1
|
Ahmaditabar P, Mahmoodi M, Taheri RA, Asefnejad A. Preparation and in vitro evaluation of tissue plasminogen activator-loaded nanoliposomes with anticoagulant coating. Biochim Biophys Acta Gen Subj 2024; 1868:130704. [PMID: 39178920 DOI: 10.1016/j.bbagen.2024.130704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/06/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
The clinical efficacy of tissue plasminogen activator (tPA) is limited by its lack of specific delivery, requiring large therapeutic doses that increase the risk of intracerebral hemorrhage, bleeding at the surgical site, and patient mortality after angioplasty. To address these limitations, this study aimed to develop a chitosan polysulfate (CsPs)-coated liposomal formulation for the sustained release of tPA. The CsPs-coated liposomes containing tPA (Liposome-tPA/CsPs) were fabricated using the thin-film hydration technique and their properties were compared to tPA-encapsulated nanoliposomes without a coating layer (Liposome-tPA). Liposome-tPA/CsPs showed a quasi-spherical morphology with a hydrodynamic diameter of 110 nm, while Liposome-tPA had a diameter of 80 nm. The thermal analysis showed that the degradation temperature and glass transition temperature (Tg) of Liposome-tPA/CsPs were higher than that of tPA alone, indicating improved temperature stability. The in vitro release study demonstrated a slow and sustained release of tPA from the Liposome-tPA/CsPs, with a concentration of 0.02 mg/ml at 1 h and 0.23 mg/ml at 180 h. The CsPs coating layer enhanced the antibacterial and antioxidant activity of the nanoliposomes. Liposome-tPA/CsPs exhibited higher cell viability compared to Liposome-tPA. It also achieved a higher percentage of thrombolysis, with complete clot dissolution observed after 3 h of treatment. These findings suggest that the Liposome-tPA/CsPs can be a promising approach to overcome the limitations associated with the systemic administration of tPA, potentially enhancing its clinical efficacy while reducing the risk of adverse events.
Collapse
Affiliation(s)
- Parvin Ahmaditabar
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahboobeh Mahmoodi
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran; Joint Reconstruction Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ramezan Ali Taheri
- Department of Biology, Faculty of Sciences, University of Tehran, Tehran, Iran
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Liu L, McClements DJ, Liu X, Liu F. Overcoming Biopotency Barriers: Advanced Oral Delivery Strategies for Enhancing the Efficacy of Bioactive Food Ingredients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2401172. [PMID: 39361948 DOI: 10.1002/advs.202401172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Bioactive food ingredients contribute to the promotion and maintenance of human health and wellbeing. However, these functional ingredients often exhibit low biopotency after food processing or gastrointestinal transit. Well-designed oral delivery systems can increase the ability of bioactive food ingredients to resist harsh environments inside and outside the human body, as well as allow for controlled or triggered release of bioactives to specific sites in the gastrointestinal tract or other tissues and organs. This review presents the characteristics of common bioactive food ingredients and then highlights the barriers to their biopotency. It also discusses various oral delivery strategies and carrier types that can be used to overcome these biopotency barriers, with a focus on recent advances in the field. Additionally, the advantages and disadvantages of different delivery strategies are highlighted. Finally, the current challenges facing the development of food-grade oral delivery systems are addressed, and areas where future research can lead to new advances and industrial applications of these systems are proposed.
Collapse
Affiliation(s)
- Ling Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
3
|
Stolić Jovanović A, Tadić VM, Martinović M, Žugić A, Nešić I, Blagojević S, Jasnić N, Tosti T. Liposomal Encapsulation of Ascorbyl Palmitate: Influence on Skin Performance. Pharmaceutics 2024; 16:962. [PMID: 39065659 PMCID: PMC11280113 DOI: 10.3390/pharmaceutics16070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
L-ascorbic acid represents one of the most potent antioxidant, photoprotective, anti-aging, and anti-pigmentation cosmeceutical agents, with a good safety profile. However, the main challenge is the formulation of stable topical formulation products, which would optimize the penetrability of L-ascorbic acid through the skin. The aim of our research was to evaluate the performance of ascorbyl palmitate on the skin, incorporated in creams and emulgels (2%) as carriers, as well as to determine the impact of its incorporation into liposomes on the penetration profile of this ingredient. Tape stripping was used to study the penetration of ascorbyl palmitate into the stratum corneum. In addition, the sensory and textural properties of the formulations were determined. The liposomal formulations exhibited a better penetration profile (p < 0.05) of the active substance compared to the non-liposomal counterpart, leading to a 1.3-fold and 1.2 fold-increase in the total amount of penetrated ascorbyl palmitate in the stratum corneum for the emulgel and cream, respectively. Encapsulation of ascorbyl palmitate into liposomes led to an increase in the adhesiveness and density of the prepared cream and emulgel samples. The best spreadability and absorption during application were detected in liposomal samples. The obtained results confirmed that liposomal encapsulation of ascorbyl palmitate improved dermal penetration for both the cream and emulgel formulations.
Collapse
Affiliation(s)
| | - Vanja M. Tadić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Koscuška 1, 11000 Belgrade, Serbia; (V.M.T.); (A.Ž.)
| | - Milica Martinović
- Department of Pharmacy, Faculty of Medicine, University of Nis, Boulevard Dr. Zorana Djindjića 81, 18000 Nis, Serbia; (M.M.); (I.N.)
| | - Ana Žugić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Koscuška 1, 11000 Belgrade, Serbia; (V.M.T.); (A.Ž.)
| | - Ivana Nešić
- Department of Pharmacy, Faculty of Medicine, University of Nis, Boulevard Dr. Zorana Djindjića 81, 18000 Nis, Serbia; (M.M.); (I.N.)
| | - Stevan Blagojević
- The Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Beograd, Serbia;
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Beograd, Serbia;
| | - Tomislav Tosti
- Institute of Chemistry, Technology and Metallurgy-National Institute of the Republic of Serbia, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| |
Collapse
|
4
|
Li X, Zhang H, Mao X. Liposomes delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:257-300. [PMID: 39218504 DOI: 10.1016/bs.afnr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Natural bioactive compounds with antioxidant, antimicrobial, anticancer, and other biological activities are vital for maintaining the body's physiological functions and enhancing immunity. These compounds have great potential as nutritional therapeutic agents, but they can be limited due to their poor flavor, color, unstable nature, and poor water solubility, and degradation by gastrointestinal enzymes. Liposomes, as ideal carriers, can encapsulate both water-soluble and fat-soluble nutrients, enhance the bioavailability of functional substances, promote the biological activity of functional substances, and control the release of nutrients. Despite their potential, liposomes still face obstacles in nutrient delivery. Therefore, the design of liposomes for special needs, optimization of the liposome preparation process, enhancement of liposome encapsulation efficiency, and industrial production are key issues that must be addressed in order to develop food-grade liposomes. Moreover, the research on surface-targeted modification and surface functionalization of liposomes is valuable for expanding the scope of application of liposomes and achieving the release of functional substances from liposomes at the appropriate time and site. The establishment of in vivo and in vitro digestion models of nutrient-loaded liposomes, in-depth study of gastrointestinal digestive behavior after liposome ingestion, targeted nutrient release, and deciphering the nutritional intervention of human diseases and positive health promotion are promising fields with broad development prospects.
Collapse
Affiliation(s)
- Xuehan Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, P.R. China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, P.R. China
| | - Haiyang Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, P.R. China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, P.R. China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, P.R. China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, P.R. China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P.R. China.
| |
Collapse
|
5
|
Lewicka K, Smola-Dmochowska A, Dobrzyński P, Śmigiel-Gac N, Jelonek K, Musiał-Kulik M, Rychter P. Microspheres Based on Blends of Chitosan Derivatives with Carrageenan as Vitamin Carriers in Cosmeceuticals. Polymers (Basel) 2024; 16:1815. [PMID: 39000669 PMCID: PMC11244320 DOI: 10.3390/polym16131815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
Chitosan (CS) has a natural origin and is a biodegradable and biocompatible polymer with many skin-beneficial properties successfully used in the cosmetics and pharmaceutical industry. CS derivatives, especially those synthesized via a Schiff base reaction, are very important due to their unique antimicrobial activity. This study demonstrates research results on the use of hydrogel microspheres made of [chitosan-graft-poly(ε-caprolactone)]-blend-(ĸ-carrageenan)], [chitosan-2-pyridinecarboxaldehyde-graft-poly(ε-caprolactone)]-blend-(ĸ-carrageenan), and chitosan-sodium-4-formylbenzene-1,3-disulfonate-graft-poly(ε-caprolactone)]-blend-(ĸ-carrageenan) as innovative vitamin carriers for cosmetic formulation. A permeation study of retinol (vitamin A), L-ascorbic acid (vitamin C), and α-tocopherol (vitamin E) from the cream through a human skin model by the Franz Cell measurement system was presented. The quantitative analysis of the release of the vitamins added to the cream base, through the membrane, imitating human skin, showed a promising profile of its release/penetration, which is promising for the development of a cream with anti-aging properties. Additionally, the antibacterial activity of the polymers from which the microspheres are made allows for the elimination of preservatives and parabens as cosmetic formulation ingredients.
Collapse
Affiliation(s)
- Kamila Lewicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Piotr Dobrzyński
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Natalia Śmigiel-Gac
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Monika Musiał-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| |
Collapse
|
6
|
Miranda JA, da Cruz YF, Girão ÍC, de Souza FJJ, de Oliveira WN, Alencar ÉDN, Amaral-Machado L, do Egito EST. Beyond Traditional Sunscreens: A Review of Liposomal-Based Systems for Photoprotection. Pharmaceutics 2024; 16:661. [PMID: 38794323 PMCID: PMC11125201 DOI: 10.3390/pharmaceutics16050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Sunscreen products are essential for shielding the skin from ultraviolet (UV) radiation, a leading cause of skin cancer. While existing products serve this purpose, there is a growing need to enhance their efficacy while minimizing potential systemic absorption of UV filters and associated toxicological risks. Liposomal-based formulations have emerged as a promising approach to address these challenges and develop advanced photoprotective products. These vesicular systems offer versatility in carrying both hydrophilic and lipophilic UV filters, enabling the creation of broad-spectrum sunscreens. Moreover, their composition based on phospholipids, resembling that of the stratum corneum, facilitates adherence to the skin's surface layers, thereby improving photoprotective efficacy. The research discussed in this review underscores the significant advantages of liposomes in photoprotection, including their ability to limit the systemic absorption of UV filters, enhance formulation stability, and augment photoprotective effects. However, despite these benefits, there remains a notable gap between the potential of liposomal systems and their utilization in sunscreen development. Consequently, this review emphasizes the importance of leveraging liposomes and related vesicular systems as innovative tools for crafting novel and more efficient photoprotective formulations.
Collapse
Affiliation(s)
- Júlio Abreu Miranda
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; (J.A.M.); (F.J.J.d.S.); (W.N.d.O.); (E.S.T.d.E.)
| | - Yasmin Ferreira da Cruz
- Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; (Y.F.d.C.); (Í.C.G.)
| | - Ícaro Chaves Girão
- Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; (Y.F.d.C.); (Í.C.G.)
| | - Fabia Julliana Jorge de Souza
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; (J.A.M.); (F.J.J.d.S.); (W.N.d.O.); (E.S.T.d.E.)
| | - Wógenes Nunes de Oliveira
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; (J.A.M.); (F.J.J.d.S.); (W.N.d.O.); (E.S.T.d.E.)
| | - Éverton do Nascimento Alencar
- Laboratory of Micro and Nanostructured Systems (LaSMiNano), College of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil;
| | - Lucas Amaral-Machado
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Eryvaldo Sócrates Tabosa do Egito
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; (J.A.M.); (F.J.J.d.S.); (W.N.d.O.); (E.S.T.d.E.)
- Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; (Y.F.d.C.); (Í.C.G.)
| |
Collapse
|
7
|
Li S, Wang D, Zhang M, Yang Y, Zhang X, Li J, Wu D. Design of oleic acid/alkyl glycoside composite vesicles as cosmetics carrier: stability, skin permeability and antioxidant activity. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:579-604. [PMID: 38217851 DOI: 10.1080/09205063.2024.2302632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
Biocompatible fatty acids are natural biological materials which exhibit widespread biomedical applications. Nevertheless, their application in vesicle forms is hampered by strong pH sensitivity and poor stability to changes in ionic strength, temperature, and storage. In the investigation, the incorporation of alkyl glycoside (APG), a surfactant with non-ionic properties, into the oleic acid (OA) vesicles was undertaken as a means to address this issue. The newly formed OA/APG composite vesicles form in a pH range of between 5.4 and 7.4, which is close to the pH range of the physiological environment. The stability studies results showed that the OA/APG composite vesicles have excellent stability in terms of ionic strengths, temperature and storage. The formation of NAR-loaded OA/APG composite vesicles was demonstrated through FT-IR, DSC and XRD. In vitro topical delivery and skin retention studies confirmed that the composite vesicles improve skin permeation rate and have better skin permeation behavior. Antioxidant activity experiments confirmed that the antioxidant effect composite vesicles were significantly increased as compared to the naringenin (NAR). This finding has theoretical implications for the use of drug-loaded fatty acid vesicles in cosmetics industries and topical delivery systems.
Collapse
Affiliation(s)
- Siqi Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi, China
| | - Di Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Meng Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Ying Yang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xiangyu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi, China
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi, China
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi, China
| |
Collapse
|
8
|
Ma M, Gu M, Zhang S, Yuan Y. Effect of tea polyphenols on chitosan packaging for food preservation: Physicochemical properties, bioactivity, and nutrition. Int J Biol Macromol 2024; 259:129267. [PMID: 38199547 DOI: 10.1016/j.ijbiomac.2024.129267] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Chitosan packaging has been widely studied for food preservation, the application of which is expanded by the incorporation of tea polyphenols. This paper reviews the influence of tea polyphenols incorporation on chitosan-based packaging from the perspectives of physicochemical properties, bioactivity used for food preservation, and nutritional value. The physicochemical properties included optical properties, mechanical properties, water solubility, moisture content, and water vapor barrier property, concluding that the addition of tea polyphenols improved the opacity, water solubility, and water vapor barrier property of chitosan packaging, and the mechanical properties and water content were decreased. The bioactivity used for food preservation, that is antioxidant and antimicrobial properties, is enhanced by tea polyphenols, improving the preservation of food like meat, fruits, and vegetables. In the future, efforts will be needed to improve the mechanical properties of composite film and adjust the formula of tea polyphenols/chitosan composite film to apply to different foods. Besides, the identification and development of high nutritional value tea polyphenol/chitosan composite film is a valuable but challenging task. This review is expected to scientifically guide the application of tea polyphenols in chitosan packaging.
Collapse
Affiliation(s)
- Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingfei Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuaizhong Zhang
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Kim Y, Baek Y, Jeong E, Lee HG. Development of gelatinized-core liposomes for the oral delivery of EGCG with improved stability, release property, and cellular antioxidant activity. Colloids Surf B Biointerfaces 2024; 234:113723. [PMID: 38194838 DOI: 10.1016/j.colsurfb.2023.113723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024]
Abstract
Epigallocatechin gallate (EGCG) exhibits antioxidant, anti-cancer, and anti-inflammatory properties; however, low cellular permeability and stability limit its bioavailability. Liposomes have the potential for enhancing bioactive compounds' bioavailability. Yet, low entrapment efficiency (EE) and burst release of hydrophilic substances make them impractical for food industry use. Here, we incorporated gelatin into liposomes to overcome these limitations. EGCG-loaded conventional liposomes (EGCG/CLs) and gelatinized-core liposomes (EGCG/GLs) had small particle sizes and high absolute zeta potentials. Encapsulation in EGCG/GLs significantly improved the EE of EGCG compared to that in EGCG/CLs (p < 0.05). EGCG/GLs retained EGCG in the hydrophilic region, whereas EGCG/CLs exhibited significantly higher release of EGCG during storage (p < 0.05). Additionally, in comparison to EGCG/CLs, gelatin incorporation significantly enhanced the sustained release, cellular permeability, and cellular antioxidant activity of EGCG (p < 0.05). This study emphasizes the capability of gelatinized-core liposomes as a potent delivery system for enhancing the stability and bioavailability of EGCG/CLs, broadening the prospects for utilizing them in the food industry.
Collapse
Affiliation(s)
- Yujung Kim
- Department of Food and Nutrition, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, South Korea
| | - Youjin Baek
- Department of Food and Nutrition, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, South Korea
| | - Eunwoo Jeong
- Department of Food and Nutrition, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, South Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, South Korea.
| |
Collapse
|
10
|
Guan Y, Ning Y, Xu Z, Zhou C, Zhao Z. Chondroitin sulfate and chitosan-coated liposomes as a novel delivery system for betanin: Preparation, characterization and in vitro digestion behavior. Int J Biol Macromol 2024; 254:128001. [PMID: 37949274 DOI: 10.1016/j.ijbiomac.2023.128001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Betanin, a water-soluble pigment known for its high bioactivity, is hindered by pH and temperature sensitivity, weak ionic strength, and low bioavailability. In this study, nanoliposome (NPS), chitosan-coated NPS (CNPS), and chondroitin sulfate-chitosan bilayer-modified nanoliposomes (SCNPS) were prepared based on a layer-by-layer electrostatic interaction method for betanin encapsulation. The increase of polymer layers from NPS to SCNPS led to a monotonic increment from 223.57 to 522.33 nm in size, from -27.73 to 16.70 mV in negative charge and from 0.22 to 0.35 in polydispersity index. The chemical stability against pH (ranging from 2 to 10), ionic type (KCl, CaCl2, ALCl3) and ionic strength (100, 500 mM) significantly impacted the appearance and particle size of the double-layered nanoliposome. In vitro digestion experiment showed that SCNPS displayed higher stability and slower betanin release compared to NPS and CNPS. This study demonstrates that betanin can be efficiently encapsulated by SCNPS with improved stability and bioavailability.
Collapse
Affiliation(s)
- Yuan Guan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yue Ning
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhengming Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chuang Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhengang Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
11
|
Jara-Quijada E, Pérez-Won M, Tabilo-Munizaga G, Lemus-Mondaca R, González-Cavieres L, Palma-Acevedo A, Herrera-Lavados C. Liposomes Loaded with Green Tea Polyphenols-Optimization, Characterization, and Release Kinetics Under Conventional Heating and Pulsed Electric Fields. FOOD BIOPROCESS TECH 2023; 17:1-13. [PMID: 37363379 PMCID: PMC10250174 DOI: 10.1007/s11947-023-03136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
This study aimed to increase the encapsulation efficiency (EE%) of liposomes loaded with green tea polyphenols (GTP), by optimizing with response surface methodology (RSM), characterizing the obtained particles, and modeling their release under conventional heating and pulsed electric fields. GTP-loaded liposomes were prepared under conditions of Lecithin/Tween 80 (4:1, 1:1, and 1:4), cholesterol (0, 30, and 50%), and chitosan as coating (0, 0.05, and 0.1%). Particles were characterized by size, polydispersity index, ζ-potential, electrical conductivity, and optical microscopy. The release kinetics was modeled at a temperature of 60 °C and an electric field of 5.88 kV/cm. The optimal manufacturing conditions of GTP liposomes (ratio of lecithin/Tween 80 of 1:1, cholesterol 50%, and chitosan 0.1%) showed an EE% of 60.89% with a particle diameter of 513.75 nm, polydispersity index of 0.21, ζ-potential of 33.67 mV, and electrical conductivity of 0.14 mS/cm. Optical microscopy verified layering in the liposomes. The kinetic study revealed that the samples with chitosan were more stable to conventional heating, and those with higher cholesterol content were more stable to pulsed electric fields. However, in both treatments, the model with the best fit was the Peppas model. The results of the study allow us to give an indication of the knowledge of the behavior of liposomes under conditions of thermal and non-thermal treatments, helping the development of new functional ingredients based on liposomes for processed foods.
Collapse
Affiliation(s)
- Erick Jara-Quijada
- Department of Food Engineering, Faculty of Health Sciences and Food, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán, Chile
| | - Mario Pérez-Won
- Department of Food Engineering, Faculty of Health Sciences and Food, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán, Chile
| | - Gipsy Tabilo-Munizaga
- Department of Food Engineering, Faculty of Health Sciences and Food, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán, Chile
| | - Roberto Lemus-Mondaca
- Department of Food Science and Chemical Technology, Faculty of Chemical Sciences and Pharmaceutical, Universidad de Chile, St. Dr. Carlos Lorca 964, Independencia, Santiago RM Chile
| | - Luis González-Cavieres
- Department of Food Engineering, Faculty of Health Sciences and Food, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán, Chile
| | - Anais Palma-Acevedo
- Department of Food Engineering, Faculty of Health Sciences and Food, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán, Chile
| | - Carolina Herrera-Lavados
- Department of Food Engineering, Faculty of Health Sciences and Food, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán, Chile
| |
Collapse
|
12
|
Chaves MA, Ferreira LS, Baldino L, Pinho SC, Reverchon E. Current Applications of Liposomes for the Delivery of Vitamins: A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091557. [PMID: 37177102 PMCID: PMC10180326 DOI: 10.3390/nano13091557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Liposomes have been used for several decades for the encapsulation of drugs and bioactives in cosmetics and cosmeceuticals. On the other hand, the use of these phospholipid vesicles in food applications is more recent and is increasing significantly in the last ten years. Although in different stages of technological maturity-in the case of cosmetics, many products are on the market-processes to obtain liposomes suitable for the encapsulation and delivery of bioactives are highly expensive, especially those aiming at scaling up. Among the bioactives proposed for cosmetics and food applications, vitamins are the most frequently used. Despite the differences between the administration routes (oral for food and mainly dermal for cosmetics), some challenges are very similar (e.g., stability, bioactive load, average size, increase in drug bioaccessibility and bioavailability). In the present work, a systematic review of the technological advancements in the nanoencapsulation of vitamins using liposomes and related processes was performed; challenges and future perspectives were also discussed in order to underline the advantages of these drug-loaded biocompatible nanocarriers for cosmetics and food applications.
Collapse
Affiliation(s)
- Matheus A Chaves
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
- Laboratory of Molecular Morphophysiology and Development (LMMD), Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Letícia S Ferreira
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Samantha C Pinho
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
13
|
Peng P, Chen Z, Wang M, Wen B, Deng X. Polysaccharide-modified liposomes and their application in cancer research. Chem Biol Drug Des 2023; 101:998-1011. [PMID: 36597375 DOI: 10.1111/cbdd.14201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023]
Abstract
Nanodrug delivery systems have been widely used in cancer treatment. Among these, liposomal drug carriers have gained considerable attention due to their biocompatibility, biodegradability, and low toxicity. However, conventional liposomes have several shortcomings, such as poor stability, rapid clearance, aggregation, fusion, degradation, hydrolysis, and oxidation of phospholipids. Polysaccharides are natural polymers of biological origin that exhibit structural stability, excellent biocompatibility and biodegradability, flexibility, non-immunogenicity, low toxicity, and targetability. Therefore, they represent a promising class of polymers for the modification of the surface properties of liposomes to overcome their shortcomings. In addition, polysaccharides can be readily combined with other materials to develop new composite materials. Hence, they represent the optimal choice for liposomal modification to improve pharmacokinetics and clinical utility. Polysaccharide-coated liposomes exhibit better stability, drug release kinetics, and cellular uptake than conventional liposomes. The oncologic application of polysaccharide-coated liposomes has become a research hotspot. We summarize the preparation, physicochemical properties, and antineoplastic effects of polysaccharide-coated liposomes to facilitate antitumor drug development.
Collapse
Affiliation(s)
- Peichun Peng
- International Zhuang Medical Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Zeshan Chen
- Department of Traditional Chinese Medicine, Guangxi Academy of Medical Sciences, Nanning, China
| | - Miaodong Wang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Bin Wen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xin Deng
- Department of Basic Medical Science College, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
14
|
Hassane Hamadou A, Zhang J, Chen C, Xu J, Xu B. Vitamin C and β-carotene co-loaded in marine and egg nanoliposomes. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Ma L, Gao T, Cheng H, Li N, Huang W, Liang L. Encapsulation of Folic Acid and α-Tocopherol in Lysozyme Particles and Their Bioaccessibility in the Presence of DNA. Antioxidants (Basel) 2023; 12:antiox12030564. [PMID: 36978812 PMCID: PMC10045426 DOI: 10.3390/antiox12030564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Protein particles have been reported as the potential carriers for the co-encapsulation of bioactive components. In this study, lysozyme, a basic protein, was used to simultaneously encapsulate folic acid and α-tocopherol at pH 4.0. The encapsulation efficiency and loading capacity of folic acid or α-tocopherol increased with its respective concentration. Folic acid had no influence on the encapsulation of α-tocopherol. However, the encapsulation of folic acid was improved by α-tocopherol below 40 μg/mL but reduced by α-tocopherol at higher concentrations. The encapsulation by lysozyme shielded folic acid, α-tocopherol, or both partially from the attack of 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical cation. No masking effect of lysozyme encapsulation on α-tocopherol was found in DPPH antioxidant activity assay. Furthermore, the DNA coating was used to improve the dispersion of lysozyme with folic acid and α-tocopherol. The lysozyme/DNA particles with folic acid and α-tocopherol showed a homogenous size distribution of 180-220 nm with ζ-potential values between -33 and -36 mV. The release and bioaccessibility of folic acid in lysozyme/DNA with α-tocopherol were similar to that of folic acid alone, while the release of α-tocopherol was delayed and its bioaccessibility was improved by encapsulation in lysozyme/DNA with folic acid. The data gathered here would provide guidance for the use of lysozyme-based co-encapsulating carriers in the development of functional foods.
Collapse
Affiliation(s)
- Lingling Ma
- State Key Lab. of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tiecheng Gao
- Fujian Zunjin Health Science and Technology Co., Ltd., and IBF International Inc., Quanzhou 362200, China
| | - Hao Cheng
- State Key Lab. of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ning Li
- Fujian Zunjin Health Science and Technology Co., Ltd., and IBF International Inc., Quanzhou 362200, China
| | - Weining Huang
- State Key Lab. of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Liang
- State Key Lab. of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
16
|
Shalaby ES, Shalaby SI. Optimization of folic acid Span 60-organogel to enhance its in vitro and in vivo photoprotection: a comparative study. Ther Deliv 2023; 13:517-530. [PMID: 36786007 DOI: 10.4155/tde-2022-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Aim: The acute effects of UV sunlight exposure were inflammation, erythema, and swelling. The present work aims to formulate a novel organogel preparation that can achieve efficient topical folic acid (FA) delivery to cure inflammation from acute exposure to UV sunlight. Methods: The organogels were prepared by direct melting and stirring on a magnetic stirrer. Photostability and in vivo photoprotection were investigated. Results: Optimized organogel showed more sustained release, more photostability, more effective antioxidant activity, higher in vitro sun protection factor, and greater extent of skin photoprotection from natural sunlight. Conclusion: The present results suggest optimized FA organogel as a promising formulation for effective delivery of FA to the skin maximizing it's in vitro and in vivo performance.
Collapse
Affiliation(s)
- Eman S Shalaby
- Pharmaceutical Technology Department, National Research Centre, Dokki, Giza, Cairo, Egypt
| | - Samy I Shalaby
- Department Animal Reproduction & A.I., National Research Centre, Dokki, Giza, Cairo, Egypt
| |
Collapse
|
17
|
Aman Mohammadi M, Farshi P, Ahmadi P, Ahmadi A, Yousefi M, Ghorbani M, Hosseini SM. Encapsulation of Vitamins Using Nanoliposome: Recent Advances and Perspectives. Adv Pharm Bull 2023; 13:48-68. [PMID: 36721823 PMCID: PMC9871282 DOI: 10.34172/apb.2023.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 02/03/2023] Open
Abstract
Nowadays the importance of vitamins is clear for everyone. However, many patients are suffering from insufficient intake of vitamins. Incomplete intake of different vitamins from food sources due to their destruction during food processing or decrease in their bioavailability when mixing with other food materials, are factors resulting in vitamin deficiency in the body. Therefore, various lipid based nanocarriers such as nanoliposomes were developed to increase the bioavailability of bioactive compounds. Since the function of nanoliposomes containing vitamins on the body has a direct relationship with the quality of produced nanoliposomes, this review study was planned to investigate the several aspects of liposomal characteristics such as size, polydispersity index, zeta potential, and encapsulation efficiency on the quality of synthesized vitamin-loaded nanoliposomes.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Technology, Faculty of Nutrition Science and Food Technology, Nutritional and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,These authors contributed equally in this Article
| | - Parastou Farshi
- Food Science Institute, Kansas State University, Manhattan KS, USA.,These authors contributed equally in this Article
| | - Parisa Ahmadi
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Ahmadi
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousefi
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Corresponding Authors: Marjan Ghorbani, Tel: +98 41 33378165, Fax: +98 41 33378165, , and Seyede Marzieh Hosseini, Tel: +98 21 22622322, Fax: +98 21 22622322,
| | - Seyede Marzieh Hosseini
- Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Corresponding Authors: Marjan Ghorbani, Tel: +98 41 33378165, Fax: +98 41 33378165, , and Seyede Marzieh Hosseini, Tel: +98 21 22622322, Fax: +98 21 22622322,
| |
Collapse
|
18
|
Amiri H, Shabanpour B, Pourashouri P, kashiri M. Encapsulation of marine bioactive compounds using liposome technique: evaluation of physicochemical properties and oxidative stability during storage. FOOD STRUCTURE 2023. [DOI: 10.1016/j.foostr.2023.100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Elkomy MH, Ali AA, Eid HM. Chitosan on the surface of nanoparticles for enhanced drug delivery: A comprehensive review. J Control Release 2022; 351:923-940. [DOI: 10.1016/j.jconrel.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/26/2022]
|
20
|
Li J, Nan J, Wu H, Park HJ, Zhao Q, Yang L. Middle purity soy lecithin is appropriate for food grade nanoliposome: Preparation, characterization, antioxidant and anti-inflammatory ability. Food Chem 2022; 389:132931. [PMID: 35500405 DOI: 10.1016/j.foodchem.2022.132931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022]
Abstract
The purity of soy lecithin exerts significant impact on nanoliposome (NL) properties for food applications. In this study, three soy lecithin of different purity were used to prepare NL. LC-MS analysis confirmed soy lecithin of relatively low purify (50% and 70%) contains multiple natural phospholipids. NL produced by soy lecithin of middle purity (70%) is smaller and more stable than other counterparts. Ultimately, soy lecithin of 70% purity was selected to develop NL encapsulated crocetin (CR) as model payload and further coated by chitosan (CS). The structure characteristic, physicochemical properties, antioxidant activity and anti-inflammatory activity of crocetin nanoliposome (CR-NL) and chitosan coated crocetin nanoliposome (CS-CR-NL) were evaluated. NL encapsulation and CS coating significantly improve antioxidant and anti-inflammatory ability of CR, and prolong storage period of CR (p < 0.05). For food applications, soy lecithin of middle purity (70%) is cheaper and more appropriate than soy lecithin of high purity.
Collapse
Affiliation(s)
- Jinglei Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Jian Nan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Haishan Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hyun Jin Park
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Qingsheng Zhao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Liu Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China.
| |
Collapse
|
21
|
Xiao X, Wu X, Yu Z, He J. Incorporation of the Sterol from Camellia Oil Deodorant Distillate into vitamin C Liposomes: Vesicle Characteristics, Stability, Release, and Bioavailability. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Fathima E, Nallamuthu I, Anand T, Naika M, Khanum F. Enhanced cellular uptake, transport and oral bioavailability of optimized folic acid-loaded chitosan nanoparticles. Int J Biol Macromol 2022; 208:596-610. [PMID: 35292282 DOI: 10.1016/j.ijbiomac.2022.03.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/04/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Folic acid is a synthetic form of folate widely used for food fortification. However, its bioavailability is limited due to its inherent instability at several conditions. Therefore, a suitable encapsulation system is highly required. In the present study, the fabrication condition for folic acid-loaded chitosan nanoparticle (FA-Chi-NP) was optimized and then subjected to characterization. The optimized formulation had the particle size, zeta potential, and encapsulation efficiency of 180 nm, +52 mV, and 90%, respectively. In vitro release profile showed a controlled release of folic acid from the nanoparticles. Treatment of Caco-2 cells with the formulation showed no adverse effects based on MTT and LDH assays, and also, the cellular uptake was significantly higher after 2 h compared to free folic acid. Further, the oral administration of rats with FA-Chi-NPs (1 mg/kg BW) increased the plasma level of both folic acid (3.2-fold) and its metabolites such as tetrahydrofolate (2.3-fold) and 5-methyltetrahydrofolate (1.6-fold) significantly compared to free folic acid. In a bio-distribution study, duodenum and jejunum were found to be the primary sites for absorption. These findings suggest that chitosan may be a promising carrier for the delivery of folic acid and, therefore, could be exploited for various food applications.
Collapse
Affiliation(s)
- Eram Fathima
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India
| | - Ilaiyaraja Nallamuthu
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India
| | - T Anand
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India.
| | - Mahadeva Naika
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India
| | - Farhath Khanum
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India
| |
Collapse
|
23
|
A comparative study of liposomes and chitosomes for topical quercetin antioxidant therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Applications of chitosan-based carrier as an encapsulating agent in food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Jara-Quijada E, Pérez-Won M, Tabilo-Munizaga G, González-Cavieres L, Lemus-Mondaca R. An Overview Focusing on Food Liposomes and Their Stability to Electric Fields. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
26
|
Wang Y, Ye A, Hou Y, Jin Y, Xu X, Han J, Liu W. Microcapsule delivery systems of functional ingredients in infant formulae: Research progress, technology, and feasible application of liposomes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Hua Y, Wei Z, Xue C. Chitosan and its composites-based delivery systems: advances and applications in food science and nutrition sector. Crit Rev Food Sci Nutr 2021:1-20. [PMID: 34793271 DOI: 10.1080/10408398.2021.2004992] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Natural bioactive ingredients have lower bioavailability because of their chemical instability and poor water solubility, which limits their applications in functional foods. Among diverse biopolymers that can be used to construct delivery systems of bioactives, chitosan has attracted extensive attention due to its unique cationic nature, excellent mucoadhesive properties and easy modification. In this review, chitosan and its composites-based food-grade delivery systems as well as the factors affecting their performance are summarized. Modification, crosslinking, combination with other biopolymer or utilization of coating material can effectively overcome the instability of pure chitosan-based carriers under acidic conditions, thereby constructing chitosan and its complex-based carriers with conspicuously improved performance. Furthermore, the applications of chitosan-based delivery systems in nutrition and health as well as their future development trends and challenges are discussed. Functional food ingredients, functional food packaging and biological health are potential applications of chitosan-based food-grade delivery systems. The research trends of nutraceutical delivery systems based on chitosan and its composites include co-delivery of nutrients and essential oils, targeted intestinal delivery, stimulus responsive/sustained release and their applications in real foods. In conclusion, food industry will be significantly promoted with the continuous innovation and development of chitosan-based nutraceutical delivery systems.
Collapse
Affiliation(s)
- Yijie Hua
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
28
|
Synergistic effect on antioxidant activity of vitamin C provided with acidic vesiculation of hybrid fatty acids. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
29
|
Preparation of liposomes composed of supercritical carbon dioxide-philic phospholipids using the rapid expansion of supercritical solution process. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
30
|
Liu L, Tao L, Chen J, Zhang T, Xu J, Ding M, Wang X, Zhong J. Fish oil-gelatin core-shell electrospun nanofibrous membranes as promising edible films for the encapsulation of hydrophobic and hydrophilic nutrients. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
31
|
Tan C, Wang J, Sun B. Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: Recent advances. Biotechnol Adv 2021; 48:107727. [PMID: 33677025 DOI: 10.1016/j.biotechadv.2021.107727] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/04/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022]
Abstract
Conventional liposomes still face many challenges associated with the poor physical and chemical stability, considerable loss of encapsulated cargo, lack of stimulus responsiveness, and rapid elimination from blood circulation. Integration of versatile functional biopolymers has emerged as an attractive strategy to overcome the limitation of usage of liposomes. This review comprehensively summarizes the most recent studies (2015-2020) and their challenges aiming at the exploration of biopolymer-liposome hybrid systems, including surface-modified liposomes, biopolymer-incorporated liposomes, guest-in-cyclodextrin-in-liposome, liposome-in-hydrogel, liposome-in-film, and liposome-in-nanofiber. The physicochemical principles and key technical information underlying the combined strategies for the fabrication of polymeric liposomes, the advantages and limitations of each of the systems, and the stabilization mechanisms are discussed through various case studies. Special emphasis is directed toward the synergistic efficiencies of biopolymers and phospholipid bilayers on encapsulation, protection, and controlled delivery of bioactives (e.g., vitamins, carotenoids, phenolics, peptides, and other health-related compounds) for the biomedical, pharmaceutical, cosmetic, and functional food applications. The major challenges, opportunities, and possible further developments for future studies are also highlighted.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Baoguo Sun
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
32
|
Moholkar DN, Sadalage PS, Havaldar DV, Pawar KD. Engineering the liposomal formulations from natural peanut phospholipids for pH and temperature sensitive release of folic acid, levodopa and camptothecin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111979. [PMID: 33812607 DOI: 10.1016/j.msec.2021.111979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/12/2021] [Accepted: 02/13/2021] [Indexed: 11/29/2022]
Abstract
The present study demonstrates the extraction and identification of phospholipids (PLs) from peanut seed for formulation of liposomes for pH and thermo-sensitive delivery and release of folic acid (FA), levodopa (DOPA) and, camptothecin (CPT). The TLC, FTIR and GC-MS based characterization of extracted peanut PLs showed phosphatidylethanolamine, cardiolipin and phosphatidic acid as major PLs and palmitic acid and oleic acid as major fatty acids. Liposomes (LSMs) of size 1-2 μm formulated by optimized thin-film hydration method were found to entrap FA, DOPA and CPT with 58, 61.4 and 52.12% efficiency, respectively with good stability. The effect of external stimuli like pH and temperature on the release pattern of FA, DOPA and CPT indicated that FA was optimally released at pH 10 and 57 °C, DOPA at pH 2 and 37 °C, while CPT was best released at pH 6 and 47 °C. When tested for the in vitro activity, DOPA released by DOPA@LSMs showed lower toxicity to 3T3 than to SH-SY5Y cells. Similarly, CPT released by CPT@LSMs showed remarkable anticancer activity against MCF-7 cells with an IC50 value of 17.99 μg/mL. Thus peanut PLs can be efficiently used for liposomal formulations for pH and thermo-sensitive release of drugs.
Collapse
Affiliation(s)
- Disha N Moholkar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | | | - Darshana V Havaldar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India.
| |
Collapse
|
33
|
Wang YS, Yang WH, Gao W, Zhang L, Wei F, Liu H, Wang SY, Li YY, Zhao WM, Ma T, Wang Q. Combination and efficiency: preparation of dissolving microneedles array loaded with two active ingredients and its anti-pigmentation effects on guinea pigs. Eur J Pharm Sci 2021; 160:105749. [PMID: 33581260 DOI: 10.1016/j.ejps.2021.105749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/26/2021] [Accepted: 02/06/2021] [Indexed: 11/30/2022]
Abstract
Hyperpigmentation is a common skin disorder caused by excessive melanogenesis and uneven dispersion of melanin in the skin. To combine multiple active agents with an efficient transdermal drug delivery system is an effective strategy to combat UV induced skin pigmentation. In this work, Arbutin (Arb) and Vitamin C (Vc) mixed in 1:1 were found to have the greatest inhibition effects on melanogenesis and tyrosinase activity in B16 murine melanoma cells. And hyaluronic acid (HA) based dissolving microneedles array (DMNA) was employed to overcome the skin barriers for improved topical drug delivery, which exhibited the most desirable features, including morphology, mechanical properties, dissolving ability, and the highest drug loading. Furthermore, DMNA could greatly increase the stability of Vc during storage without adding any antioxidant which is an important issue for Vc administration. Pharmacodynamics study showed that DMNA loaded with Arb and Vc could synergistically suppress UVB-induced hyperpigmentation in guinea pig skin. This work provides a promising treatment strategy and solution for skin pigmentation and other skin problems.
Collapse
Affiliation(s)
- Yu-Shuai Wang
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China
| | - Wei-Han Yang
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China
| | - Wei Gao
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China
| | - Lu Zhang
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China
| | - Fang Wei
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China
| | - Hang Liu
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China
| | - Shu-Ya Wang
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China
| | - Ying-Ying Li
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China
| | - Wei-Man Zhao
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China
| | - Tao Ma
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China
| | - Qingqing Wang
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China.
| |
Collapse
|
34
|
Esposto BS, Jauregi P, Tapia-Blácido DR, Martelli-Tosi M. Liposomes vs. chitosomes: Encapsulating food bioactives. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
|
36
|
Vitamin C and Cardiovascular Disease: An Update. Antioxidants (Basel) 2020; 9:antiox9121227. [PMID: 33287462 PMCID: PMC7761826 DOI: 10.3390/antiox9121227] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
The potential beneficial effects of the antioxidant properties of vitamin C have been investigated in a number of pathological conditions. In this review, we assess both clinical and preclinical studies evaluating the role of vitamin C in cardiac and vascular disorders, including coronary heart disease, heart failure, hypertension, and cerebrovascular diseases. Pitfalls and controversies in investigations on vitamin C and cardiovascular disorders are also discussed.
Collapse
|
37
|
Jampilek J, Kralova K. Potential of Nanonutraceuticals in Increasing Immunity. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2224. [PMID: 33182343 PMCID: PMC7695278 DOI: 10.3390/nano10112224] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Nutraceuticals are defined as foods or their extracts that have a demonstrably positive effect on human health. According to the decision of the European Food Safety Authority, this positive effect, the so-called health claim, must be clearly demonstrated best by performed tests. Nutraceuticals include dietary supplements and functional foods. These special foods thus affect human health and can positively affect the immune system and strengthen it even in these turbulent times, when the human population is exposed to the COVID-19 pandemic. Many of these special foods are supplemented with nanoparticles of active substances or processed into nanoformulations. The benefits of nanoparticles in this case include enhanced bioavailability, controlled release, and increased stability. Lipid-based delivery systems and the encapsulation of nutraceuticals are mainly used for the enrichment of food products with these health-promoting compounds. This contribution summarizes the current state of the research and development of effective nanonutraceuticals influencing the body's immune responses, such as vitamins (C, D, E, B12, folic acid), minerals (Zn, Fe, Se), antioxidants (carotenoids, coenzyme Q10, polyphenols, curcumin), omega-3 fatty acids, and probiotics.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
38
|
Dhakal SP, He J. Microencapsulation of vitamins in food applications to prevent losses in processing and storage: A review. Food Res Int 2020; 137:109326. [DOI: 10.1016/j.foodres.2020.109326] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 01/29/2023]
|
39
|
Magri A, Petriccione M, Cerqueira MA, Gutiérrez TJ. Self-assembled lipids for food applications: A review. Adv Colloid Interface Sci 2020; 285:102279. [PMID: 33070103 DOI: 10.1016/j.cis.2020.102279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Lipids play an important role in human nutrition. Several foodstuffs can be manufactured from the simple, compound and derived lipids. In particular, the use of self-assembled lipids (SLs, e.g. self-assembled L-α-lecithin) has brought great attention for the development of tailored, tuned and targeted colloidal structures loading degradation-sensitive substances with valuable antimicrobial, antioxidant and nutraceutical properties for food applications. For example, polyunsaturated fatty acids (PUFAs) and essential oils can be protected from degradation, thus improving their bioavailability in general terms in consumers. From a nanotechnological point of view, SLs allow the development of advanced and multifaceted architectures, in which each molecule of them are used as building blocks to obtain designed and ordered structures. It is important to note before beginning this review, that simple and compound lipids are the main SLs, while essential fatty acids and derived lipids in general have been considered by many research groups as the bulk loaded substances within several structures from self-assembled carbohydrates, proteins and lipids. However, this review paper is addressed on the analysis of the lipid-lipid self-assembly. Lipids can be self-assembled into various structures (micelles, vesicular systems, lyotropic liquid crystals, oleogels and films) to be used in different food applications: coatings, controlled and sustained release materials, emulsions, functional foods, etc. SLs can be obtained via non-covalent chemical interactions, primarily by hydrogen, hydrophilic and ionic bonding, which are influenced by the conditions of ionic strength, pH, temperature, among others. This manuscript aims to give an analysis of the specific state-of-the-art of SLs for food applications, based primarily on the literature reported in the past five years.
Collapse
|
40
|
Formulation and characterization of novel liposomes containing histidine for encapsulation of a poorly soluble vitamin. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Karim N, Shishir MRI, Chen W. Surface decoration of neohesperidin-loaded nanoliposome using chitosan and pectin for improving stability and controlled release. Int J Biol Macromol 2020; 164:2903-2914. [PMID: 32853610 DOI: 10.1016/j.ijbiomac.2020.08.174] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
The aim of this study was to improve the physicochemical stability of neohesperidin (NH) using nanoliposomal encapsulation in association with surface decoration strategy employing chitosan (CH) and pectin (P). Different nanoliposomal systems, i.e. NH-loaded nanoliposome (NH-NL), CH-coated NH-NL (CH-NH-NL), and P-coated CH-NH-NL (P-CH-NH-NL) were characterized through DLS, HPLC, TEM, and FTIR. The results confirmed good encapsulation efficiency (>90%) and successful layer formation with nano-sized and spherical carrier. Both CH-NL and P-CH-NL exhibited better physicochemical stability than NL under storage, thermal, pH, ionic, UV, oxidative, and serum conditions. In vitro mucin adsorption study revealed that CH-NL (60%) was more effective in mucoadhesion followed by P-CH-NL (46%) and NL (41%). Furthermore, P-CH-NL showed better performance in NH retention under different food simulants compared to CH-NH-NL and NH-NL, in which the release was mainly governed by the diffusion process. Thus, the P-CH conjugated nanoliposome could be a promising nano-carrier for neohesperidin.
Collapse
Affiliation(s)
- Naymul Karim
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Mohammad Rezaul Islam Shishir
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
42
|
Formulation of vitamin C encapsulation in marine phospholipids nanoliposomes: Characterization and stability evaluation during long term storage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109439] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Cao X, Islam MN, Chitrakar B, Duan Z, Xu W, Zhong S. Effect of combined chlorogenic acid and chitosan coating on antioxidant, antimicrobial, and sensory properties of snakehead fish in cold storage. Food Sci Nutr 2020; 8:973-981. [PMID: 32148806 PMCID: PMC7020329 DOI: 10.1002/fsn3.1378] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/20/2019] [Accepted: 12/03/2019] [Indexed: 11/29/2022] Open
Abstract
Degradation of meat quality has always been a burning issue in fish preservation. To maintain the quality, a novel combination of chlorogenic acid (CGA) and chitosan (CS) coating was applied to snakehead fish fillets. Fish fillets were soaked into 2% chitosan (2CS), 0.2% CGA in 2% chitosan (0.2CGA/2CS), 0.5% CGA in 2% chitosan (0.5CGA/2CS), or 1.0% CGA in 2% chitosan (1.0CGA/2CS) solution; and then, coated samples were vacuum-packaged and stored at 2 ± 0.5°C. pH values, color values, microbial loads, hardness, sensory qualities, and oxidization of lipids and proteins of stored fish fillets were investigated for 5 months. Antimicrobial activity was found to be nonsignificant (p ≤ .05) among different coated fish fillets, while color, antioxidant, and pH values were significantly (p ≤ .05) different. Lipid oxidation and protein oxidation were found to be inhibited in 2CS-, 0.5CGA/2CS- and 1.0CGA/2CS-coated fish fillet. All CGA/CS coating delayed increase in pH (p ≤ .05) and resulted brown color. However, only CS coating resulted in higher sensory scores (p ≤ .05) and controlled browning. Considering antioxidant properties and other quality parameters, CGA/CS coating might be applied commercially in fish preservation.
Collapse
Affiliation(s)
- Xiaohuang Cao
- College of Food Science and TechnologyGuangdong Provincial Key Labotatory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
| | | | - Bimal Chitrakar
- Laboration of Food Science and TechnologyJiangnan UniversityJiangsuChina
| | - Zhenhua Duan
- Bioprocess EngineeringHezhou UniversityHezhouChina
| | - Wanxiu Xu
- Zhejiang Normal UniversityJinhuaChina
| | - Saiyi Zhong
- College of Food Science and TechnologyGuangdong Provincial Key Labotatory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Collaborative Innovation Center of Seafood Deep ProcessingDalian Polytechnic UniversityDalianChina
| |
Collapse
|
44
|
Yang S, Liu L, Han J, Tang Y. Encapsulating plant ingredients for dermocosmetic application: an updated review of delivery systems and characterization techniques. Int J Cosmet Sci 2020; 42:16-28. [PMID: 31724203 DOI: 10.1111/ics.12592] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022]
Abstract
Today, there is a rising demand and ongoing search for novel plant-derived phytochemicals in the cosmetic market owing to the growing consumer expectations worldwide for green and natural health products. Various plant ingredients, including polyphenols, oils, volatile oils, vitamins and other herbal extracts, have been extensively used in herbal cosmetics. Recent advances in encapsulation technologies have greatly improved their chemical stability, biocompatibility, skin permeability and dermocosmetic efficiency when applied topically. This comprehensive review summarizes the up-to-date information on encapsulated plant ingredients tailored for dermocosmetic application with a focus on the development of novel delivery systems. An overview of the commonly used techniques for carrier characterization, performance-related properties and toxicological evaluation is also included, which might provide guidance for researchers to select or develop appropriate assay systems.
Collapse
Affiliation(s)
- S Yang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, 100048, China.,Department of Cosmetics, School of Science, Beijing Technology and Business University, Beijing, 100048, China
| | - L Liu
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, 100048, China.,Department of Cosmetics, School of Science, Beijing Technology and Business University, Beijing, 100048, China
| | - J Han
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, 100048, China.,Department of Cosmetics, School of Science, Beijing Technology and Business University, Beijing, 100048, China
| | - Y Tang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, 100048, China.,Department of Cosmetics, School of Science, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
45
|
Feng S, Sun Y, Wang P, Sun P, Ritzoulis C, Shao P. Co‐encapsulation of resveratrol and epigallocatechin gallate in low methoxyl pectin‐coated liposomes with great stability in orange juice. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14323] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Simin Feng
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou 310014 PR China
| | - Yuxin Sun
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou 310014 PR China
| | - Pei Wang
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou 310014 PR China
| | - Peilong Sun
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou 310014 PR China
| | - Christos Ritzoulis
- Department of Food Technology ATEI of Thessaloniki 574000 Thessaloniki Greece
| | - Ping Shao
- Department of Food Science and Technology Zhejiang University of Technology Hangzhou 310014 PR China
| |
Collapse
|
46
|
Cicciù M, Fiorillo L, Cervino G. Chitosan Use in Dentistry: A Systematic Review of Recent Clinical Studies. Mar Drugs 2019; 17:E417. [PMID: 31319609 PMCID: PMC6669505 DOI: 10.3390/md17070417] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/29/2022] Open
Abstract
This study aims to highlight the latest marine-derived technologies in the biomedical field. The dental field, in particular, uses many marine-derived biomaterials, including chitosan. Chitosan that is used in different fields of medicine, is analyzed in this review with the aim of highlighting its uses and advantages in the dental field. A literature search was conducted in scientific search engines, using keywords in order to achieve the highest possible number of results. A review of randomized controlled trials (RCT) was conducted to evaluate and process all the relevant results for chitosan and oral health. After a screening and a careful analysis of the literature, there were only 12 results highlighted. Chitosan performs different functions and it is used in different fields of dentistry in a safe and effective way. Among the uses of chitosan, we report on the remineralizing property of chitosan which hardens tissues of the tooth, and therefore its role as a desensibilizer used in toothpastes. According to our systematic review, the use of chitosan has shown better surgical healing of post-extraction oral wounds. Furthermore, some studies show a reduction in bacterial biofilm when used in dental cements. In addition, it has antibacterial, antifungal, hemostatic and other systemic properties which aid its use for drug delivering.
Collapse
Affiliation(s)
- Marco Cicciù
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, Messina University, Messina 98100, Italy.
| | - Luca Fiorillo
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, Messina University, Messina 98100, Italy
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", Naples 80100, Italy
| | - Gabriele Cervino
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, Messina University, Messina 98100, Italy
| |
Collapse
|
47
|
Jiao Z, Wang X, Han S, Zha X, Xia J. Preparation of vitamin C liposomes by rapid expansion of supercritical solution process: Experiments and optimization. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Jampilek J, Kos J, Kralova K. Potential of Nanomaterial Applications in Dietary Supplements and Foods for Special Medical Purposes. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E296. [PMID: 30791492 PMCID: PMC6409737 DOI: 10.3390/nano9020296] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
Dietary supplements and foods for special medical purposes are special medical products classified according to the legal basis. They are regulated, for example, by the European Food Safety Authority and the U.S. Food and Drug Administration, as well as by various national regulations issued most frequently by the Ministry of Health and/or the Ministry of Agriculture of particular countries around the world. They constitute a concentrated source of vitamins, minerals, polyunsaturated fatty acids and antioxidants or other compounds with a nutritional or physiological effect contained in the food/feed, alone or in combination, intended for direct consumption in small measured amounts. As nanotechnology provides "a new dimension" accompanied with new or modified properties conferred to many current materials, it is widely used for the production of a new generation of drug formulations, and it is also used in the food industry and even in various types of nutritional supplements. These nanoformulations of supplements are being prepared especially with the purpose to improve bioavailability, protect active ingredients against degradation, or reduce side effects. This contribution comprehensively summarizes the current state of the research focused on nanoformulated human and veterinary dietary supplements, nutraceuticals, and functional foods for special medical purposes, their particular applications in various food products and drinks as well as the most important related guidelines, regulations and directives.
Collapse
Affiliation(s)
- Josef Jampilek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia.
| | - Jiri Kos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 832 32 Bratislava, Slovakia.
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia.
| |
Collapse
|