurodevelopmental sequelae afflicting adolescents exposed to opioids in the womb. A translationally relevant and developmentally accurate preclinical model is needed to understand the behavioral, circuit, network, and molecular abnormalities resulting from this exposure. By employing a novel preclinical model of perinatal fentanyl exposure, our data reveal that fentanyl has several dose-dependent, developmental consequences to somatosensory function and behavior. Newborn male and female mice exhibit signs of withdrawal and sensory-related deficits that extend at least to adolescence. As fentanyl exposure does not affect dams' health or maternal behavior, these effects result from the direct actions of perinatal fentanyl on the pups' developing brain. At adolescence, exposed mice exhibit reduced adaptation to sensory stimuli, and a corresponding impairment in primary somatosensory (S1) function. In vitro electrophysiology demonstrates a long-lasting reduction in S1 synaptic excitation, evidenced by decreases in release probability, NMDA receptor-mediated postsynaptic currents, and frequency of miniature excitatory postsynaptic currents (mEPSCs), as well as increased frequency of miniature inhibitory postsynaptic currents (mIPSCs). In contrast, anterior cingulate cortical neurons exhibit an opposite phenotype, with increased synaptic excitation. Consistent with these changes, electrocorticograms (ECoGs) reveal suppressed ketamine-evoked γ oscillations. Morphologic analysis of S1 pyramidal neurons indicate reduced dendritic complexity, dendritic length, and soma size. Further, exposed mice exhibited abnormal cortical mRNA expression of key receptors involved in synaptic transmission and neuronal growth and development, changes that were consistent with the electrophysiological and morphologic changes. These findings demonstrate the lasting sequelae of perinatal fentanyl exposure on sensory processing and function.SIGNIFICANCE STATEMENT This is the first study to show that exposure to fentanyl in the womb results in behavioral, circuitry, and synaptic effects that last at least to adolescence. We also show, for the first time, that this exposure has different, lasting effects on synapses in different cortical areas.
Collapse
|
13
|
Ward J. Synaesthesia as a model system for understanding variation in the human mind and brain. Cogn Neuropsychol 2021; 38:259-278. [PMID: 34266374 DOI: 10.1080/02643294.2021.1950133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The aim of this article is to reposition synaesthesia as model system for understanding variation in the construction of the human mind and brain. People with synaesthesia inhabit a remarkable mental world in which numbers can be coloured, words can have tastes, and music is a visual spectacle. Key questions remain unanswered about why it exists, and how the study of synaesthesia might inform theories of the human mind. This article argues we need to rethink synaesthesia as not just representing exceptional experiences, but as a product of an unusual neurodevelopmental cascade from genes to brain to cognition of which synaesthesia is only one outcome. Specifically, differences in the brains of synaesthetes support a distinctive way of thinking (enhanced memory, imagery etc.) and may also predispose towards particular clinical vulnerabilities. In effect, synaesthesia can act as a paradigmatic example of a neuropsychological approach to individual differences.
Collapse
Affiliation(s)
- Jamie Ward
- School of Psychology, University of Sussex, Brighton, UK
| |
Collapse
|
14
|
Königsmark VT, Bergmann J, Reeder RR. The Ganzflicker experience: High probability of seeing vivid and complex pseudo-hallucinations with imagery but not aphantasia. Cortex 2021; 141:522-534. [PMID: 34172274 DOI: 10.1016/j.cortex.2021.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/02/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
There are considerable individual differences in visual mental imagery ability across the general population, including a "blind mind's eye", or aphantasia. Recent studies have shown that imagery is linked to differences in perception in the healthy population, and clinical work has found a connection between imagery and hallucinatory experiences in neurological disorders. However, whether imagery ability is associated with anomalous perception-including hallucinations-in the general population remains unclear. In the current study, we explored the relationship between imagery ability and the anomalous perception of pseudo-hallucinations (PH) using rhythmic flicker stimulation ("Ganzflicker"). Specifically, we investigated whether the ability to generate voluntary imagery is associated with susceptibility to flicker-induced PH. We additionally explored individual differences in observed features of PH. We recruited a sample of people with aphantasia (aphants) and imagery (imagers) to view a constant red-and-black flicker for approximately 10 min. We found that imagers were more susceptible to PH, and saw more complex and vivid PH, compared to aphants. This study provides the first evidence that the ability to generate visual imagery increases the likelihood of experiencing complex and vivid anomalous percepts.
Collapse
Affiliation(s)
- Varg T Königsmark
- Institute of Psychology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Johanna Bergmann
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Reshanne R Reeder
- Institute of Psychology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Department of Psychology, Edge Hill University, Ormskirk, UK.
| |
Collapse
|
15
|
Benítez-Burraco A, Progovac L. Language evolution: examining the link between cross-modality and aggression through the lens of disorders. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200188. [PMID: 33745319 PMCID: PMC8059641 DOI: 10.1098/rstb.2020.0188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
We demonstrate how two linguistic phenomena, figurative language (implicating cross-modality) and derogatory language (implicating aggression), both demand a precise degree of (dis)inhibition in the same cortico-subcortical brain circuits, in particular cortico-striatal networks, whose connectivity has been significantly enhanced in recent evolution. We examine four cognitive disorders/conditions that exhibit abnormal patterns of (dis)inhibition in these networks: schizophrenia (SZ), autism spectrum disorder (ASD), synaesthesia and Tourette's syndrome (TS), with the goal of understanding why the two phenomena altered reactive aggression and altered cross-modality cluster together in these disorders. Our proposal is that enhanced cross-modality (necessary to support language, in particular metaphoricity) was a result, partly a side-effect, of self-domestication (SD). SD targeted the taming of reactive aggression, but reactive impulses are controlled by the same cortico-subcortical networks that are implicated in cross-modality. We further add that this biological process of SD did not act alone, but was engaged in an intense feedback loop with the cultural emergence of early forms of language/grammar, whose high degree of raw metaphoricity and verbal aggression also contributed to increased brain connectivity and cortical control. Consequently, in conjunction with linguistic expressions serving as approximations/'fossils' of the earliest stages of language, these cognitive disorders/conditions serve as confident proxies of brain changes in language evolution, helping us reconstruct certain crucial aspects of early prehistoric languages and cognition, as well as shed new light on the nature of the disorders. This article is part of the theme issue 'Reconstructing prehistoric languages'.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, Seville, Spain
| | - Ljiljana Progovac
- Linguistics Program, Department of English, Wayne State University, Detroit, MI, USA
| |
Collapse
|
16
|
Alipio JB, Haga C, Fox ME, Arakawa K, Balaji R, Cramer N, Lobo MK, Keller A. Perinatal Fentanyl Exposure Leads to Long-Lasting Impairments in Somatosensory Circuit Function and Behavior. J Neurosci 2021; 41:3400-3417. [PMID: 33853934 PMCID: PMC8051687 DOI: 10.1523/jneurosci.2470-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/07/2020] [Accepted: 12/30/2020] [Indexed: 11/21/2022] Open
Abstract
One consequence of the opioid epidemic are lasting neurodevelopmental sequelae afflicting adolescents exposed to opioids in the womb. A translationally relevant and developmentally accurate preclinical model is needed to understand the behavioral, circuit, network, and molecular abnormalities resulting from this exposure. By employing a novel preclinical model of perinatal fentanyl exposure, our data reveal that fentanyl has several dose-dependent, developmental consequences to somatosensory function and behavior. Newborn male and female mice exhibit signs of withdrawal and sensory-related deficits that extend at least to adolescence. As fentanyl exposure does not affect dams' health or maternal behavior, these effects result from the direct actions of perinatal fentanyl on the pups' developing brain. At adolescence, exposed mice exhibit reduced adaptation to sensory stimuli, and a corresponding impairment in primary somatosensory (S1) function. In vitro electrophysiology demonstrates a long-lasting reduction in S1 synaptic excitation, evidenced by decreases in release probability, NMDA receptor-mediated postsynaptic currents, and frequency of miniature excitatory postsynaptic currents (mEPSCs), as well as increased frequency of miniature inhibitory postsynaptic currents (mIPSCs). In contrast, anterior cingulate cortical neurons exhibit an opposite phenotype, with increased synaptic excitation. Consistent with these changes, electrocorticograms (ECoGs) reveal suppressed ketamine-evoked γ oscillations. Morphologic analysis of S1 pyramidal neurons indicate reduced dendritic complexity, dendritic length, and soma size. Further, exposed mice exhibited abnormal cortical mRNA expression of key receptors involved in synaptic transmission and neuronal growth and development, changes that were consistent with the electrophysiological and morphologic changes. These findings demonstrate the lasting sequelae of perinatal fentanyl exposure on sensory processing and function.SIGNIFICANCE STATEMENT This is the first study to show that exposure to fentanyl in the womb results in behavioral, circuitry, and synaptic effects that last at least to adolescence. We also show, for the first time, that this exposure has different, lasting effects on synapses in different cortical areas.
Collapse
Affiliation(s)
- Jason B Alipio
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Catherine Haga
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Megan E Fox
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Keiko Arakawa
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Rakshita Balaji
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Nathan Cramer
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Asaf Keller
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|