1
|
Primavera R, Bellotti E, Di Mascolo D, Di Francesco M, Wang J, Kevadiya BD, De Pascale A, Thakor AS, Decuzzi P. Insulin Granule-Loaded MicroPlates for Modulating Blood Glucose Levels in Type-1 Diabetes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53618-53629. [PMID: 34751556 PMCID: PMC8603355 DOI: 10.1021/acsami.1c16768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Type-1 diabetes (T1DM) is a chronic metabolic disorder resulting from the autoimmune destruction of β cells. The current standard of care requires multiple, daily injections of insulin and accurate monitoring of blood glucose levels (BGLs); in some cases, this results in diminished patient compliance and increased risk of hypoglycemia. Herein, we engineered hierarchically structured particles comprising a poly(lactic-co-glycolic) acid (PLGA) prismatic matrix, with a 20 × 20 μm base, encapsulating 200 nm insulin granules. Five configurations of these insulin-microPlates (INS-μPLs) were realized with different heights (5, 10, and 20 μm) and PLGA contents (10, 40, and, 60 mg). After detailed physicochemical and biopharmacological characterizations, the tissue-compliant 10H INS-μPL, realized with 10 mg of PLGA, presented the most effective release profile with ∼50% of the loaded insulin delivered at 4 weeks. In diabetic mice, a single 10H INS-μPL intraperitoneal deposition reduced BGLs to that of healthy mice within 1 h post-implantation (167.4 ± 49.0 vs 140.0 ± 9.2 mg/dL, respectively) and supported normoglycemic conditions for about 2 weeks. Furthermore, following the glucose challenge, diabetic mice implanted with 10H INS-μPL successfully regained glycemic control with a significant reduction in AUC0-120min (799.9 ± 134.83 vs 2234.60 ± 82.72 mg/dL) and increased insulin levels at 7 days post-implantation (1.14 ± 0.11 vs 0.38 ± 0.02 ng/mL), as compared to untreated diabetic mice. Collectively, these results demonstrate that INS-μPLs are a promising platform for the treatment of T1DM to be further optimized with the integration of smart glucose sensors.
Collapse
Affiliation(s)
- Rosita Primavera
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Elena Bellotti
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Daniele Di Mascolo
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Martina Di Francesco
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Jing Wang
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Bhavesh D. Kevadiya
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Angelo De Pascale
- Unit
of Endocrinology, Department of Internal Medicine & Medical Specialist
(DIMI), University of Genoa, 16136 Genoa, Italy
| | - Avnesh S. Thakor
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Paolo Decuzzi
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
2
|
Raval J, Trivedi R, Suman S, Kukrety A, Prajapati P. NANO-BIOTECHNOLOGY AND ITS INNOVATIVE PERSPECTIVE IN DIABETES MANAGEMENT. Mini Rev Med Chem 2021; 22:89-114. [PMID: 34165408 DOI: 10.2174/1389557521666210623164052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
Diabetes occurs due to the imbalance of glucose in the body known as glucose homeostasis, thus leading to metabolic changes in the body. The two stages hypoglycemia or hyperglycemia classify diabetes into various categories. Various bio-nanotechnological approaches are coupled up with nano particulates, polymers, liposome, various gold plated and solid lipid particulates, regulating transcellular transport, non specific cellular uptake, and paracellular transport, leading to oral, trans-dermal , pulmonary, buccal , nasal , specific gene oriented administration to avoid the patient's non compliance with the parental routes of administration. Phytochemicals are emerging strategies for the future prospects of diabetes management.
Collapse
Affiliation(s)
- Jigar Raval
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhinagar-382007, Gujarat, India
| | - Riddhi Trivedi
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhinagar-382007, Gujarat, India
| | - Sonali Suman
- CDSCO, Meghaninagar, Ahmedabad, Gujarat 380003, India
| | | | - Prajesh Prajapati
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhinagar-382007, Gujarat, India
| |
Collapse
|
3
|
Fuchs S, Ernst AU, Wang LH, Shariati K, Wang X, Liu Q, Ma M. Hydrogels in Emerging Technologies for Type 1 Diabetes. Chem Rev 2020; 121:11458-11526. [DOI: 10.1021/acs.chemrev.0c01062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander U. Ernst
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xi Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Xu X, Shang H, Zhang T, Shu P, Liu Y, Xie J, Zhang D, Tan H, Li J. A stimuli-responsive insulin delivery system based on reversible phenylboronate modified cyclodextrin with glucose triggered host-guest interaction. Int J Pharm 2018; 548:649-658. [PMID: 29981896 DOI: 10.1016/j.ijpharm.2018.07.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/19/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
Abstract
Injection of insulin is an effective therapy to treat most patients with the type I diabetes and some with type II diabetes. Additionally, the release of insulin under specific conditions has attracted widespread interest. In this study, a smart drug carrier that can release insulin depending on the changes in blood glucose levels was designed. Combining two popular molecules through facile synthetic processes, a drug carrier of reversible phenylboronate group modified cyclodextrin (β-CD-EPDME) was fabricated. The drug carrier is composed of cyclodextrin, which can encapsulate insulin, and phenylboronate, which is sensitive to the cis-diols in some saccharides. Moreover, β-CD-EPDME can successfully encapsulate insulin and almost completely release insulin in the presence of glucose. The detached phenylboronic acid moiety triggered by glucose can attack the β-CD cavity and form a host-guest complex, which can force out the encapsulated insulin within the cavity. In addition, the insulin released from the β-CD-EPDME@Insulin complex retains its secondary structure, and the drug carrier has been proven to have low cytotoxicity. Thus, this safe and glucose-responsive drug carrier shows the potential for use in the therapy of diabetes.
Collapse
Affiliation(s)
- Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hui Shang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Tianyu Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Panjing Shu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yanpeng Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Dongyue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Villaverde Cendon F, Matos Jorge RM, Weinschutz R, Mathias AL. Effect of matrix composition, sphere size and hormone concentration on diffusion coefficient of insulin for controlled gastrointestinal delivery for diabetes treatment. J Microencapsul 2017; 35:13-25. [DOI: 10.1080/02652048.2017.1409820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - Regina Weinschutz
- Chemical Engineering Department, Federal University of Paraná, Curitiba, Brazil
| | - Alvaro Luiz Mathias
- Chemical Engineering Department, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
6
|
Jansook P, Ogawa N, Loftsson T. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int J Pharm 2017; 535:272-284. [PMID: 29138045 DOI: 10.1016/j.ijpharm.2017.11.018] [Citation(s) in RCA: 477] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 01/20/2023]
Abstract
Since their discovery over 100 years ago cyclodextrins (CDs) have been the subject of numerous scientific publications. In 2016 alone CDs were the subject of over 2200 research articles published in peer-reviewed journals and mentioned in over 2300 patents and patent applications, many of which were on pharmaceutical applications. Natural CDs and their derivatives are used as enabling pharmaceutical excipients that enhance aqueous solubility of poorly soluble drugs, increase drug permeability through biological membranes and improve drug bioavailability. Unlike conventional penetration enhancers, their hydrophilic structure and high molecular weight prevents them from penetrate into lipophilic membranes leaving biological membranes intact. The natural CDs and some of their derivatives have monographs in pharmacopeias and are also commonly used as food additives and in toiletry products. CDs form inclusion complexes with lipophilic moieties of hydrophobic drugs. Furthermore, CDs are able to form non-inclusion complexes and self-assembled aggregates; small and large complex aggregates with micellar-like structures that can enhance drug solubility. Excipients commonly used in pharmaceutical formulations may have additive or inhibiting effect on the CD solubilization. Here various methods used to investigate CD aggregate formation are reviewed as well as techniques that are used to increase the solubilizing effects of CDs; methods that enhance the apparent intrinsic solubility of drugs and/or the complexation efficacy and decrease the amount of CD needed to develop CD-containing pharmaceutical formulations. It will be explained how too much or too little CD can hamper drug bioavailability, and the role of CDs in solid dosage forms and parenteral formulations, and examples given on how CDs can enhance drug delivery after ocular, nasal and pulmonary administration.
Collapse
Affiliation(s)
- Phatsawee Jansook
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Noriko Ogawa
- Department of Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| |
Collapse
|
7
|
Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying. Int J Pharm 2016; 498:82-95. [DOI: 10.1016/j.ijpharm.2015.12.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 12/30/2022]
|
8
|
Mo R, Jiang T, Di J, Tai W, Gu Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem Soc Rev 2014; 43:3595-629. [PMID: 24626293 DOI: 10.1039/c3cs60436e] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Insulin is essential for type 1 and advanced type 2 diabetics to maintain blood glucose levels and prolong lives. The traditional administration requires frequent subcutaneous insulin injections that are associated with poor patient compliance, including pain, local tissue necrosis, infection, and nerve damage. Taking advantage of emerging micro- and nanotechnologies, numerous alternative strategies integrated with chemical approaches for insulin delivery have been investigated. This review outlines recent developments in the controlled delivery of insulin, including oral, nasal, pulmonary, transdermal, subcutaneous and closed-loop insulin delivery. Perspectives from new materials, formulations and devices at the micro- or nano-scales are specifically surveyed. Advantages and limitations of current delivery methods, as well as future opportunities and challenges are also discussed.
Collapse
Affiliation(s)
- Ran Mo
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | |
Collapse
|
9
|
Wan F, Wu JX, Bohr A, Baldursdottir SG, Maltesen MJ, Bjerregaard S, Foged C, Rantanen J, Yang M. Impact of PLGA molecular behavior in the feed solution on the drug release kinetics of spray dried microparticles. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.08.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
|
11
|
Sparing methylation of β-cyclodextrin mitigates cytotoxicity and permeability induction in respiratory epithelial cell layers in vitro. J Control Release 2009; 136:110-6. [DOI: 10.1016/j.jconrel.2009.01.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 01/19/2009] [Accepted: 01/26/2009] [Indexed: 01/23/2023]
|
12
|
Emami J, Hamishehkar H, Najafabadi AR, Gilani K, Minaiyan M, Mahdavi H, Nokhodchi A. A Novel Approach to Prepare Insulin-Loaded Poly (Lactic-Co-Glycolic Acid) Microcapsules and the Protein Stability Study. J Pharm Sci 2009; 98:1712-31. [DOI: 10.1002/jps.21544] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Naha PC, Kanchan V, Manna PK, Panda AK. Improved bioavailability of orally delivered insulin using Eudragit-L30D coated PLGA microparticles. J Microencapsul 2008; 25:248-56. [DOI: 10.1080/02652040801903843] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Abstract
The unearthing of fundamental science and technology associated with microencapsulation is an ongoing exciting scientific endeavour focused on by several scientists. Encapsulated structures (containing either a gas, molecules or materials) previously have been shown as having widespread applications across the physical and life sciences. In particular, such methodologies used for forming encapsulations in medical-related studies have shown great promise from diagnostics and imaging, to gene therapy and drug delivery which are only a few amongst several other applications. At present there are numerous 'jet-based' manifestations available for microencapsulation, these primarily root from either capillary or channel-based techniques. The driving mechanisms employed in these approaches exploit aerodynamic/pressure gradients to piezoelectricity. In this paper submerged electrosprays a multipurpose electric field driven jet-based technique is explored for forming near mono-dispersed encapsulations sized in the micrometer range. Our studies elucidate the ability to form microencapsulations containing either a gas or a micro/nanoparticulate-based material suspension as capsules sized in the ranges approximately 65-80 microm, approximately 8-25 microm to approximately 3-14 microm, respectively. We believe this technique can significantly contribute to the microencapsulation field of research based on both the size of the generated encapsulations to the containment of immiscible high viscosity particulate-based suspensions. Furthermore our investigations show the ability to control the production of these encapsulations in terms of both their size and rate of generation with ease; hence demonstrating this electrospray-assisted microencapsulation route as having a wide range of applications. It should be noted that in its present form this technique could be explored for generating emulsions with a variety of materials especially with living organisms for applications in the clinical and biomedical areas of research.
Collapse
Affiliation(s)
- S N Jayasinghe
- Department of Mechanical Engineering, University College London. UK.
| |
Collapse
|
15
|
Gaskell EE, Hobbs G, Rostron C, Hutcheon GA. Encapsulation and release ofα-chymotrypsin from poly(glycerol adipate-co-ω-pentadecalactone) microparticles. J Microencapsul 2008; 25:187-95. [DOI: 10.1080/02652040701848775] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Al-Tabakha MM, Arida AI. Recent challenges in insulin delivery systems: a review. Indian J Pharm Sci 2008; 70:278-86. [PMID: 20046733 PMCID: PMC2792528 DOI: 10.4103/0250-474x.42968] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 02/21/2008] [Accepted: 05/09/2008] [Indexed: 11/06/2022] Open
Abstract
Relatively, a large percentage of world population is affected by diabetes mellitus, out of which approximately 5-10% with type 1 diabetes while the remaining 90% with type 2. Insulin administration is essential for type 1 patients while it is required at later stage by the patients of type 2. Current insulin delivery systems are available as transdermal injections which may be considered as invasive. Several non-invasive approaches for insulin delivery are being pursued by pharmaceutical companies to reduce the pain, and hypoglycemic incidences associated with injections in order to improve patient compliance. While any new insulin delivery system requires health authorities' approval, to provide long term safety profile and insuring patients' acceptance. The inhalation delivery system Exubera((R)) has already become clinically available in the United States and Europe for patients with diabetes as non-invasive delivery system.
Collapse
Affiliation(s)
- M. M. Al-Tabakha
- Department of Pharmaceutics, Faculty of Pharmacy and Health Sciences, Ajman University of Science and Technology Network, P.O. Box 2202, Al-Fujairah, UAE
| | - A. I. Arida
- Faculty of Pharmacy, Philadelphia University, P.O.Box 1, Postal Code 19392, Jordan
| |
Collapse
|
17
|
Abstract
The inhalation route is seen as the most promising non-invasive alternative for the delivery of proteins; however, the short duration of activity of drugs delivered via this route brought about by the activities of alveolar macrophages and mucociliary clearance means there is a need to develop controlled release system to prolong the activities of proteins delivered to the lung. Polymeric materials such as (D,L)-poly(lactic glycolic acid) (PLGA), chitosan and poly(ethylene glycol) (PEGs) have been used for controlled release of proteins. Other systems such as liposomes and microcrystallization have also proved effective. This chapter gives a more detailed understanding of these techniques and the manufacture of the delivery systems.
Collapse
|
18
|
Estevan M, Gamazo C, González-Gaitano G, Irache JM. Optimization of the entrapment of bacterial cell envelope extracts into microparticles for vaccine delivery. J Microencapsul 2007; 23:169-81. [PMID: 16754373 DOI: 10.1080/02652040500435253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The encapsulation of a Brucella ovis extract (HS) in microparticles has been proved effective against experimental infections in mice. This work describes different strategies to increase the HS loading and prepare large batches as necessary to test this vaccine in ovine. The mixture of HS with beta-cyclodextrin was optimized in order to increase the HS loading in microparticles. On the other hand, TROMS ('Total Recirculation One-Machine System') led microparticles with a more homogeneous size than the laboratory or standard procedure. Moreover, the initial burst release of HS from the standard microparticles was higher than for the TROMS ones. In fact, standard microparticles displayed a higher amount of adsorbed HS. On the contrary, both preparative methods were found effective to preserve the integrity and anti-genicity of the loaded HS. In summary, beta-CD can be used to increase the loading of large hydrophobic materials and TROMS is a valid large production of antigen-loaded microparticles.
Collapse
Affiliation(s)
- Maite Estevan
- Department of Microbiology, University of Navarra, Pamplona, Spain.
| | | | | | | |
Collapse
|
19
|
Soares AF, Carvalho RDA, Veiga F. Oral administration of peptides and proteins: nanoparticles and cyclodextrins as biocompatible delivery systems. Nanomedicine (Lond) 2007; 2:183-202. [PMID: 17716120 DOI: 10.2217/17435889.2.2.183] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review discusses drawbacks to peptide and protein oral formulations related to these drugs’ chemical and physical instability. Means used to overcome such limitations are mentioned and discussed in parallel with manufacturing considerations, metabolism, absorption mechanisms and the efflux systems that peptides and proteins experience as they travel through the gastrointestinal tract. Special focus is given to the use of delivery systems based on nanoparticles and cyclodextrins. Advantages of these systems relate to the protection from degradation, enhancement of absorption, targeting and controlling the release of the drug. Biodistribution and safety issues are discussed once material from the delivery system is expected to be absorbed by the body and thus interact with biological components. Operating parameters regarding nanoparticle manufacture and composition are also overviewed since nanoparticle physicochemical characteristics influence the ability to successfully entrap the intended drug as well as interaction with body.
Collapse
Affiliation(s)
- Ana Francisca Soares
- Pharmaceutical Technology Laboratory, Faculty of Pharmacy, University of Coimbra, Rua do Norte, 3000-004 Coimbra, Portugal.
| | | | | |
Collapse
|
20
|
Triblock copolymer Pluronic®F127 sustains insulin release and reduces initial burst of microspheres—in vitro and in vivo study. Colloid Polym Sci 2006. [DOI: 10.1007/s00396-006-1541-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Castellanos IJ, Flores G, Griebenow K. Effect of cyclodextrins on alpha-chymotrypsin stability and loading in PLGA microspheres upon S/O/W encapsulation. J Pharm Sci 2006; 95:849-58. [PMID: 16493595 DOI: 10.1002/jps.20512] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The potential of cyclodextrins to stabilize alpha-chymotrypsin upon encapsulation in Poly(lactic-co-glycolic) acid (PLGA) microspheres using a solid-in-oil-in-water (s/o/w) technique was investigated. Two cyclodextrins, hydroxyl-propyl-beta-cyclodextrin (HPbetaCD) and methyl-beta-cyclodextrin (MbetaCD), one insoluble and the other soluble in methylene chloride, were used. The results demonstrate that HPbetaCD failed to stabilize alpha-chymotrypsin upon encapsulation. Specifically, 19% of the protein was aggregated and the specific activity of the enzyme was reduced to ca. 50% of that prior to encapsulation. In contrast, MbetaCD significantly decreased the formation of aggregates to 3% and the retained specific activity of the enzyme was approximately 90%. The co-lyophilization of alpha-chymotrypsin with MbetaCD prior to encapsulation was a requisite to preserve the protein stability in microspheres. Furthermore, MbetaCD prevented the loss of protein during the preparation of microspheres and the encapsulation efficiency was improved to 90%. Release experiments showed the use of MbetaCD modified the release profile: the burst release decreased from 54% (in the absence of the excipient) to 36%. The results suggest that MbetaCD might be a suitable excipient to improve protein stability in s/o/w encapsulation procedures.
Collapse
Affiliation(s)
- Ingrid J Castellanos
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, P.O. Box 23346, San Juan, Puerto Rico 00931-3346
| | | | | |
Collapse
|
22
|
Dunn JS, Nayar R, Campos J, Hybertson BM, Zhou Y, Manning MC, Repine JE, Stringer KA. Feasibility of tissue plasminogen activator formulated for pulmonary delivery. Pharm Res 2005; 22:1700-7. [PMID: 16180128 PMCID: PMC2040297 DOI: 10.1007/s11095-005-6335-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 06/06/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE This study was conducted to assess the feasibility of a pulmonary formulation of tissue plasminogen activator (tPA) for nebulization into the airway by measuring protein stability, biologic activity, particle size, and estimating human lung distribution. METHODS Formulations were derived by varying the surfactant and protein concentrations. Protein stability and recovery of each nebulized tPA formulation were assessed by ultraviolet spectroscopy. Formulations that met protein stability feasibility criteria were assessed for biologic and fibrinolytic activities. Biologic activity was determined by their ability to inhibit superoxide anion production by human neutrophils. Fibrinolytic activity was assessed by the cleavage of plasminogen to plasmin. Aerodynamic properties were assessed using a cascade impactor, and an estimation of human airway deposition was made via a human lung replica. RESULTS Twenty-seven tPA formulations were initially assessed, 15 of which met protein stability criteria. Subsequently, three of these formulations maintained biologic and fibrinolytic activities. These formulations exhibited particle sizes of 2.4-3.1 microm, and had respirable doses > or =65%. A formulation of 1mg mL(-1) tPA and 0.1% Tween 80 exhibited a 45% deposition in the lower airways of a human lung replica. CONCLUSIONS A suitable pulmonary tPA formulation was identified that, following nebulization, maintained protein stability as well as biologic and fibrinolytic activities, and resulted in an optimal respirable dose and human airway deposition. This formulation may be applicable in the treatment of lung diseases, such as acute respiratory distress syndrome by permitting targeted pulmonary delivery of a therapeutic protein to the lungs.
Collapse
Affiliation(s)
- John S. Dunn
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | - Rajiv Nayar
- HTD Biosystems, Inc., Hercules, California, USA
| | | | - Brooks M. Hybertson
- Webb Waring Institute for Antioxidant Research, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | - Yue Zhou
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | | | - John E. Repine
- Webb Waring Institute for Antioxidant Research, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | - Kathleen A. Stringer
- Department of Clinical Pharmacy, School of Pharmacy, University of Colorado Health Sciences Center, C238, 4200 East Ninth Avenue, Denver, Colorado 80262, USA
- To whom correspondence should be addressed. (e-mail: )
| |
Collapse
|