1
|
Siddiqui B, Ur Rehman A, Gul R, Chaudhery I, Shah KU, Ahmed N. Folate decorated chitosan-chondroitin sulfate nanoparticles loaded hydrogel for targeting macrophages against rheumatoid arthritis. Carbohydr Polym 2024; 327:121683. [PMID: 38171692 DOI: 10.1016/j.carbpol.2023.121683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/14/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Inflammatory cell infiltration, particularly macrophages, plays a major contribution to the pathogenesis of Rheumatoid Arthritis (RA). Exploiting the overexpression of folate receptors (FR-β) on these recruited macrophages has gained significant attraction for ligand-targeted delivery. Leflunomide (LEF), being an immunomodulatory agent is considered the cornerstone of the therapy, however, its oral efficacy is impeded by low solubility and escalating adverse effects profile. Therefore, in the present work, we developed Folate-conjugated chitosan-chondroitin sulfate nanoparticles encapsulating LEF for selective targeting at inflammatory sites in RA. For this purpose, the folate group was first conjugated with the chitosan polymer. After which, Folate Leflunomide Nanoparticles (FA-LEF-NPs) were synthesized through the ionotropic gelation method by employing FA-CHI and CHS. The polymers CHI and CHS were also presented with innate anti-inflammatory and anti-rheumatic attributes that were helpful in provision of synergistic effects to the formulation. These nanoparticles were further fabricated into a hydrogel, employing almond oil (A.O) as a permeation enhancer. The in vivo studies justified the preferential accumulation of FA-conjugated nanoparticles at inflamed joints more than any other organ in comparison to the free LEF and LEF-NPs formulation. The FA-LEF-NPs loaded hydrogel also ascertained a minimal adverse effect profile with an improvement of inflammatory cytokines expression.
Collapse
Affiliation(s)
- Bazla Siddiqui
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Rabia Gul
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Iqra Chaudhery
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Kifayat Ullah Shah
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan.
| |
Collapse
|
2
|
Sinha A, Garg U, Nagaich U, Chaudhary A, Pandey M, Jain N. Emulgels: a promising topical drug delivery system for arthritis management and care. Pharm Dev Technol 2024; 29:25-39. [PMID: 38014878 DOI: 10.1080/10837450.2023.2289170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/26/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Emulgels, hybrid formulations of emulsions and gels, offer distinct benefits viz. extended release, enhanced bioavailability, and targeted drug delivery to inflamed joints, thereby minimizing systemic side effects, and maximizing therapeutic efficacy in targeting the diseases. Oral medications and topical creams have limitations viz. limited permeation, efficacy, and side effects. Arthritis is a prevalent chronic inflammatory disorder affecting a substantial global population of about 350 million necessitating the exploration of innovative and effective treatment approaches. Inflammation of one or more joints in the body is referred to generally as arthritis, associated with joint discomfort, edema, stiffness, and decreased motion in the joints. MAIN PART Emulgels further improve drug solubility and penetration into the affected tissues, augmenting the potential for disease-modifying effects. This review article comprehensively examines recent research for the potential of emulgels (micro- and nanoemulgels) as a potential therapeutic approach for arthritis management, thus showcasing their promising potential in precise treatment regimens. Despite the considerable progress in emulgel-based arthritis therapies, the review emphasizes the need for additional research and translation to clinical trials, thus ascertaining their long-term safety, efficacy, and cost-effectiveness compared to conventional treatments. CONCLUSION With ongoing advancements in drug delivery, emulgels present an exciting frontier in arthritis-associated conditions, with the potential to revolutionize arthritis treatment and significantly enhance patient life's quality.
Collapse
Affiliation(s)
- Aditi Sinha
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Unnati Garg
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Upendra Nagaich
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Amit Chaudhary
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| |
Collapse
|
3
|
Salem MA, Mohamed OG, Mosalam EM, Elberri AI, Abdel-Bar HM, Hassan M, Al-Karmalawy AA, Tripathi A, Ezzat SM, Abo Mansour HE. Investigation of the phytochemical composition, antioxidant, antibacterial, anti-osteoarthritis, and wound healing activities of selected vegetable waste. Sci Rep 2023; 13:13034. [PMID: 37563154 PMCID: PMC10415269 DOI: 10.1038/s41598-023-38591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
Agri-food wastes, produced following industrial food processing, are mostly discarded, leading to environmental hazards and losing the nutritional and medicinal values associated with their bioactive constituents. In this study, we performed a comprehensive analytical and biological evaluation of selected vegetable by-products (potato, onion, and garlic peels). The phytochemical analysis included UHPLC-ESI-qTOF-MS/MS in combination with molecular networking and determination of the total flavonoid and phenolic contents. Further, the antimicrobial, anti-osteoarthritis and wound healing potentials were also evaluated. In total, 47 compounds were identified, belonging to phenolic acids, flavonoids, saponins, and alkaloids as representative chemical classes. Onion peel extract (OPE) showed the higher polyphenolic contents, the promising antioxidant activity, the potential anti-osteoarthritis activity, and promising antimicrobial activity, especially against methicillin-resistant Staphylococcus aureus (MRSA). Furthermore, OPE revealed to have promising in vivo wound healing activity, restoring tissue physiology and integrity, mainly through the activation of AP-1 signaling pathway. Lastly, when OPE was loaded with nanocapsule based hydrogel, the nano-formulation revealed enhanced cellular viability. The affinities of the OPE major metabolites were evaluated against both p65 and ATF-2 targets using two different molecular docking processes revealing quercetin-3,4'-O-diglucoside, alliospiroside C, and alliospiroside D as the most promising entities with superior binding scores. These results demonstrate that vegetable by-products, particularly, those derived from onion peels can be incorporated as natural by-product for future evaluation against wounds and osteoarthritis.
Collapse
Affiliation(s)
- Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibīn al-Kawm, 32511, Menoufia, Egypt.
| | - Osama G Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Esraa M Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shebin El-Koum, 32511, Egypt
| | - Aya Ibrahim Elberri
- Genetic Engineering and Molecular Biology Division, Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, 32511, Menoufia, Egypt
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr el Aini st., Cairo, 11562, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Hend E Abo Mansour
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shebin El-Koum, 32511, Egypt
| |
Collapse
|
4
|
Siddiqui B, Ahmed H, Haq IU, Rehman AU, Ahmed N. Development and validation of HPLC method for simultaneous determination of Leflunomide and folic acid in the nanoparticulate system by reversed-phase HPLC. Drug Dev Ind Pharm 2023; 49:497-507. [PMID: 37470519 DOI: 10.1080/03639045.2023.2239346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVE The main objective of this study was to develop a highly sensitive, accurate, and reproducible analytical method for the simultaneous detection of LEF and FA in polymeric nanocarriers. SIGNIFICANCE Leflunomide (LEF), is widely employed in the treatment of rheumatoid arthritis (RA). However, long-term delivery of the drug is associated with systemic side effects. Therefore, folate (FA) conjugated LEF nanocarriers were fabricated for targeting the nanocarriers toward activated macrophages. HPLC is considered one of the most sensitive and precise analytical techniques for the simultaneous detection and estimation of different components in a particular sample. METHODS Analysis was performed on HPLC (Shimadzu 10 A), having a reversed-phase C-18 column (Beckmen, 250 X 4.6 mm, 5 µm) equipped with a photodiode detector set at a wavelength of 260 nm (LEF) and 285 nm (Folic acid). The isocratic mobile phase was composed of acetonitrile, water, and trimethylamine in a ratio of 65:35:0.5 at pH 4. Rapid analysis of both agents was performed, with a total run time of 10 min (FA = 2.1 ± 0.1 min, LEF = 5.9 ± 1 min) at a 1 mL/min flow rate. RESULTS The assay demonstrated good linearity of 0.9989 of 0.9997 for LEF and FA respectively with a recovery in the range of 95-100%. The method also depicted good specificity, and intra and inter-day precision based on relative standard deviation (RSD) values. CONCLUSIONS The study concludes, that the developed method was helpful in the detection and quantitation of lower values of both agents from polymeric nanocarriers.
Collapse
Affiliation(s)
- Bazla Siddiqui
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Haroon Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ihsan-Ul- Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
5
|
Estabragh MAR, Bami MS, Dehghannoudeh G, Noudeh YD, Moghimipour E. Cellulose derivatives and natural gums as gelling agents for preparation of emulgel-based dosage forms: A brief review. Int J Biol Macromol 2023; 241:124538. [PMID: 37085064 DOI: 10.1016/j.ijbiomac.2023.124538] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Incorporation of an emulsion onto a gel base develops a drug delivery system with improved characteristics, known as emulgel, that can envelop both hydrophilic and lipophilic molecules, and therefore increase stability and penetration of topical formulations. Such a drug delivery system provides controlled drug release that has more patient compliance and higher therapeutic efficacy. Emulgel is prepared in three main stages, preparation of water-in-oil or oil-in-water emulsion, providing the gel base, and incorporation of prepared emulsion onto gel base with continuous stirring. Various materials such as different oils (e.g. sesame oil, balsam oil, and mineral oil), emulsifiers (e.g. Tween® and Span® as the non-ionic surfactant, polyvinyl alcohol), and gelling agents including cellulose derivatives such as hydroxypropyl methylcellulose (HPMC), hydroxyethylcellulose (HEC) and carboxymethyl cellulose (CMC) in different concentrations are used in emulgel preparation. The physical properties, particle size distribution, spreadability, permeation, and drug release rate are evaluated in their development and characterization. They are used in skin disorders and other diseases such as chronic anal fisher. Also, anti-acne, analgesic, and anti-inflammatory drugs have been formulated as emulgel delivery system and their effects have been studied. In this article, the subject is to review the characteristics, preparation methods, and therapeutic efficacy as well as the potential clinical use of emulgels.
Collapse
Affiliation(s)
| | - Marzieh Sajadi Bami
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasmin Dehghan Noudeh
- University of Saskatchewan, College of Medicine, Department of Anatomy, Physiology, Pharmacology, Canada
| | - Eskandar Moghimipour
- Nanotechnology Research Center, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahwaz, Iran.
| |
Collapse
|
6
|
Zafar A, Khan D, Rehman AU, Ullah N, Ur-Rehman T, Ahmad NM, Ahmed N. Fabrication of bergenin nanoparticles based hydrogel against infected wounds: An In vitro and In vivo study. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
7
|
Arooj A, Rehman AU, Iqbal M, Naz I, Alhodaib A, Ahmed N. Development of Adapalene Loaded Liposome Based Gel for Acne. Gels 2023; 9:gels9020135. [PMID: 36826305 PMCID: PMC9956198 DOI: 10.3390/gels9020135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
Retinoids are considered the mainstay treatment for moderate to severe acne. Adapalene, a third-generation retinoid, has physiochemical properties which hinder the effective delivery of the drug to the skin. Therefore, the current study aimed to develop and evaluate adapalene liposomal loaded gel (ADA-LP gel) for the effective management of acne to improve tolerability and delivery to targeted sites as compared to the conventional dosage form of the drug. A novel spontaneous phase transition method (SPT) was used to formulate liposomes. Liposomal formulation (ADA-LP) was prepared and optimized based on particle size, zeta potential, and PDI. Optimized formulation was further characterized by different techniques and loaded into Carbopol gel. In vitro drug release, ex vivo permeation, and in vivo studies were performed using the prepared adapalene-loaded liposomal-based gel. The in vivo study was done employing the testosterone-induced acne model in mice. The optimized formulation had a size of 181 nm, PDI 0.145, and a zeta potential of -35 mV, indicating that the formulation was stable. Encapsulation efficiency was 89.69 ± 0.5%. ADA-LPs were loaded into the gel. Prepared ADA-LP showed a 79 ± 0.02% release of drug in a sustained manner, within 24 h. The ex vivo permeability study showed a total of 43 ± 0.06 µg/cm2 of drug able to permeate through the skin within 24 h. Moreover, only 28.27 ± 0.04% was retained on the epidermis. The developed ADA-LP gel showed significant improvement in the acne lesions in mice with no visible scars and inflammation on the skin. Therefore, ADA-LP-based gel could be a promising carrier system for the safe and effective delivery of Adapalene.
Collapse
Affiliation(s)
- Asma Arooj
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Iqbal
- Drug Delivery and Cosmetic Lab (DDCL), Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Iffat Naz
- Department of Biology, Science Unit, Deanship of Educational Services, Qassim University, Buraydah 51452, Saudi Arabia
| | - Aiyeshah Alhodaib
- Department of Physics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia
- Correspondence: (A.A.); (N.A.); Tel.: +92-5190644180 (N.A.)
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Correspondence: (A.A.); (N.A.); Tel.: +92-5190644180 (N.A.)
| |
Collapse
|
8
|
Ullah N, Khan D, Ahmed N, Zafar A, Shah KU, ur Rehman A. Lipase-sensitive fusidic acid polymeric nanoparticles based hydrogel for on-demand delivery against MRSA-infected burn wounds. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Siddiqui B, Rehman AU, Haq IU, Al-Dossary AA, Elaissari A, Ahmed N. Exploiting recent trends for the synthesis and surface functionalization of mesoporous silica nanoparticles towards biomedical applications. Int J Pharm X 2022; 4:100116. [PMID: 35509288 PMCID: PMC9058968 DOI: 10.1016/j.ijpx.2022.100116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022] Open
Abstract
Rapid progress in developing multifunctional nanocarriers for drug delivery has been observed in recent years. Inorganic mesoporous silica nanocarriers (MSNs), emerged as an ideal candidate for gene/drug delivery with distinctive morphological features. These ordered carriers of porous nature have gained unique attention due to their distinctive features. Moreover, transformation can be made to these nanocarriers in terms of pores size, pores volume, and particle size by altering specific parameters during synthesis. These ordered porous materials have earned special attention as a drug carrier for treating multiple diseases. Herein, we highlight the strategies employed in synthesizing and functionalizing these versatile nanocarriers. In addition, the various factors that influence their sizes and morphological features were also discussed. The article also summarizes the recent advancements and strategies for drug and gene delivery by rendering smarter MSNs by incorporating functional groups on their surfaces. Averting off-target effects through various capping strategies is a massive milestone for the induction of stimuli-responsive nanocarriers that brings out a great revolution in the biomedical field. MSNs serve as an ideal candidate for gene/drug delivery with unique and excellent attributes. MSNs surface can be functionalized using specific materials to impart unique structural features. Functionalization of MSNs with stimuli-responsive molecules can act as gatekeepers by responding to the desired stimulus after uncapping. These capping agents act as vital targeting agents in developing MSNs being employed in various biomedical applications.
Collapse
Affiliation(s)
- Bazla Siddiqui
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Ihsan-Ul Haq
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Amal A Al-Dossary
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Villeurbanne, France
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| |
Collapse
|
10
|
Saleem K, Siddiqui B, .ur.Rehman A, Taqi MM, Ahmed N. Exploiting Recent Trends in the Treatment of Androgenic Alopecia through Topical Nanocarriers of Minoxidil. AAPS PharmSciTech 2022; 23:292. [DOI: 10.1208/s12249-022-02444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
|
11
|
Enhanced Antimicrobial Activity of Silver Sulfadiazine Cosmetotherapeutic Nanolotion for Burn Infections. COSMETICS 2022. [DOI: 10.3390/cosmetics9050093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Burns are highly traumatizing injuries that can be complicated by various microbial infections, leading to morbidity and mortality. The ultimate goal of burn therapy is to prevent any microbial infection and rapid wound healing with epithelization. The current study aimed to develop and investigate the potential of nanoemulsion-based cosmetotherapeutic lotion of silver sulfadiazine (SSD) for increased antimicrobial activity to treat burn injuries. Silver sulfadiazine is the standard topical treatment for burn patients, but is allied with major limitations of poor solubility, low bioavailability, and other hematologic effects, hindering its pharmaceutical applications. The nanoformulation was fabricated through the ultrasonication technique and optimized by selecting various parameters and concentrations for the formation of water-in-oil (w/o) emulsion. The optimized formulation depicts a smaller particle size of 213 nm with an encapsulation efficiency of approx. 80%. Further, nanoemulsion-based SSD lotion by utilizing argan oil as a cosmetotherapeutic agent was prepared for scar massaging with improved permeation properties. The designed cosmeceutical formulation was characterized in terms of physical appearance, refractive index, particle size, encapsulation efficiency, and biocompatibility. The compatibility of the formulation ingredients were determined through FTIR (Fourier Transform Infrared Spectroscopy). The formulated nanolotion containing SSD demonstrated superior antimicrobial activities against different bacterial strains in comparison to commercialized burn creams.
Collapse
|
12
|
Nishal S, Jhawat V, Phaugat P, Dutt R. In-vitro characterization oftofacitinibloaded novel nanoemulgel fortopical delivery for the management of rheumatic arthritis. Drug Dev Ind Pharm 2022; 48:374-383. [PMID: 36039045 DOI: 10.1080/03639045.2022.2119572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The purpose of the current study is to prepare the tofacitinibnanoemulgelfor topical administration with optimized particle size, high loading efficiency, and better penetration through the skin for the treatment of rheumatic arthritis. The topical delivery of this drugavoids the hazards associated with oral delivery like upper respiratory tract infections and neutropenia. Theformulationswere prepared usingthe high-energy ultrasonication method. Oleic acid, tween 80, andpropylene glycol were used to prepare tofacitinibnanoemulsionwhich is then homogenized with carbopol-934 hydrogel to get the nanoemulgel loaded with tofacitinib.The concentration of independent variables such as X1 (oil phase), X2 (surfactant), and X3 (cosurfactant) wasoptimized using theBox-Behnken design to check its impact on dependent variables such as Y1 (particle size), and Y2(loading efficiency) of the nanoemulsion.The minimumparticle size of 106.3 ± 2.8nm and maximum loading efficiency of 19.3 ± 1.8%were obtained for nanoemulsion. The nanoemulgels were evaluated for different organoleptic and physicochemical stability which were found within the normal range. The in-vitro release studies showed 89.64 ± 0.97% cumulative release of tofacitinib from nanoemulgel over the period of 24 hours.The drug release data were fitted in different kinetic models and it followed Higuchi and Korsmeyer- Peppas model clearly showing the non-fickian drug release from matrix system. As a result, the tofacitinib nanoemulgel that have been produced could be a viable delivery mechanism for topical route.
Collapse
Affiliation(s)
- Suchitra Nishal
- School of Medical and Allied Sciences, GD Goenka University, Gurugram, India
| | - Vikas Jhawat
- School of Medical and Allied Sciences, GD Goenka University, Gurugram, India
| | - Parmita Phaugat
- School of Medical and Allied Sciences, GD Goenka University, Gurugram, India
| | - Rohit Dutt
- School of Medical and Allied Sciences, GD Goenka University, Gurugram, India
| |
Collapse
|
13
|
Shang H, Younas A, Zhang N. Recent advances on transdermal delivery systems for the treatment of arthritic injuries: From classical treatment to nanomedicines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1778. [PMID: 35112483 DOI: 10.1002/wnan.1778] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Abstract
Arthritic injuries happen frequently during a lifetime due to accidents, sports, aging, diseases, etc. Such injuries can be cartilage/bone injuries, tendon injuries, ligament injuries, inflammation, pain, and/or synovitis. Oral and injective administration of therapeutics are typically used but cause many side effects. Transdermal administration is an alternative route for safe and efficient delivery. Transdermal formulations of non-steroidal anti-inflammatory drugs have been available on market for years and show promising efficacy in pain relieving, inflammation alleviation, infection control, and so on. Innovative transdermal patches, gels/films, and microneedles have also been widely explored as formulations to deliver therapeutics to combat arthritic injuries. However, transdermal formulations that halt disease progression and promote damage repair are translated slowly from lab bench to clinical applications. One major reason is that the skin barrier and synovial capsule barrier limit the efficacy of transdermal delivery. Recently, many nanocarriers, such as nanoparticles, nanolipids, nanoemulsions, nanocrystals, exosomes, etc., have been incorporated into transdermal formulations to advance drug delivery. The combined transdermal formulations show promising safety and efficacy. Therefore, this review will focus on stating the current development of nanomedicine-based transdermal formulations for the treatment of arthritic injuries. The advances, limitations, and future perspectives in this field will also be provided to inspire future studies and accelerate clinical translational studies. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Hongtao Shang
- School of Sports Sciences (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| | - Ayesha Younas
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Hydrogel Containing Solid Lipid Nanoparticles Loaded with Argan Oil and Simvastatin: Preparation, In Vitro and Ex Vivo Assessment. Gels 2022; 8:gels8050277. [PMID: 35621575 PMCID: PMC9140805 DOI: 10.3390/gels8050277] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Transdermal hydrogels have the potential to improve therapeutic outcomes via enhancing bioavailability and reducing toxicity associated with oral delivery. The goal of the present study was to formulate and optimise argan oil loaded transdermal hydrogel containing lipid nanoparticles. The high pressure homogenization (HPH) method was utilised to fabricate Simvastatin loaded solid lipid nanoparticles (SIM-SLNs) with precirol ATO 5 as a lipid core and Poloxamer 407 (P407) to stabilise the core. The optimised nanoformulation was characterised for its particle diameter, zeta potential, surface morphology, entrapment efficiency, crystallinity and molecular interaction. Furthermore, transdermal hydrogel was characterised for physical appearance, rheology, pH, bio adhesion, extrudability, spreadability and safety profile. In vitro and ex vivo assays were executed to gauge the potential of SLNs and argan oil for transdermal delivery. The mean particle size, zeta potential and polydispersity index (PDI) of the optimised nanoparticles were 205 nm, −16.6 mV and 0.127, respectively. Crystallinity studies and Fourier transform infrared (FTIR) analysis revealed no molecular interaction. The in vitro release model explains anomalous non-Fickian release of drug from matrix system. Ex vivo skin penetration studies conducted through a fluorescence microscope confirmed penetration of the formulation across the stratum corneum. Hydrogel plays a crucial role in controlling the burst release and imparting the effect of argan oil as hypolipidemic agent and permeation enhancer.
Collapse
|
15
|
Sabir F, Qindeel M, Rehman AU, Ahmad NM, Khan GM, Csoka I, Ahmed N. An efficient approach for development and optimisation of curcumin-loaded solid lipid nanoparticles' patch for transdermal delivery. J Microencapsul 2021; 38:233-248. [PMID: 33689550 DOI: 10.1080/02652048.2021.1899321] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This study aimed to develop and optimise a Curcumin-loaded SLNs (C-SLNs) patch through a new approach for transdermal delivery. C-SLNs were optimised through the response surface central composite design using the modified injection method. Optimised C-SLNs were loaded into a polyvinyl alcohol-based patch through the backing membrane method. Compatibility studies (FTIR, XRPD), in vitro release, ex vivo skin permeation, accelerated stability, and evaluation studies of the patch were also performed. Prepared C-SLNs exhibited average particle diameter of 170 ± 2 nm with an encapsulation efficiency of 90 ± 3.5% (w/w) while SEM illustrated spherical shape of particles. In vitro release data ensured a sustained release for up to 72 hours. The enhancement ratio of C-SLNs based patch with permeation enhancer (PE) was high up to 6.5 folds as compared to patch without PE. It is concluded that the modified injection method is simple, economical, and less time consuming for the development of C-SLNs patch for the transdermal route.
Collapse
Affiliation(s)
- Fakhara Sabir
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.,Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.,Hamdard Institute of Pharmaceutical Sciences, Hamdard University Islamabad Campus, Islamabad, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nasir Mahmood Ahmad
- Polymer Research Lab, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ildiko Csoka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|