1
|
Geils C, Kathrein K. Augmentation of Solid Tumor Immunotherapy With IL-12. J Gene Med 2024; 26:e70000. [PMID: 39618102 PMCID: PMC11609498 DOI: 10.1002/jgm.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024] Open
Abstract
Immunotherapy describes a class of therapies in which the immune system is manipulated for therapeutic benefit. These treatments include immune checkpoint inhibitors, adoptive cell therapy, and vaccines. For many hematological malignancies, immunotherapy has emerged as an essential treatment component. However, this success has yet to be replicated for solid tumors, which develop advanced physical and molecular mechanisms for suppressing and evading immune destruction. Nevertheless, cytokine immunotherapy presents a potential remedy to these barriers by delivering a proinflammatory immune signal to the tumor and thereby transforming it from immunologically "cold" to "hot." Interleukin-12 (IL-12), one of the most potent proinflammatory cytokines, was initially investigated for this purpose. However, initial murine and human studies in which IL-12 was administered systemically resulted in dangerous immunotoxicity associated with off-target immune activation. As a result, recent studies have employed advanced cell and molecular engineering approaches to reduce IL-12 toxicity while increasing or maintaining its efficacy such that its effective doses can be tolerated in humans. This review highlights such developments and identifies promising future directions.
Collapse
Affiliation(s)
- Christian Geils
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Katie L. Kathrein
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| |
Collapse
|
2
|
He D, Ma T, Yi N, Zhang S, Ding G. Significance of PBRM1 mutation in disease progress and drug selection in clear cell renal cell carcinoma. Biotechnol Genet Eng Rev 2024; 40:3901-3915. [PMID: 37079762 DOI: 10.1080/02648725.2023.2204692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the predominant type of kidney cancer, and the mutation of PBRM1 (Polybromo 1) gene is a commonly observed genetic alteration. The high frequency of PBRM1 mutation in ccRCC suggests its potential use as a biomarker for personalized therapy. In this study, we aimed to investigate the significance of PBRM1 mutation in disease progression and drug sensitivity in ccRCC. Additionally, we analyzed the critical pathways and genes associated with PBRM1 mutation to understand its potential mechanisms. Our findings show that PBRM1 mutation was observed in 38% of ccRCC patients and correlated with advanced disease stages. We also identified selective inhibitors for ccRCC with PBRM1 mutation using online databases such as PD173074 and AGI-6780. Furthermore, we identified 1253 genes as differentially expressed genes (DEGs) that were significantly enriched in categories such as metabolic progression, cell proliferation, and development. Although PBRM1 mutation did not show an association with ccRCC prognosis, a lower PBRM1 expression level correlated with worsened prognosis. Our study provides insights into the association of PBRM1 mutation with disease progression in ccRCC and suggests potential gene and signaling pathways for personalized treatment in ccRCC with PBRM1 mutation.
Collapse
Affiliation(s)
- Donghua He
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianyan Ma
- Department of Nursing, Huashan Hospital, Fudan University, Shanghai, China
| | - Ni Yi
- Department of Nursing, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Sijie Zhang
- Department of Integrated Sciences, University of British Columbia, Vancouver, Canada
| | - Guanxiong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Vorona KA, Moroz VD, Gasanov NB, Karabelsky AV. Recombinant VSVs: A Promising Tool for Virotherapy. Acta Naturae 2024; 16:4-14. [PMID: 39877014 PMCID: PMC11771844 DOI: 10.32607/actanaturae.27501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/18/2024] [Indexed: 01/31/2025] Open
Abstract
Cancer is one of the leading causes of death worldwide. Traditional cancer treatments include surgery, radiotherapy, and chemotherapy, as well as combinations of these treatments. Despite significant advances in these fields, the search for innovative ways to treat malignant tumors, including the application of oncolytic viruses, remains relevant. One such virus is the vesicular stomatitis virus (VSV), which possess a number of useful oncolytic properties. However, VSV-based drugs are still in their infancy and are yet to be approved for clinical use. This review discusses the mechanisms of oncogenesis, the antiviral response of tumor and normal cells, and markers of tumor cell resistance to VSV virotherapy. In addition, it examines methods for producing and arming recombinant VSV and provides examples of clinical trials. The data presented will allow better assessment of the prospects of using VSV as an oncolytic.
Collapse
Affiliation(s)
- K. A. Vorona
- Sirius University of Science and Technology, Krasnodar Region, Sirius Federal Territory, 354340 Russian Federation
| | - V. D. Moroz
- Sirius University of Science and Technology, Krasnodar Region, Sirius Federal Territory, 354340 Russian Federation
| | - N. B. Gasanov
- Sirius University of Science and Technology, Krasnodar Region, Sirius Federal Territory, 354340 Russian Federation
| | - A. V. Karabelsky
- Sirius University of Science and Technology, Krasnodar Region, Sirius Federal Territory, 354340 Russian Federation
| |
Collapse
|
4
|
Krismer L, Schöppe H, Rauch S, Bante D, Sprenger B, Naschberger A, Costacurta F, Fürst A, Sauerwein A, Rupp B, Kaserer T, von Laer D, Heilmann E. Study of key residues in MERS-CoV and SARS-CoV-2 main proteases for resistance against clinically applied inhibitors nirmatrelvir and ensitrelvir. NPJ VIRUSES 2024; 2:23. [PMID: 38933182 PMCID: PMC11196219 DOI: 10.1038/s44298-024-00028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/14/2024] [Indexed: 06/28/2024]
Abstract
The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an epidemic, zoonotically emerging pathogen initially reported in Saudi Arabia in 2012. MERS-CoV has the potential to mutate or recombine with other coronaviruses, thus acquiring the ability to efficiently spread among humans and become pandemic. Its high mortality rate of up to 35% and the absence of effective targeted therapies call for the development of antiviral drugs for this pathogen. Since the beginning of the SARS-CoV-2 pandemic, extensive research has focused on identifying protease inhibitors for the treatment of SARS-CoV-2. Our intention was therefore to assess whether these protease inhibitors are viable options for combating MERS-CoV. To that end, we used previously established protease assays to quantify inhibition of SARS-CoV-2, MERS-CoV and other main proteases. Nirmatrelvir inhibited several of these proteases, whereas ensitrelvir was less broadly active. To simulate nirmatrelvir's clinical use against MERS-CoV and subsequent resistance development, we applied a safe, surrogate virus-based system. Using the surrogate virus, we previously selected hallmark mutations of SARS-CoV-2-Mpro, such as T21I, M49L, S144A, E166A/K/V and L167F. In the current study, we selected a pool of MERS-CoV-Mpro mutants, characterized the resistance and modelled the steric effect of catalytic site mutants S142G, S142R, S147Y and A171S.
Collapse
Affiliation(s)
- Laura Krismer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Helge Schöppe
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, 6020 Austria
| | - Stefanie Rauch
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - David Bante
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Bernhard Sprenger
- Institute of Biochemistry, University of Innsbruck, CMBI – Center for Molecular Biosciences Innsbruck, Innsbruck, 6020 Austria
| | - Andreas Naschberger
- Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology KAUST, Thuwal, Saudi Arabia
| | | | - Anna Fürst
- Institute of Molecular Immunology, Technical University of Munich, Munich, 81675 Germany
| | - Anna Sauerwein
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Bernhard Rupp
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, 6020 Austria
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Emmanuel Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| |
Collapse
|
5
|
Malla R, Srilatha M, Farran B, Nagaraju GP. mRNA vaccines and their delivery strategies: A journey from infectious diseases to cancer. Mol Ther 2024; 32:13-31. [PMID: 37919901 PMCID: PMC10787123 DOI: 10.1016/j.ymthe.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
mRNA vaccines have evolved as promising cancer therapies. These vaccines can encode tumor-allied antigens, thus enabling personalized treatment approaches. They can also target cancer-specific mutations and overcome immune evasion mechanisms. They manipulate the body's cellular functions to produce antigens, elicit immune responses, and suppress tumors by overcoming limitations associated with specific histocompatibility leukocyte antigen molecules. However, successfully delivering mRNA into target cells destroys a crucial challenge. Viral and nonviral vectors (lipid nanoparticles and cationic liposomes) have shown great capacity in protecting mRNA from deterioration and assisting in cellular uptake. Cell-penetrating peptides, hydrogels, polymer-based nanoparticles, and dendrimers have been investigated to increase the delivery efficacy and immunogenicity of mRNA. This comprehensive review explores the landscape of mRNA vaccines and their delivery platforms for cancer, addressing design considerations, diverse delivery strategies, and recent advancements. Overall, this review contributes to the progress of mRNA vaccines as an innovative strategy for effective cancer treatment.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, AP, India
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati 517502, AP, India
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
6
|
Ryapolova A, Minskaia E, Gasanov N, Moroz V, Krapivin B, Egorov AD, Laktyushkin V, Zhuravleva S, Nagornych M, Subcheva E, Malogolovkin A, Ivanov R, Karabelsky A. Development of Recombinant Oncolytic rVSV-mIL12-mGMCSF for Cancer Immunotherapy. Int J Mol Sci 2023; 25:211. [PMID: 38203382 PMCID: PMC10779112 DOI: 10.3390/ijms25010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Anti-cancer therapy based on oncolytic viruses (OVs) is a targeted approach that takes advantage of OVs' ability to selectively infect and replicate in tumor cells, activate the host immune response, and destroy malignant cells over healthy ones. Vesicular stomatitis virus (VSV) is known for its wide range of advantages: a lack of pre-existing immunity, a genome that is easily amenable to manipulation, and rapid growth to high titers in a broad range of cell lines, to name a few. VSV-induced tumor immunity can be enhanced by the delivery of immunostimulatory cytokines. The targeted cytokine delivery to tumors avoids the significant toxicity associated with systemic delivery while also boosting the immune response. To demonstrate this enhanced effect on both tumor growth and survival, a novel recombinant VSV (rVSV)-mIL12-mGMCSF, co-expressing mouse IL-12 (interleukin-12) and GM-CSF (granulocyte-macrophage colony-stimulating factor), was tested alongside rVSV-dM51-GFP (rVSV-GFP) that was injected intratumorally in a syngeneic in vivo C57BL/6 mouse model infused subcutaneously with B16-F10 melanoma cells. The pilot study tested the effect of two viral injections 4 days apart and demonstrated that treatment with the two rVSVs resulted in partial inhibition of tumor growth (TGII of around 40%) and an increased survival rate in animals from the treatment groups. The effect of the two VSVs on immune cell populations will be investigated in future in vivo studies with an optimized experimental design with multiple higher viral doses, as a lack of this information presents a limitation of this study.
Collapse
Affiliation(s)
- Anastasia Ryapolova
- Department of Gene Therapy, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (A.R.); (N.G.); (V.M.); (B.K.); (A.D.E.); (V.L.); (S.Z.); (M.N.); (E.S.); (R.I.); (A.K.)
| | - Ekaterina Minskaia
- Department of Gene Therapy, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (A.R.); (N.G.); (V.M.); (B.K.); (A.D.E.); (V.L.); (S.Z.); (M.N.); (E.S.); (R.I.); (A.K.)
| | - Nizami Gasanov
- Department of Gene Therapy, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (A.R.); (N.G.); (V.M.); (B.K.); (A.D.E.); (V.L.); (S.Z.); (M.N.); (E.S.); (R.I.); (A.K.)
| | - Vasiliy Moroz
- Department of Gene Therapy, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (A.R.); (N.G.); (V.M.); (B.K.); (A.D.E.); (V.L.); (S.Z.); (M.N.); (E.S.); (R.I.); (A.K.)
| | - Bogdan Krapivin
- Department of Gene Therapy, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (A.R.); (N.G.); (V.M.); (B.K.); (A.D.E.); (V.L.); (S.Z.); (M.N.); (E.S.); (R.I.); (A.K.)
| | - Alexander D. Egorov
- Department of Gene Therapy, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (A.R.); (N.G.); (V.M.); (B.K.); (A.D.E.); (V.L.); (S.Z.); (M.N.); (E.S.); (R.I.); (A.K.)
| | - Victor Laktyushkin
- Department of Gene Therapy, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (A.R.); (N.G.); (V.M.); (B.K.); (A.D.E.); (V.L.); (S.Z.); (M.N.); (E.S.); (R.I.); (A.K.)
| | - Sofia Zhuravleva
- Department of Gene Therapy, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (A.R.); (N.G.); (V.M.); (B.K.); (A.D.E.); (V.L.); (S.Z.); (M.N.); (E.S.); (R.I.); (A.K.)
| | - Maksim Nagornych
- Department of Gene Therapy, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (A.R.); (N.G.); (V.M.); (B.K.); (A.D.E.); (V.L.); (S.Z.); (M.N.); (E.S.); (R.I.); (A.K.)
| | - Elena Subcheva
- Department of Gene Therapy, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (A.R.); (N.G.); (V.M.); (B.K.); (A.D.E.); (V.L.); (S.Z.); (M.N.); (E.S.); (R.I.); (A.K.)
| | - Alexander Malogolovkin
- Department of Molecular Virology, First Moscow State Medical University (Sechenov University), 20 Pirogovskaya, 119991 Moscow, Russia;
| | - Roman Ivanov
- Department of Gene Therapy, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (A.R.); (N.G.); (V.M.); (B.K.); (A.D.E.); (V.L.); (S.Z.); (M.N.); (E.S.); (R.I.); (A.K.)
| | - Alexander Karabelsky
- Department of Gene Therapy, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (A.R.); (N.G.); (V.M.); (B.K.); (A.D.E.); (V.L.); (S.Z.); (M.N.); (E.S.); (R.I.); (A.K.)
| |
Collapse
|
7
|
Ahata B, Akçapınar GB. CCHFV vaccine development, current challenges, limitations, and future directions. Front Immunol 2023; 14:1238882. [PMID: 37753088 PMCID: PMC10518622 DOI: 10.3389/fimmu.2023.1238882] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is the most prevalent tick-borne viral disease affecting humans. The disease is life-threatening in many regions of the developing world, including Africa, Asia, the Middle East, and Southern Europe. In line with the rapidly increasing disease prevalence, various vaccine strategies are under development. Despite a large number of potential vaccine candidates, there are no approved vaccines as of yet. This paper presents a detailed comparative analysis of current efforts to develop vaccines against CCHFV, limitations associated with current efforts, and future research directions.
Collapse
Affiliation(s)
- Büşra Ahata
- Department of Medical Biotechnology, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Türkiye
- Health Institutes of Turkey, Istanbul, Türkiye
| | - Günseli Bayram Akçapınar
- Department of Medical Biotechnology, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Türkiye
| |
Collapse
|
8
|
Letafati A, Ardekani OS, Naderisemiromi M, Fazeli MM, Jemezghani NA, Yavarian J. Oncolytic viruses against cancer, promising or delusion? Med Oncol 2023; 40:246. [PMID: 37458862 DOI: 10.1007/s12032-023-02106-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
Cancer treatment is one of the most challenging topics in medical sciences. Different methods such as chemotherapy, tumor surgery, and immune checkpoint inhibitors therapy (ICIs) are potential approaches to treating cancer and killing tumor cells, but clinical studies have shown that they have been successful for a limited group of patients. Using viruses as a treatment can be considered as an effective treatment in the field of medicine. This is considered as a potential treatment, especially in comparison to chemotherapy, which has severe side effects related to the immune system. Most oncolytic viruses (OVs) have the potential to multiply in cancer cells, which are more than normal cells in malignant tissue and can induce immune responses. Therefore, tons of efforts and research have been started on the utilization of OVs as a treatment for cancer and have shown promising in treating cancers with less side effects. In this article, we have gathered studies about oncolytic viruses and their effectiveness in cancer treatment.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [Omid Salahi] Last name [Ardekani], Author 2 Given name: [Mohammad Mehdi] Last name [Fazeli], Author 3 Given name: [Nillofar Asadi] Last name [Jemezghani]. Also, kindly confirm the details in the metadata are correct.Confirmed.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mina Naderisemiromi
- Department of Immunology, Faculty of Medicine and Health, The University of Manchester, Manchester, UK
| | - Mohammad Mehdi Fazeli
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Jila Yavarian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Nagalo BM, Zhou Y, Loeuillard EJ, Dumbauld C, Barro O, Elliott NM, Baker AT, Arora M, Bogenberger JM, Meurice N, Petit J, Uson PLS, Aslam F, Raupach E, Gabere M, Basnakian A, Simoes CC, Cannon MJ, Post SR, Buetow K, Chamcheu JC, Barrett MT, Duda DG, Jacobs B, Vile R, Barry MA, Roberts LR, Ilyas S, Borad MJ. Characterization of Morreton virus as an oncolytic virotherapy platform for liver cancers. Hepatology 2023; 77:1943-1957. [PMID: 36052732 DOI: 10.1002/hep.32769] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Morreton virus (MORV) is an oncolytic Vesiculovirus , genetically distinct from vesicular stomatitis virus (VSV). AIM To report that MORV induced potent cytopathic effects (CPEs) in cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC) in vitro models. APPROACH AND RESULTS In preliminary safety analyses, high intranasal doses (up to 10 10 50% tissue culture infectious dose [TCID 50 ]) of MORV were not associated with significant adverse effects in immune competent, non-tumor-bearing mice. MORV was shown to be efficacious in a Hep3B hepatocellular cancer xenograft model but not in a CCA xenograft HuCCT1 model. In an immune competent, syngeneic murine CCA model, single intratumoral treatments with MORV (1 × 10 7 TCID 50 ) triggered a robust antitumor immune response leading to substantial tumor regression and disease control at a dose 10-fold lower than VSV (1 × 10 8 TCID 50 ). MORV led to increased CD8 + cytotoxic T cells without compensatory increases in tumor-associated macrophages and granulocytic or monocytic myeloid-derived suppressor cells. CONCLUSIONS Our findings indicate that wild-type MORV is safe and can induce potent tumor regression via immune-mediated and immune-independent mechanisms in HCC and CCA animal models without dose limiting adverse events. These data warrant further development and clinical translation of MORV as an oncolytic virotherapy platform.
Collapse
Affiliation(s)
- Bolni Marius Nagalo
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Yumei Zhou
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Emilien J Loeuillard
- Division of Gastroenterology and Hepatology , Mayo Clinic , Rochester , Minnesota , USA
| | - Chelsae Dumbauld
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Oumar Barro
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Natalie M Elliott
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Alexander T Baker
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Mansi Arora
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - James M Bogenberger
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Nathalie Meurice
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Joachim Petit
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Pedro Luiz Serrano Uson
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
- Center for Personalized Medicine , Hospital Israelita Albert Einstein , São Paulo , Brazil
| | - Faaiq Aslam
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Elizabeth Raupach
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Musa Gabere
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Alexei Basnakian
- Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
- Department of Pharmacology and Toxicology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Camila C Simoes
- Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Martin J Cannon
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
- Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Steven R Post
- Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Kenneth Buetow
- Computational Sciences and Informatics Program for Complex Adaptive System Arizona State University , Tempe , Arizona , USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences , College of Pharmacy, University of Louisiana , Monroe , Louisiana , USA
| | - Michael T Barrett
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Dan G Duda
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts , USA
| | - Bertram Jacobs
- Center for Infectious Diseases and Vaccinology , the Biodesign Institute, Arizona State University , Tempe , Arizona , USA
| | - Richard Vile
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Mayo Clinic Comprehensive Cancer Center , Phoenix , Minnesota , USA
| | - Michael A Barry
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Mayo Clinic Comprehensive Cancer Center , Phoenix , Minnesota , USA
- Division of Infectious Diseases, Department of Internal Medicine , Mayo Clinic Rochester , Rochester , Minnesota , USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology , Mayo Clinic , Rochester , Minnesota , USA
| | - Sumera Ilyas
- Division of Gastroenterology and Hepatology , Mayo Clinic , Rochester , Minnesota , USA
| | - Mitesh J Borad
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
- Mayo Clinic Comprehensive Cancer Center , Phoenix , Minnesota , USA
- Mayo Clinic Center for Individualized Medicine , Rochester , Minnesota , USA
| |
Collapse
|
10
|
Current view on novel vaccine technologies to combat human infectious diseases. Appl Microbiol Biotechnol 2022; 106:25-56. [PMID: 34889981 PMCID: PMC8661323 DOI: 10.1007/s00253-021-11713-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Inactivated and live attenuated vaccines have improved human life and significantly reduced morbidity and mortality of several human infectious diseases. However, these vaccines have faults, such as reactivity or suboptimal efficacy and expensive and time-consuming development and production. Additionally, despite the enormous efforts to develop vaccines against some infectious diseases, the traditional technologies have not been successful in achieving this. At the same time, the concerns about emerging and re-emerging diseases urge the need to develop technologies that can be rapidly applied to combat the new challenges. Within the last two decades, the research of vaccine technologies has taken several directions to achieve safe, efficient, and economic platforms or technologies for novel vaccines. This review will give a brief overview of the current state of the novel vaccine technologies, new vaccine candidates in clinical trial phases 1-3 (listed by European Medicines Agency (EMA) and Food and Drug Administration (FDA)), and vaccines based on the novel technologies which have already been commercially available (approved by EMA and FDA) with the special reference to pandemic COVID-19 vaccines. KEY POINTS: • Vaccines of the new generation follow the minimalist strategy. • Some infectious diseases remain a challenge for the vaccine development. • The number of new vaccine candidates in the late phase clinical trials remains low.
Collapse
|
11
|
Dastjerd NT, Valibeik A, Rahimi Monfared S, Goodarzi G, Moradi Sarabi M, Hajabdollahi F, Maniati M, Amri J, Samavarchi Tehrani S. Gene therapy: A promising approach for breast cancer treatment. Cell Biochem Funct 2021; 40:28-48. [PMID: 34904722 DOI: 10.1002/cbf.3676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) is the most prevalent malignancy and the second leading cause of death among women worldwide that is caused by numerous genetic and environmental factors. Hence, effective treatment for this type of cancer requires new therapeutic approaches. The traditional methods for treating this cancer have side effects, therefore so much research have been performed in last decade to find new methods to alleviate these problems. The study of the molecular basis of breast cancer has led to the introduction of gene therapy as an effective therapeutic approach for this cancer. Gene therapy involves sending genetic material through a vector into target cells, which is followed by a correction, addition, or suppression of the gene. In this technique, it is necessary to target tumour cells without affecting normal cells. In addition, clinical trial studies have shown that this approach is less toxic than traditional therapies. This study will review various aspects of breast cancer, gene therapy strategies, limitations, challenges and recent studies in this area.
Collapse
Affiliation(s)
- Niloufar Tavakoli Dastjerd
- Department of Medical Biotechnology, School of Allied Medical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Valibeik
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sobhan Rahimi Monfared
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Moradi Sarabi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Faezeh Hajabdollahi
- Department of Anatomical Sciences, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jamal Amri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Evaluation of a downstream process for the recovery and concentration of a Cell-Culture-Derived rVSV-Spike COVID-19 vaccine candidate. Vaccine 2021; 39:7044-7051. [PMID: 34756612 PMCID: PMC8531466 DOI: 10.1016/j.vaccine.2021.10.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 12/25/2022]
Abstract
rVSV-Spike (rVSV-S) is a recombinant viral vaccine candidate under development to control the COVID-19 pandemic and is currently in phase II clinical trials. rVSV-S induces neutralizing antibodies and protects against SARS-CoV-2 infection in animal models. Bringing rVSV-S to clinical trials required the development of a scalable downstream process for the production of rVSV-S that can meet regulatory guidelines. The objective of this study was the development of the first downstream unit operations for cell-culture-derived rVSV-S, namely, the removal of nucleic acid contamination, the clarification and concentration of viral harvested supernatant, and buffer exchange. Retaining the infectivity of the rVSV-S during the downstream process was challenged by the shear sensitivity of the enveloped rVSV-S and its membrane protruding spike protein. Through a series of screening experiments, we evaluated and established the required endonuclease treatment conditions, filter train composition, and hollow fiber-tangential flow filtration parameters to remove large particles, reduce the load of impurities, and concentrate and exchange the buffer while retaining rVSV-S infectivity. The combined effect of the first unit operations on viral recovery and the removal of critical impurities was examined during scale-up experiments. Overall, approximately 40% of viral recovery was obtained and the regulatory requirements of less than 10 ng host cell DNA per dose were met. However, while 86–97% of the host cell proteins were removed, the regulatory acceptable HCP levels were not achieved, requiring subsequent purification and polishing steps. The results we obtained during the scale-up experiments were similar to those obtained during the screening experiments, indicating the scalability of the process. The findings of this study set the foundation for the development of a complete downstream manufacturing process, requiring subsequent purification and polishing unit operations for clinical preparations of rVSV-S.
Collapse
|
13
|
Malogolovkin A, Gasanov N, Egorov A, Weener M, Ivanov R, Karabelsky A. Combinatorial Approaches for Cancer Treatment Using Oncolytic Viruses: Projecting the Perspectives through Clinical Trials Outcomes. Viruses 2021; 13:1271. [PMID: 34209981 PMCID: PMC8309967 DOI: 10.3390/v13071271] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Recent cancer immunotherapy breakthroughs have fundamentally changed oncology and revived the fading hope for a cancer cure. The immune checkpoint inhibitors (ICI) became an indispensable tool for the treatment of many malignant tumors. Alongside ICI, the application of oncolytic viruses in clinical trials is demonstrating encouraging outcomes. Dozens of combinations of oncolytic viruses with conventional radiotherapy and chemotherapy are widely used or studied, but it seems quite complicated to highlight the most effective combinations. Our review summarizes the results of clinical trials evaluating oncolytic viruses with or without genetic alterations in combination with immune checkpoint blockade, cytokines, antigens and other oncolytic viruses as well. This review is focused on the efficacy and safety of virotherapy and the most promising combinations based on the published clinical data, rather than presenting all oncolytic virus variations, which are discussed in comprehensive literature reviews. We briefly revise the research landscape of oncolytic viruses and discuss future perspectives in virus immunotherapy, in order to provide an insight for novel strategies of cancer treatment.
Collapse
Affiliation(s)
- Alexander Malogolovkin
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (N.G.); (A.E.); (M.W.); (R.I.)
| | | | | | | | | | - Alexander Karabelsky
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (N.G.); (A.E.); (M.W.); (R.I.)
| |
Collapse
|
14
|
Heidbuechel JPW, Engeland CE. Oncolytic viruses encoding bispecific T cell engagers: a blueprint for emerging immunovirotherapies. J Hematol Oncol 2021; 14:63. [PMID: 33863363 PMCID: PMC8052795 DOI: 10.1186/s13045-021-01075-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/30/2021] [Indexed: 02/08/2023] Open
Abstract
Bispecific T cell engagers (BiTEs) are an innovative class of immunotherapeutics that redirect T cells to tumor surface antigens. While efficacious against certain hematological malignancies, limited bioavailability and severe toxicities have so far hampered broader clinical application, especially against solid tumors. Another emerging cancer immunotherapy are oncolytic viruses (OVs) which selectively infect and replicate in malignant cells, thereby mediating tumor vaccination effects. These oncotropic viruses can serve as vectors for tumor-targeted immunomodulation and synergize with other immunotherapies. In this article, we discuss the use of OVs to overcome challenges in BiTE therapy. We review the current state of the field, covering published preclinical studies as well as ongoing clinical investigations. We systematically introduce OV-BiTE vector design and characteristics as well as evidence for immune-stimulating and anti-tumor effects. Moreover, we address additional combination regimens, including CAR T cells and immune checkpoint inhibitors, and further strategies to modulate the tumor microenvironment using OV-BiTEs. The inherent complexity of these novel therapeutics highlights the importance of translational research including correlative studies in early-phase clinical trials. More broadly, OV-BiTEs can serve as a blueprint for diverse OV-based cancer immunotherapies.
Collapse
Affiliation(s)
- Johannes P W Heidbuechel
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Christine E Engeland
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany.
- Center for Biomedical Research and Education (ZBAF), School of Medicine, Institute of Virology and Microbiology, Faculty of Health, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
15
|
Hennrich AA, Sawatsky B, Santos-Mandujano R, Banda DH, Oberhuber M, Schopf A, Pfaffinger V, Wittwer K, Riedel C, Pfaller CK, Conzelmann KK. Safe and effective two-in-one replicon-and-VLP minispike vaccine for COVID-19: Protection of mice after a single immunization. PLoS Pathog 2021; 17:e1009064. [PMID: 33882114 PMCID: PMC8092985 DOI: 10.1371/journal.ppat.1009064] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/03/2021] [Accepted: 04/06/2021] [Indexed: 01/12/2023] Open
Abstract
Vaccines of outstanding efficiency, safety, and public acceptance are needed to halt the current SARS-CoV-2 pandemic. Concerns include potential side effects caused by the antigen itself and safety of viral DNA and RNA delivery vectors. The large SARS-CoV-2 spike (S) protein is the main target of current COVID-19 vaccine candidates but can induce non-neutralizing antibodies, which might cause vaccination-induced complications or enhancement of COVID-19 disease. Besides, encoding of a functional S in replication-competent virus vector vaccines may result in the emergence of viruses with altered or expanded tropism. Here, we have developed a safe single round rhabdovirus replicon vaccine platform for enhanced presentation of the S receptor-binding domain (RBD). Structure-guided design was employed to build a chimeric minispike comprising the globular RBD linked to a transmembrane stem-anchor sequence derived from rabies virus (RABV) glycoprotein (G). Vesicular stomatitis virus (VSV) and RABV replicons encoding the minispike not only allowed expression of the antigen at the cell surface but also incorporation into the envelope of secreted non-infectious particles, thus combining classic vector-driven antigen expression and particulate virus-like particle (VLP) presentation. A single dose of a prototype replicon vaccine complemented with VSV G, VSVΔG-minispike-eGFP (G), stimulated high titers of SARS-CoV-2 neutralizing antibodies in mice, equivalent to those found in COVID-19 patients, and protected transgenic K18-hACE2 mice from COVID-19-like disease. Homologous boost immunization further enhanced virus neutralizing activity. The results demonstrate that non-spreading rhabdovirus RNA replicons expressing minispike proteins represent effective and safe alternatives to vaccination approaches using replication-competent viruses and/or the entire S antigen.
Collapse
Affiliation(s)
- Alexandru A. Hennrich
- Max von Pettenkofer Institute Virology, and Gene Center, LMU Munich, Munich, Germany
| | - Bevan Sawatsky
- Department of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Dominic H. Banda
- Max von Pettenkofer Institute Virology, and Gene Center, LMU Munich, Munich, Germany
| | - Martina Oberhuber
- Max von Pettenkofer Institute Virology, and Gene Center, LMU Munich, Munich, Germany
| | - Anika Schopf
- Max von Pettenkofer Institute Virology, and Gene Center, LMU Munich, Munich, Germany
| | - Verena Pfaffinger
- Max von Pettenkofer Institute Virology, and Gene Center, LMU Munich, Munich, Germany
| | - Kevin Wittwer
- Department of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Christiane Riedel
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Karl-Klaus Conzelmann
- Max von Pettenkofer Institute Virology, and Gene Center, LMU Munich, Munich, Germany
| |
Collapse
|
16
|
Heilmann E, Kimpel J, Hofer B, Rössler A, Blaas I, Egerer L, Nolden T, Urbiola C, Kräusslich HG, Wollmann G, von Laer D. Chemogenetic ON and OFF switches for RNA virus replication. Nat Commun 2021; 12:1362. [PMID: 33649317 PMCID: PMC7921684 DOI: 10.1038/s41467-021-21630-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 02/03/2021] [Indexed: 11/09/2022] Open
Abstract
Therapeutic application of RNA viruses as oncolytic agents or gene vectors requires a tight control of virus activity if toxicity is a concern. Here we present a regulator switch for RNA viruses using a conditional protease approach, in which the function of at least one viral protein essential for transcription and replication is linked to autocatalytical, exogenous human immunodeficiency virus (HIV) protease activity. Virus activity can be en- or disabled by various HIV protease inhibitors. Incorporating the HIV protease dimer in the genome of vesicular stomatitis virus (VSV) into the open reading frame of either the P- or L-protein resulted in an ON switch. Here, virus activity depends on co-application of protease inhibitor in a dose-dependent manner. Conversely, an N-terminal VSV polymerase tag with the HIV protease dimer constitutes an OFF switch, as application of protease inhibitor stops virus activity. This technology may also be applicable to other potentially therapeutic RNA viruses.
Collapse
Affiliation(s)
- E Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, Innsbruck, Austria
| | - J Kimpel
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - B Hofer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - A Rössler
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - I Blaas
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - L Egerer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
- ViraTherapeutics GmbH, Innsbruck, Austria
| | - T Nolden
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
- ViraTherapeutics GmbH, Innsbruck, Austria
| | - C Urbiola
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, Innsbruck, Austria
- ViraTherapeutics GmbH, Innsbruck, Austria
| | - H G Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infectious Disease Research, partner site Heidelberg, Heidelberg, Germany
| | - G Wollmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria.
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, Innsbruck, Austria.
| | - D von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
17
|
Belnoue E, Leystra AA, Carboni S, Cooper HS, Macedo RT, Harvey KN, Colby KB, Campbell KS, Vanderveer LA, Clapper ML, Derouazi M. Novel Protein-Based Vaccine against Self-Antigen Reduces the Formation of Sporadic Colon Adenomas in Mice. Cancers (Basel) 2021; 13:cancers13040845. [PMID: 33671373 PMCID: PMC7923075 DOI: 10.3390/cancers13040845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Colorectal cancer remains a leading cause of cancer-related mortality worldwide. However, high-risk populations with a genetic predisposition for colorectal cancer could benefit greatly from novel and efficacious immunopreventive strategies that afford long-lasting protection. The achaete-scute family bHLH transcription factor 2 (Ascl2) has been identified as a promising target for immunoprevention of colorectal cancer, based on its induction during the formation and progression of colorectal tumors and its minimal expression observed in healthy tissue. The goal of the present study was to determine the efficacy of a protein-based vaccine targeting Ascl2 in combination with an anti-PD-1 treatment in a spontaneous colorectal cancer mouse model. This novel vaccine strategy promotes potent tumor-specific immunity, and prevents the formation of colon adenomas in mice. The results demonstrate that Ascl2 is a promising target for immunoprevention for individuals at elevated risk of developing colorectal cancer. Abstract Novel immunopreventive strategies are emerging that show great promise for conferring long-term protection to individuals at high risk of developing colorectal cancer. The KISIMA vaccine platform utilizes a chimeric protein comprising: (1) a selected tumor antigen; (2) a cell-penetrating peptide to improve antigen delivery and epitope presentation, and (3) a TLR2/4 agonist to serve as a self-adjuvant. This study examines the ability of a KISIMA vaccine against achaete-scute family bHLH transcription factor 2 (Ascl2), an early colon cancer antigen, to reduce colon tumor formation by stimulating an anti-tumor immune response. Vaccine administrations were well-tolerated and led to circulating antibodies and antigen-specific T cells in a mouse model of colorectal cancer. To assess preventive efficacy, the vaccine was administered to mice either alone or in combination with the immune checkpoint inhibitor anti-PD-1. When delivered to animals prior to colon tumor formation, the combination strategy significantly reduced the development of colon microadenomas and adenomas, as compared to vehicle-treated controls. This response was accompanied by an increase in the intraepithelial density of CD3+ T lymphocytes. Together, these data indicate that the KISIMA-Ascl2 vaccine shows great potential to be a safe and potent immunopreventive intervention for individuals at high risk of developing colorectal cancer.
Collapse
Affiliation(s)
- Elodie Belnoue
- AMAL Therapeutics, Fondation pour Recherches Médicales, 64 avenue de la Roseraie, 1205 Geneva, Switzerland; (E.B.); (S.C.)
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Alyssa A. Leystra
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (A.A.L.); (H.S.C.); (R.T.M.); (K.N.H.); (L.A.V.)
| | - Susanna Carboni
- AMAL Therapeutics, Fondation pour Recherches Médicales, 64 avenue de la Roseraie, 1205 Geneva, Switzerland; (E.B.); (S.C.)
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Harry S. Cooper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (A.A.L.); (H.S.C.); (R.T.M.); (K.N.H.); (L.A.V.)
- Department of Pathology, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | - Rodrigo T. Macedo
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (A.A.L.); (H.S.C.); (R.T.M.); (K.N.H.); (L.A.V.)
| | - Kristen N. Harvey
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (A.A.L.); (H.S.C.); (R.T.M.); (K.N.H.); (L.A.V.)
| | - Kimberly B. Colby
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (K.B.C.); (K.S.C.)
| | - Kerry S. Campbell
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (K.B.C.); (K.S.C.)
| | - Lisa A. Vanderveer
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (A.A.L.); (H.S.C.); (R.T.M.); (K.N.H.); (L.A.V.)
| | - Margie L. Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA; (A.A.L.); (H.S.C.); (R.T.M.); (K.N.H.); (L.A.V.)
- Correspondence: (M.L.C.); (M.D.)
| | - Madiha Derouazi
- AMAL Therapeutics, Fondation pour Recherches Médicales, 64 avenue de la Roseraie, 1205 Geneva, Switzerland; (E.B.); (S.C.)
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
- Correspondence: (M.L.C.); (M.D.)
| |
Collapse
|
18
|
Sasso E, D'Alise AM, Zambrano N, Scarselli E, Folgori A, Nicosia A. New viral vectors for infectious diseases and cancer. Semin Immunol 2020; 50:101430. [PMID: 33262065 DOI: 10.1016/j.smim.2020.101430] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Since the discovery in 1796 by Edward Jenner of vaccinia virus as a way to prevent and finally eradicate smallpox, the concept of using a virus to fight another virus has evolved into the current approaches of viral vectored genetic vaccines. In recent years, key improvements to the vaccinia virus leading to a safer version (Modified Vaccinia Ankara, MVA) and the discovery that some viruses can be used as carriers of heterologous genes encoding for pathological antigens of other infectious agents (the concept of 'viral vectors') has spurred a new wave of clinical research potentially providing for a solution for the long sought after vaccines against major diseases such as HIV, TB, RSV and Malaria, or emerging infectious diseases including those caused by filoviruses and coronaviruses. The unique ability of some of these viral vectors to stimulate the cellular arm of the immune response and, most importantly, T lymphocytes with cell killing activity, has also reawakened the interest toward developing therapeutic vaccines against chronic infectious diseases and cancer. To this end, existing vectors such as those based on Adenoviruses have been improved in immunogenicity and efficacy. Along the same line, new vectors that exploit viruses such as Vesicular Stomatitis Virus (VSV), Measles Virus (MV), Lymphocytic choriomeningitis virus (LCMV), cytomegalovirus (CMV), and Herpes Simplex Virus (HSV), have emerged. Furthermore, technological progress toward modifying their genome to render some of these vectors incompetent for replication has increased confidence toward their use in infant and elderly populations. Lastly, their production process being the same for every product has made viral vectored vaccines the technology of choice for rapid development of vaccines against emerging diseases and for 'personalised' cancer vaccines where there is an absolute need to reduce time to the patient from months to weeks or days. Here we review the recent developments in viral vector technologies, focusing on novel vectors based on primate derived Adenoviruses and Poxviruses, Rhabdoviruses, Paramixoviruses, Arenaviruses and Herpesviruses. We describe the rationale for, immunologic mechanisms involved in, and design of viral vectored gene vaccines under development and discuss the potential utility of these novel genetic vaccine approaches in eliciting protection against infectious diseases and cancer.
Collapse
Affiliation(s)
- Emanuele Sasso
- Nouscom srl, Via di Castel Romano 100, 00128 Rome, Italy; Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy.
| | | | - Nicola Zambrano
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| | | | | | - Alfredo Nicosia
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
19
|
Shi T, Song X, Wang Y, Liu F, Wei J. Combining Oncolytic Viruses With Cancer Immunotherapy: Establishing a New Generation of Cancer Treatment. Front Immunol 2020; 11:683. [PMID: 32411132 PMCID: PMC7198760 DOI: 10.3389/fimmu.2020.00683] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
The recent successes of tumor immunotherapy approaches, such as immune checkpoint blockade (ICB) and chimeric antigen receptor T cell (CAR-T) therapy, have revolutionized cancer treatment, improving efficacy and extending treatment to a larger proportion of cancer patients. However, due to high heterogeneity of cancer, poor tumor cell targeting, and the immunosuppressive status of the tumor microenvironment (TME), combinatorial agents are required to obtain more effective and consistent therapeutic responses in a wide range of cancers. Oncolytic viruses (OVs) are able to selectively replicate in and destroy tumor cells and subsequently induce systematic anti-tumor immune responses. Thus, they are ideal for combining with cancer immunotherapy. In this review, we discuss the current understanding of OVs, as well as the latest preclinical and clinical progress of combining OVs with cancer immunotherapies, including ICB, CAR-T therapy, bispecific T cell engagers (BiTEs), and cancer vaccines. Moreover, we consider future directions for applying OVs to personalized cancer immunotherapies, which could potentially launch a new generation of cancer treatments.
Collapse
Affiliation(s)
- Tao Shi
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xueru Song
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yue Wang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Fangcen Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
20
|
Li R, Qiao S, Chen XX, Xing G, Li X, Zhang G. Vesicular stomatitis virus glycoprotein suppresses nuclear factor kappa-B- and mitogen-activated protein kinase-mediated pro-inflammatory responses dependent on sialic acids. Int J Biol Macromol 2020; 152:828-833. [PMID: 32126199 DOI: 10.1016/j.ijbiomac.2020.02.322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 01/12/2023]
Abstract
Vesicular stomatitis (VS), characterized by vesicular lesions, produces significant economic losses in livestock industry. Infection by its causative agent, VS virus (VSV), has been previously shown to be mediated by the glycoprotein (G) during attachment, endocytosis and membrane fusion. In the current study, we revealed a novel role of VSV G protein in negative regulation of host cell pro-inflammatory responses. We determined that VSV G protein inhibited lipopolysaccharide (LPS)-induced pro-inflammatory responses as naïve VSV virions in murine peritoneal macrophage-like cell line RAW 264.7. Furthermore, we identified that VSV G protein suppressed nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK)-mediated pro-inflammatory pathways in a dose-dependent manner. Moreover, we demonstrated that α2-3-linked sialic acids on VSV G protein were involved in antagonizing NF-κB- and MAPK-mediated pro-inflammatory responses. All these results expand the knowledge of VSV pathogenesis and strengthen the importance of VSV G protein in host innate immunity, which support implications for the development of VSV-based vaccination and oncolysis.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Guangxu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Xuewu Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
21
|
Gélinas JF, Kiesslich S, Gilbert R, Kamen AA. Titration methods for rVSV-based vaccine manufacturing. MethodsX 2020; 7:100806. [PMID: 32195130 PMCID: PMC7078374 DOI: 10.1016/j.mex.2020.100806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/22/2020] [Indexed: 11/21/2022] Open
Abstract
The recombinant Vesicular Stomatitis Virus (rVSV) is an emerging platform for viral vector-based vaccines. Promising results have been reported in clinical trials for the rVSV-ZEBOV vaccine for Ebola virus disease prevention. In this study, we describe the titration tools elaborated to assess the titre of rVSV-ZEBOV productions. • A streamlined Median Tissue Culture Infectious Dose (TCID50) assay to determine the infectious titer of this vaccine was established. • A digital polymerase chain reaction (dPCR) assay to assess the total number of viral particles present in cell-free culture supernatants of rVSV productions was developed. • These assays are used to titre rVSV-ZEBOV samples and characterize the ratio of total particles to infectious units for monitoring process robustness and product quality attributes and can be used to titre samples generated in the production of further rVSV vectors.
Collapse
Affiliation(s)
- Jean-François Gélinas
- Department of Bioengineering, McGill University, 3480 University, Montréal, Québec H3A 0E9, Canada
| | - Sascha Kiesslich
- Department of Bioengineering, McGill University, 3480 University, Montréal, Québec H3A 0E9, Canada
| | - Rénald Gilbert
- Department of Bioengineering, McGill University, 3480 University, Montréal, Québec H3A 0E9, Canada
- Human Health Therapeutics, National Research Council Canada, Montreal, QC, Canada
| | - Amine A. Kamen
- Department of Bioengineering, McGill University, 3480 University, Montréal, Québec H3A 0E9, Canada
- Corresponding author.
| |
Collapse
|
22
|
Pipperger L, Koske I, Wild N, Müllauer B, Krenn D, Stoiber H, Wollmann G, Kimpel J, von Laer D, Bánki Z. Xenoantigen-Dependent Complement-Mediated Neutralization of Lymphocytic Choriomeningitis Virus Glycoprotein-Pseudotyped Vesicular Stomatitis Virus in Human Serum. J Virol 2019; 93:e00567-19. [PMID: 31243134 PMCID: PMC6714799 DOI: 10.1128/jvi.00567-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
Neutralization by antibodies and complement limits the effective dose and thus the therapeutic efficacy of oncolytic viruses after systemic application. We and others previously showed that pseudotyping of oncolytic rhabdoviruses such as maraba virus and vesicular stomatitis virus (VSV) with the lymphocytic choriomeningitis virus glycoprotein (LCMV-GP) results in only a weak induction of neutralizing antibodies. Moreover, LCMV-GP-pseudotyped VSV (VSV-GP) was significantly more stable in normal human serum (NHS) than VSV. Here, we demonstrate that depending on the cell line used for virus production, VSV-GP showed different complement sensitivities in nonimmune NHS. The NHS-mediated titer reduction of VSV-GP was dependent on activation of the classical complement pathway, mainly by natural IgM antibodies against xenoantigens such as galactose-α-(1,3)-galactose (α-Gal) or N-glycolylneuraminic acid (Neu5Gc) expressed on nonhuman production cell lines. VSV-GP produced on human cell lines was stable in NHS. However, VSV-GP generated in transduced human cells expressing α-Gal became sensitive to NHS. Furthermore, GP-specific antibodies induced complement-mediated neutralization of VSV-GP independently of the producer cell line, suggesting that complement regulatory proteins potentially acquired by the virus during the budding process are not sufficient to rescue the virus from antibody-dependent complement-mediated lysis. Thus, our study points to the importance of a careful selection of cell lines for viral vector production for clinical use.IMPORTANCE Systemic application aims to deliver oncolytic viruses to tumors as well as to metastatic lesions. However, we found that xenoantigens incorporated onto the viral surface from nonhuman production cell lines are recognized by natural antibodies in human serum and that the virus is thereby inactivated by complement lysis. Hence, to maximize the effective dose, careful selection of cell lines for virus production is crucial.
Collapse
Affiliation(s)
- Lisa Pipperger
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Iris Koske
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicole Wild
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Brigitte Müllauer
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Krenn
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Guido Wollmann
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, Innsbruck, Austria
| | - Janine Kimpel
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorothee von Laer
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
23
|
Fathi A, Dahlke C, Addo MM. Recombinant vesicular stomatitis virus vector vaccines for WHO blueprint priority pathogens. Hum Vaccin Immunother 2019; 15:2269-2285. [PMID: 31368826 PMCID: PMC6816421 DOI: 10.1080/21645515.2019.1649532] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The devastating Ebola virus (EBOV) outbreak in West Africa in 2013-2016 has flagged the need for the timely development of vaccines for high-threat pathogens. To be better prepared for new epidemics, the WHO has compiled a list of priority pathogens that are likely to cause future outbreaks and for which R&D efforts are, therefore, paramount (R&D Blueprint: https://www.who.int/blueprint/priority-diseases/en/ ). To this end, the detailed characterization of vaccine platforms is needed. The vesicular stomatitis virus (VSV) has been established as a robust vaccine vector backbone for infectious diseases for well over a decade. The recent clinical trials testing the vaccine candidate VSV-EBOV against EBOV disease now have added a substantial amount of clinical data and suggest VSV to be an ideal vaccine vector candidate for outbreak pathogens. In this review, we discuss insights gained from the clinical VSV-EBOV vaccine trials as well as from animal studies investigating vaccine candidates for Blueprint pathogens.
Collapse
Affiliation(s)
- Anahita Fathi
- Department of Medicine, Division of Infectious Diseases, University Medical-Center Hamburg-Eppendorf , Hamburg , Germany.,Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine , Hamburg , Germany.,German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems , Germany
| | - Christine Dahlke
- Department of Medicine, Division of Infectious Diseases, University Medical-Center Hamburg-Eppendorf , Hamburg , Germany.,Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine , Hamburg , Germany.,German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems , Germany
| | - Marylyn M Addo
- Department of Medicine, Division of Infectious Diseases, University Medical-Center Hamburg-Eppendorf , Hamburg , Germany.,Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine , Hamburg , Germany.,German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems , Germany
| |
Collapse
|
24
|
Bresk CA, Hofer T, Wilmschen S, Krismer M, Beierfuß A, Effantin G, Weissenhorn W, Hogan MJ, Jordan APO, Gelman RS, Montefiori DC, Liao HX, Schmitz JE, Haynes BF, von Laer D, Kimpel J. Induction of Tier 1 HIV Neutralizing Antibodies by Envelope Trimers Incorporated into a Replication Competent Vesicular Stomatitis Virus Vector. Viruses 2019; 11:v11020159. [PMID: 30769947 PMCID: PMC6409518 DOI: 10.3390/v11020159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
A chimeric vesicular stomatitis virus with the glycoprotein of the lymphocytic choriomeningitis virus, VSV-GP, is a potent viral vaccine vector that overcomes several of the limitations of wild-type VSV. Here, we evaluated the potential of VSV-GP as an HIV vaccine vector. We introduced genes for different variants of the HIV-1 envelope protein Env, i.e., secreted or membrane-anchored, intact or mutated furin cleavage site or different C-termini, into the genome of VSV-GP. We found that the addition of the Env antigen did not attenuate VSV-GP replication. All HIV-1 Env variants were expressed in VSV-GP infected cells and some were incorporated very efficiently into VSV-GP particles. Crucial epitopes for binding of broadly neutralizing antibodies against HIV-1 such as MPER (membrane-proximal external region), CD4 binding site, V1V2 and V3 loop were present on the surface of VSV-GP-Env particles. Binding of quaternary antibodies indicated a trimeric structure of VSV-GP incorporated Env. We detected high HIV-1 antibody titers in mice and showed that vectors expressing membrane-anchored Env elicited higher antibody titers than vectors that secreted Envs. In rabbits, Tier 1A HIV-1 neutralizing antibodies were detectable after prime immunization and titers further increased after boosting with a second immunization. Taken together, VSV-GP-Env is a promising vector vaccine against HIV-1 infection since this vector permits incorporation of native monomeric and/or trimeric HIV-1 Env into a viral membrane.
Collapse
Affiliation(s)
- C Anika Bresk
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Tamara Hofer
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Sarah Wilmschen
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Marina Krismer
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Anja Beierfuß
- Central Laboratory Animal Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Grégory Effantin
- Institut de Biologie Structurale (IBS), CNRS, CEA, Université Grenoble Alpes, 38044 Grenoble, France.
| | - Winfried Weissenhorn
- Institut de Biologie Structurale (IBS), CNRS, CEA, Université Grenoble Alpes, 38044 Grenoble, France.
| | - Michael J Hogan
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Andrea P O Jordan
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Rebecca S Gelman
- Dana-Farber Cancer Institute, Harvard Medical School and Harvard School of Public Health, Boston, MA 02215, USA.
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Joern E Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Dorothee von Laer
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Janine Kimpel
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|