1
|
Paone LS, Benmassaoud MM, Curran A, Vega SL, Galie PA. A 3D-printed blood-brain barrier model with tunable topology and cell-matrix interactions. Biofabrication 2023; 16:015005. [PMID: 37820611 DOI: 10.1088/1758-5090/ad0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Recent developments in digital light processing (DLP) can advance the structural and biochemical complexity of perfusablein vitromodels of the blood-brain barrier. Here, we describe a strategy to functionalize complex, DLP-printed vascular models with multiple peptide motifs in a single hydrogel. Different peptides can be clicked into the walls of distinct topologies, or the peptide motifs lining channel walls can differ from those in the bulk of the hydrogel. The flexibility of this approach is used to both characterize the effects of various bioactive domains on endothelial coverage and tight junction formation, in addition to facilitating astrocyte attachment in the hydrogel surrounding the endothelialized vessel to mimic endothelial-astrocyte interaction. Peptides derived from proteins mediating cell-extracellular matrix (e.g. RGD and IKVAV) and cell-cell (e.g. HAVDI) adhesions are used to mediate endothelial cell attachment and coverage. HAVDI and IKVAV-lined channels exhibit significantly greater endothelialization and increased zonula-occluden-1 (ZO-1) localization to cell-cell junctions of endothelial cells, indicative of tight junction formation. RGD is then used in the bulk hydrogel to create an endothelial-astrocyte co-culture model of the blood-brain barrier that overcomes the limitations of previous platforms incapable of complex topology or tunable bioactive domains. This approach yields an adjustable, biofabricated platform to interrogate the effects of cell-matrix interaction on blood-brain barrier mechanobiology.
Collapse
Affiliation(s)
- Louis S Paone
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States of America
| | | | - Aidan Curran
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States of America
| | - Sebastián L Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States of America
- Department of Orthopedic Surgery, Cooper Medical School of Rowan University, Camden, NJ, United States of America
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States of America
| |
Collapse
|
2
|
Teryek M, Jadhav P, Bento R, Parekkadan B. 3D Microcapsules for Human Bone Marrow Derived Mesenchymal Stem Cell Biomanufacturing in a Vertical-Wheel Bioreactor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528656. [PMID: 36824906 PMCID: PMC9949076 DOI: 10.1101/2023.02.16.528656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Microencapsulation of human mesenchymal stromal cells (MSCs) via electrospraying has been well documented in tissue engineering and regenerative medicine. Herein, we report the use of microencapsulation, via electrospraying, for MSC expansion using a commercially available hydrogel that is durable, optimized to MSC culture, and enzymatically degradable for cell recovery. Critical parameters of the electrospraying encapsulation process such as seeding density, correlation of microcapsule output with hydrogel volume, and applied voltage were characterized to consistently fabricate cell-laden microcapsules of uniform size. Upon encapsulation, we then verified ~ 10x expansion of encapsulated MSCs within a vertical-wheel bioreactor and the preservation of critical quality attributes such as immunophenotype and multipotency after expansion and cell recovery. Finally, we highlight the genetic manipulation of encapsulated MSCs as an example of incorporating bioactive agents in the capsule material to create new compositions of MSCs with altered phenotypes.
Collapse
Affiliation(s)
- Matthew Teryek
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Pankaj Jadhav
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Raphaela Bento
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
3
|
Son M, Mehra P, Nguyen FT, Jin X, Koman VB, Gong X, Lee MA, Bakh NA, Strano MS. Molecular Recognition and In Vivo Detection of Temozolomide and 5-Aminoimidazole-4-carboxamide for Glioblastoma Using Near-Infrared Fluorescent Carbon Nanotube Sensors. ACS NANO 2023; 17:240-250. [PMID: 36524700 DOI: 10.1021/acsnano.2c07264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
There is a pressing need for sensors and assays to monitor chemotherapeutic activity within the human body in real time to optimize drug dosimetry parameters such as timing, quantity, and frequency in an effort to maximize efficacy while minimizing deleterious cytotoxicity. Herein, we develop near-infrared fluorescent nanosensors based on single walled carbon nanotubes for the chemotherapeutic Temozolomide (TMZ) and its metabolite 5-aminoimidazole-4-carboxamide using Corona Phase Molecular Recognition as a synthetic molecular recognition technique. The resulting nanoparticle sensors are able to monitor drug activity in real-time even under in vivo conditions. Sensors can be engineered to be biocompatible by encapsulation in poly(ethylene glycol) diacrylate hydrogels. Selective detection of TMZ was demonstrated using U-87 MG human glioblastoma cells and SKH-1E mice with detection limits below 30 μM. As sensor implants, we show that such systems can provide spatiotemporal therapeutic information in vivo, as a valuable tool for pharmacokinetic evaluation. Sensor implants are also evaluated using intact porcine brain tissue implanted 2.1 cm below the cranium and monitored using a recently developed Wavelength-Induced Frequency Filtering technique. Additionally, we show that by taking the measurement of spatial and temporal analyte concentrations within each hydrogel implant, the direction of therapeutic flux can be resolved. In all, these types of sensors enable the real time detection of chemotherapeutic concentration, flux, directional transport, and metabolic activity, providing crucial information regarding therapeutic effectiveness.
Collapse
Affiliation(s)
- Manki Son
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Punit Mehra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Freddy T Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Xiaojia Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Michael A Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Naveed A Bakh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
4
|
Bharatiya D, Parhi B, Swain SK. Morphology biased pharmacological and mechanical properties of nanosized block copolymers of
PNIPAM
with polyethylene oxide and polyaminoacids in presence of polycaprolactone. J Appl Polym Sci 2022. [DOI: 10.1002/app.53389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Debasrita Bharatiya
- Department of Chemistry Veer Surendra Sai University of Technology Sambalpur India
| | - Biswajit Parhi
- Department of Chemistry Veer Surendra Sai University of Technology Sambalpur India
| | - Sarat K. Swain
- Department of Chemistry Veer Surendra Sai University of Technology Sambalpur India
| |
Collapse
|
5
|
Suntornnond R, Ng WL, Huang X, Yeow CHE, Yeong WY. Improving printability of hydrogel-based bio-inks for thermal inkjet bioprinting applications via saponification and heat treatment processes. J Mater Chem B 2022; 10:5989-6000. [PMID: 35876487 DOI: 10.1039/d2tb00442a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Material jetting bioprinting is a highly promising three-dimensional (3D) bioprinting technique that facilitates drop-on-demand (DOD) deposition of biomaterials and cells at pre-defined positions with high precision and resolution. A major challenge that hinders the prevalent use of the material jetting bioprinting technique is due to its limited range of printable hydrogel-based bio-inks. As a proof-of-concept, further modifications were made to gelatin methacrylate (GelMA), a gold-standard bio-ink, to improve its printability in a thermal inkjet bioprinter (HP Inc. D300e Digital Dispenser). A two-step modification process comprising saponification and heat treatment was performed; the GelMA bio-ink was first modified via a saponification process under highly alkali conditions to obtain saponified GelMA (SP-GelMA), followed by heat treatment via an autoclaving process to obtain heat-treated SP-GelMA (HSP-GelMA). The bio-ink modification process was optimized by evaluating the material properties of the GelMA bio-inks via rheological characterization, the bio-ink crosslinking test, nuclear magnetic resonance (NMR) spectroscopy and the material swelling ratio after different numbers of heat treatment cycles (0, 1, 2 and 3 cycles). Lastly, size-exclusion chromatography with multi-angle light scattering (SEC-MALS) was performed to determine the effect of heat treatment on the molecular weight of the bio-inks. In this work, the 4% H2SP-GelMA bio-inks (after 2 heat treatment cycles) demonstrated good printability and biocompatibility (in terms of cell viability and proliferation profile). Furthermore, thermal inkjet bioprinting of the modified hydrogel-based bio-ink (a two-step modification process comprising saponification and heat treatment) via direct/indirect cell patterning is a facile approach for potential fundamental cell-cell and cell-material interaction studies.
Collapse
Affiliation(s)
- Ratima Suntornnond
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University (NTU), 65 Nanyang Avenue, 637460, Singapore.
| | - Wei Long Ng
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University (NTU), 65 Nanyang Avenue, 637460, Singapore.
| | - Xi Huang
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University (NTU), 65 Nanyang Avenue, 637460, Singapore.
| | - Chuen Herh Ethan Yeow
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University (NTU), 65 Nanyang Avenue, 637460, Singapore.
| | - Wai Yee Yeong
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University (NTU), 65 Nanyang Avenue, 637460, Singapore. .,Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
6
|
Hayaei Tehrani RS, Hajari MA, Ghorbaninejad Z, Esfandiari F. Droplet microfluidic devices for organized stem cell differentiation into germ cells: capabilities and challenges. Biophys Rev 2021; 13:1245-1271. [PMID: 35059040 PMCID: PMC8724463 DOI: 10.1007/s12551-021-00907-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022] Open
Abstract
Demystifying the mechanisms that underlie germline development and gamete production is critical for expanding advanced therapies for infertile couples who cannot benefit from current infertility treatments. However, the low number of germ cells, particularly in the early stages of development, represents a serious challenge in obtaining sufficient materials required for research purposes. In this regard, pluripotent stem cells (PSCs) have provided an opportunity for producing an unlimited source of germ cells in vitro. Achieving this ambition is highly dependent on accurate stem cell niche reconstitution which is achievable through applying advanced cell engineering approaches. Recently, hydrogel microparticles (HMPs), as either microcarriers or microcapsules, have shown promising potential in providing an excellent 3-dimensional (3D) biomimetic microenvironment alongside the systematic bioactive agent delivery. In this review, recent studies of utilizing various HMP-based cell engineering strategies for appropriate niche reconstitution and efficient in vitro differentiation are highlighted with a special focus on the capabilities of droplet-based microfluidic (DBM) technology. We believe that a deep understanding of the current limitations and potentials of the DBM systems in integration with stem cell biology provides a bright future for germ cell research. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12551-021-00907-5.
Collapse
Affiliation(s)
- Reyhaneh Sadat Hayaei Tehrani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Mohammad Amin Hajari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zeynab Ghorbaninejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| |
Collapse
|
7
|
Evaluation of Microfluidic Approaches to Encapsulate Cells into PEGDA Microparticles. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Purpose
Polyethylene glycol diacrylate (PEGDA) is increasingly used to microencapsulate cells via a vortex-induced water-in-oil emulsion process. Herein, we evaluated methods to encapsulate cells into microparticles using microfluidic methods.
Methods
PEGDA prepolymer solution with or without cells was photopolymerized with white light under varying microfluidic parameters to form empty microspheres or cell-laden microparticles. Microparticles and entrapped cells were assessed for size and viability.
Results
PEGDA microparticles were easily formed when cells were absent; the introduction of cells resulted in aggregation that clogged microfluidic devices, resulting in a mix of empty polymer microparticles and cells that were not encapsulated. Cells that were successfully encapsulated had poor viability.
Conclusion
Microfluidic methods may work for low density microencapsulation of mammalian cells; however, when the cell density within each microparticle must be relatively high, emulsion-based methods are superior to microfluidic methods.
Lay Summary
The synthetic polymer polyethylene glycol diacrylate (PEGDA) has been increasingly used to encapsulate cells into micrometer-sized hydrogel spheres (microspheres). One method to microencapsulate cells has been to form a water-in-oil emulsion with liquid polymer containing cells and then expose the suspended droplets to white light, polymerizing them into PEGDA hydrogel microspheres. Although successful, this method has poor control over the process, resulting in polydisperse microsphere sizes with varying cell density. We evaluated microfluidic methods to form both empty and cell-laden PEGDA microspheres. Although microfluidic methods resulted in monodisperse microsphere sizes, the introduction of cells resulted in clogging of microfluidic devices, non-spherical microparticles, and poor cell viability.
Future Work
Because the microfluidic approach successfully formed cell-free microspheres, the effect of reducing cell aggregation will be examined. Specifically, the use of anti-aggregation agents as well as a reduced cell density in the liquid polymer phase and their effects on polymer formation will be explored.
Collapse
|
8
|
Rana MM, De la Hoz Siegler H. Tuning the Properties of PNIPAm-Based Hydrogel Scaffolds for Cartilage Tissue Engineering. Polymers (Basel) 2021; 13:3154. [PMID: 34578055 PMCID: PMC8467289 DOI: 10.3390/polym13183154] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/15/2023] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAm) is a three-dimensional (3D) crosslinked polymer that can interact with human cells and play an important role in the development of tissue morphogenesis in both in vitro and in vivo conditions. PNIPAm-based scaffolds possess many desirable structural and physical properties required for tissue regeneration, but insufficient mechanical strength, biocompatibility, and biomimicry for tissue development remain obstacles for their application in tissue engineering. The structural integrity and physical properties of the hydrogels depend on the crosslinks formed between polymer chains during synthesis. A variety of design variables including crosslinker content, the combination of natural and synthetic polymers, and solvent type have been explored over the past decade to develop PNIPAm-based scaffolds with optimized properties suitable for tissue engineering applications. These design parameters have been implemented to provide hydrogel scaffolds with dynamic and spatially patterned cues that mimic the biological environment and guide the required cellular functions for cartilage tissue regeneration. The current advances on tuning the properties of PNIPAm-based scaffolds were searched for on Google Scholar, PubMed, and Web of Science. This review provides a comprehensive overview of the scaffolding properties of PNIPAm-based hydrogels and the effects of synthesis-solvent and crosslinking density on tuning these properties. Finally, the challenges and perspectives of considering these two design variables for developing PNIPAm-based scaffolds are outlined.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Hector De la Hoz Siegler
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
9
|
Waresindo WX, Luthfianti HR, Edikresnha D, Suciati T, Noor FA, Khairurrijal K. A freeze-thaw PVA hydrogel loaded with guava leaf extract: physical and antibacterial properties. RSC Adv 2021; 11:30156-30171. [PMID: 35480264 PMCID: PMC9040922 DOI: 10.1039/d1ra04092h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/22/2021] [Indexed: 12/25/2022] Open
Abstract
A polyvinyl alcohol (PVA) hydrogel loaded with guava leaf extract (GLE) has potential applications as a wound dressing with good antibacterial activity. This study succeeded in fabricating a PVA hydrogel containing GLE using the freeze-thaw (FT) method. By varying the GLE concentration, we can adjust the physical properties of the hydrogel. The addition of GLE results in a decrease in cross-linking during gelation and an increase in the pore size of the hydrogels. The increase of the pore size made the swelling increase and the mechanical strength decrease. The weight loss of the hydrogel also increases because the phosphate buffer saline (PBS) dissolves the GLE. Increasing the GLE concentration caused the Fourier-transform infrared (FTIR) absorbance peaks to widen due to hydrogen bonds formed during the FT process. The crystalline phase was transformed into an amorphous phase in the PVA/GLE hydrogel based on the X-ray diffraction (XRD) spectra. The differential scanning calorimetry (DSC) characterization showed a significant decrease in the hydrogel weight over temperatures of 30-150 °C due to the evaporation of water from the hydrogel matrix. The zone of inhibition of the PVA/GLE hydrogel increased with antibacterial activity against Staphylococcus aureus of 17.93% per gram and 15.79% per gram against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- William Xaveriano Waresindo
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
- University Center of Excellence - Nutraceutical, Bioscience and Biotechnology Research Center, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
| | - Halida Rahmi Luthfianti
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
- University Center of Excellence - Nutraceutical, Bioscience and Biotechnology Research Center, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
| | - Dhewa Edikresnha
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
- University Center of Excellence - Nutraceutical, Bioscience and Biotechnology Research Center, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
| | - Tri Suciati
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
| | - Fatimah Arofiati Noor
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
| | - Khairurrijal Khairurrijal
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
- University Center of Excellence - Nutraceutical, Bioscience and Biotechnology Research Center, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
| |
Collapse
|
10
|
Hamilton M, Harrington S, Dhar P, Stehno-Bittel L. Hyaluronic Acid Hydrogel Microspheres for Slow Release Stem Cell Delivery. ACS Biomater Sci Eng 2021; 7:3754-3763. [PMID: 34323078 DOI: 10.1021/acsbiomaterials.1c00658] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell therapies are hampered by a lack of available delivery systems, resulting in inconsistent outcomes in animal studies and human clinical trials. Hydrogel encapsulants offer a broad range of tunable characteristics in the design of cell delivery vehicles. The focus of the hydrogel field has been on durable encapsulants that provide long-term paracrine function of the cells. However, some cell therapies require cell-to-cell contact in order to elicit their effect. Controlled release microencapsulants would be beneficial in these situations, but appropriate polymers have not been adaptable to microsphere manufacturing because they harden too slowly. We developed and tested a novel microencapsulant formulation (acrylated hyaluronic acid: AHA) with degradation characteristics as a controlled release cell delivery vehicle. The properties of AHA microspheres were evaluated and compared to those of poly(ethylene glycol) diacrylate (PEGDA), a durable hydrogel. AHA microspheres possessed a higher swelling ratio, lower diffusion barrier, faster degradation rate, a lower storage modulus, and a larger average diameter than microspheres composed of PEGDA. Additionally, in vitro cell viability and release and short-term in vivo biocompatibility in immune competent Sprague-Dawley rats was assessed for each microsphere type. Compared to PEGDA, microspheres composed of AHA resulted in significantly less foreign body response in vivo as measured by a lack of cellularity or fibrotic ring in the surrounding tissue and no cellular infiltration into the microsphere. This study illustrates the potential of AHA microspheres as a degradable cell delivery system with superior encapsulated cell viability and biocompatibility with the surrounding tissue.
Collapse
Affiliation(s)
- Megan Hamilton
- University of Kansas Bioengineering Program, 1132 Learned Hall, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Stephen Harrington
- Likarda LLC, 10330 Hickman Mills Drive, Suite B, Kansas City, Missouri 64137, United States
| | - Prajnaparamita Dhar
- University of Kansas Bioengineering Program, 1132 Learned Hall, 1530 West 15th Street, Lawrence, Kansas 66045, United States.,Department of Chemical and Petroleum Engineering, The University of Kansas, 4132 Learned Hall, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Lisa Stehno-Bittel
- Likarda LLC, 10330 Hickman Mills Drive, Suite B, Kansas City, Missouri 64137, United States
| |
Collapse
|
11
|
White K, Chalaby R, Lowe G, Berlin J, Glackin C, Olabisi R. Calcein Binding to Assess Mineralization in Hydrogel Microspheres. Polymers (Basel) 2021; 13:2274. [PMID: 34301032 PMCID: PMC8309385 DOI: 10.3390/polym13142274] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 11/18/2022] Open
Abstract
We describe a method to assess mineralization by osteoblasts within microspheres using calcein. Fluorescence imaging of calcein bound to the calcium in hydroxyapatite permits assessment of the mineralized portion of the extracellular matrix. Colorimetric imaging of Alizarin Red S complexed with calcium also gives measures of mineralization, and in tissue cultures calcein and Alizarin Red S have been shown to bind to the same regions of mineral deposits. We show that when the mineralization takes place within hydrogel microspheres, Alizarin Red S does not stain mineral deposits as consistently as calcein. As tissue engineers increasingly encapsulate osteoprogenitors within hydrogel scaffolds, calcein staining may prove a more reliable method to assess this mineralization.
Collapse
Affiliation(s)
- Kristopher White
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, University of California—Irvine, Irvine, CA 92697, USA;
| | - Rabab Chalaby
- Department of Materials Engineering, University of Technology, Baghdad 10066, Iraq;
| | - Gina Lowe
- Department of Neuroscience, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (G.L.); (C.G.)
| | - Jacob Berlin
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Carlotta Glackin
- Department of Neuroscience, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (G.L.); (C.G.)
| | - Ronke Olabisi
- Department of Biomedical Engineering, The Henry Samueli School of Engineering, University of California—Irvine, Irvine, CA 92697, USA;
| |
Collapse
|
12
|
Dorogin J, Townsend JM, Hettiaratchi MH. Biomaterials for protein delivery for complex tissue healing responses. Biomater Sci 2021; 9:2339-2361. [PMID: 33432960 DOI: 10.1039/d0bm01804j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue repair requires a complex cascade of events mediated by a variety of cells, proteins, and matrix molecules; however, the healing cascade can be easily disrupted by numerous factors, resulting in impaired tissue regeneration. Recent advances in biomaterials for tissue regeneration have increased the ability to tailor the delivery of proteins and other biomolecules to injury sites to restore normal healing cascades and stimulate robust tissue repair. In this review, we discuss the evolution of the field toward creating biomaterials that precisely control protein delivery to stimulate tissue regeneration, with a focus on addressing complex and dynamic injury environments. We highlight biomaterials that leverage different mechanisms to deliver and present proteins involved in healing cascades, tissue targeting and mimicking strategies, materials that can be triggered by environmental cues, and integrated strategies that combine multiple biomaterial properties to improve protein delivery. Improvements in biomaterial design to address complex injury environments will expand our understanding of both normal and aberrant tissue repair processes and ultimately provide a better standard of patient care.
Collapse
Affiliation(s)
- Jonathan Dorogin
- Knight Campus for Accelerating Scientific Impact, University of Oregon, 6321 University of Oregon, Eugene, OR 97401, USA.
| | | | | |
Collapse
|
13
|
Development of an Electroactive Hydrogel as a Scaffold for Excitable Tissues. Int J Biomater 2021; 2021:6669504. [PMID: 33603789 PMCID: PMC7868160 DOI: 10.1155/2021/6669504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 01/07/2023] Open
Abstract
For many cells used in tissue engineering applications, the scaffolds upon which they are seeded do not entirely mimic their native environment, particularly in the case of excitable tissues. For instance, muscle cells experience contraction and relaxation driven by the electrical input of an action potential. Electroactive materials can also deform in response to electrical input; however, few such materials are currently suitable as cell scaffolds. We previously described the development of poly(ethyelene glycol) diacrylate-poly(acrylic acid) as an electroactive scaffold. Although the scaffold itself supported cell growth and attachment, the voltage (20 V) required to actuate these scaffolds was cytotoxic. Here, we describe the further development of our hydrogels into scaffolds capable of actuation at voltages (5 V) that were not cytotoxic to seeded cells. This study describes the critical next steps towards the first functional electroactive tissue engineering scaffold.
Collapse
|
14
|
Hushka EA, Yavitt FM, Brown TE, Dempsey PJ, Anseth KS. Relaxation of Extracellular Matrix Forces Directs Crypt Formation and Architecture in Intestinal Organoids. Adv Healthc Mater 2020; 9:e1901214. [PMID: 31957249 PMCID: PMC7274865 DOI: 10.1002/adhm.201901214] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/07/2019] [Indexed: 01/01/2023]
Abstract
Intestinal organoid protocols rely on the use of extracellular scaffolds, typically Matrigel, and upon switching from growth to differentiation promoting media, a symmetry breaking event takes place. During this stage, the first bud like structures analogous to crypts protrude from the central body and differentiation ensues. While organoids provide unparalleled architectural and functional complexity, this sophistication is also responsible for the high variability and lack of reproducibility of uniform crypt-villus structures. If function follows form in organoids, such structural variability carries potential limitations for translational applications (e.g., drug screening). Consequently, there is interest in developing synthetic biomaterials to direct organoid growth and differentiation. It has been hypothesized that synthetic scaffold softening is necessary for crypt development, and these mechanical requirements raise the question, what compressive forces and subsequent relaxation are necessary for organoid maturation? To that end, allyl sulfide hydrogels are employed as a synthetic extracellular matrix mimic, but with photocleavable bonds that temporally regulate the material's bulk modulus. By varying the extent of matrix softening, it is demonstrated that crypt formation, size, and number per colony are functions of matrix softening. An understanding of the mechanical dependence of crypt architecture is necessary to instruct homogenous, reproducible organoids for clinical applications.
Collapse
Affiliation(s)
- Ella A Hushka
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - F Max Yavitt
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Tobin E Brown
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Peter J Dempsey
- Department of Pediatrics, University of Colorado, Denver, CO, 80204, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
15
|
Proctor CM, Chan CY, Porcarelli L, Udabe E, Sanchez-Sanchez A, del Agua I, Mecerreyes D, Malliaras GG. Ionic Hydrogel for Accelerated Dopamine Delivery via Retrodialysis. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:7080-7084. [PMID: 32063677 PMCID: PMC7011752 DOI: 10.1021/acs.chemmater.9b02135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/26/2019] [Indexed: 05/26/2023]
Abstract
Local drug delivery directly to the source of a given pathology using retrodialysis is a promising approach to treating otherwise untreatable diseases. As the primary material component in retrodialysis, the semipermeable membrane represents a critical point for innovation. This work presents a new ionic hydrogel based on polyethylene glycol and acrylate with dopamine counterions. The ionic hydrogel membrane is shown to be a promising material for controlled diffusive delivery of dopamine. The ionic nature of the membrane accelerates uptake of cationic species compared to a nonionic membrane of otherwise similar composition. It is demonstrated that the increased uptake of cations can be exploited to confer an accelerated transport of cationic species between reservoirs as is desired in retrodialysis applications. This effect is shown to enable nearly 10-fold increases in drug delivery rates from low concentration solutions. The processability of the membrane is found to allow for integration with microfabricated devices which will in turn accelerate adaptation into both existing and emerging device modalities. It is anticipated that a similar materials design approach may be broadly applied to a variety of cationic and anionic compounds for drug delivery applications ranging from neurological disorders to cancer.
Collapse
Affiliation(s)
- Christopher M. Proctor
- Electrical Engineering
Division, Department of Engineering, University
of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Chung Yuen Chan
- Electrical Engineering
Division, Department of Engineering, University
of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Luca Porcarelli
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Esther Udabe
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Ana Sanchez-Sanchez
- Electrical Engineering
Division, Department of Engineering, University
of Cambridge, Cambridge CB3 0FA, United Kingdom
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Isabel del Agua
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - George G. Malliaras
- Electrical Engineering
Division, Department of Engineering, University
of Cambridge, Cambridge CB3 0FA, United Kingdom
| |
Collapse
|