1
|
Liu J, Zhang G, Li X, Zheng C, Kan X. Enhancing the therapeutic impact of sublethal radiofrequency hyperthermia in malignant solid tumor treatment. Heliyon 2024; 10:e29866. [PMID: 38681568 PMCID: PMC11053292 DOI: 10.1016/j.heliyon.2024.e29866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Radiofrequency ablation (RFA) is an effective alternative to surgery for managing some malignant solid tumors. However, for medium-to-large tumors (>3 cm), tumors adjacent to large blood vessels, and certain irregular tumors, sublethal radiofrequency hyperthermia (RFH) often produces a margin of ablated tumor owing to the "heat-sink" effect. This effect typically leaves behind viable residual tumors at the margin. Several studies have reported that a sublethal RFH can significantly enhance the efficacy of chemotherapy, radiotherapy, immunotherapy, and gene therapy for malignant solid tumors. The possible mechanisms by which RFH enhances these therapies include heat-induced tissue fracturing, increased permeability of the cytoplasmic membrane, exaggerated cellular metabolism, blockade of the repair pathways of radiation-damaged tumor cells, and activation of the heat shock protein pathways. Therefore, RFA in combination with chemotherapy, radiotherapy, immunotherapy, or gene therapy may help reduce the rates of residual and recurrent tumors after RFA of malignant solid tumors.
Collapse
Affiliation(s)
- Jiayun Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Guilin Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xinyi Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xuefeng Kan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
2
|
Lin TY, Jia JS, Luo WR, Lin XL, Xiao SJ, Yang J, Xia JW, Zhou C, Zhou ZH, Lin SJ, Li QW, Yang ZZ, Lei Y, Yang WQ, Shen HF, Huang SH, Wang SC, Chen LB, Yang YL, Xue SW, Li YL, Dai GQ, Zhou Y, Li YC, Wei F, Rong XX, Luo XJ, Zhao BX, Huang WH, Xiao D, Sun Y. ThermomiR-377-3p-induced suppression of Cirbp expression is required for effective elimination of cancer cells and cancer stem-like cells by hyperthermia. J Exp Clin Cancer Res 2024; 43:62. [PMID: 38419081 PMCID: PMC10903011 DOI: 10.1186/s13046-024-02983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND In recent years, the development of adjunctive therapeutic hyperthermia for cancer therapy has received considerable attention. However, the mechanisms underlying hyperthermia resistance are still poorly understood. In this study, we investigated the roles of cold‑inducible RNA binding protein (Cirbp) in regulating hyperthermia resistance and underlying mechanisms in nasopharyngeal carcinoma (NPC). METHODS CCK-8 assay, colony formation assay, tumor sphere formation assay, qRT-PCR, Western blot were employed to examine the effects of hyperthermia (HT), HT + oridonin(Ori) or HT + radiotherapy (RT) on the proliferation and stemness of NPC cells. RNA sequencing was applied to gain differentially expressed genes upon hyperthermia. Gain-of-function and loss-of-function experiments were used to evaluate the effects of RNAi-mediated Cirbp silencing or Cirbp overexpression on the sensitivity or resistance of NPC cells and cancer stem-like cells to hyperthermia by CCK-8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay, and in subcutaneous xenograft animal model. miRNA transient transfection and luciferase reporter assay were used to demonstrate that Cirbp is a direct target of miR-377-3p. The phosphorylation levels of key members in ATM-Chk2 and ATR-Chk1 pathways were detected by Western blot. RESULTS Our results firstly revealed that hyperthermia significantly attenuated the stemness of NPC cells, while combination treatment of hyperthermia and oridonin dramatically increased the killing effect on NPC cells and cancer stem cell (CSC)‑like population. Moreover, hyperthermia substantially improved the sensitivity of radiation‑resistant NPC cells and CSC‑like cells to radiotherapy. Hyperthermia noticeably suppressed Cirbp expression in NPC cells and xenograft tumor tissues. Furthermore, Cirbp inhibition remarkably boosted anti‑tumor‑killing activity of hyperthermia against NPC cells and CSC‑like cells, whereas ectopic expression of Cirbp compromised tumor‑killing effect of hyperthermia on these cells, indicating that Cirbp overexpression induces hyperthermia resistance. ThermomiR-377-3p improved the sensitivity of NPC cells and CSC‑like cells to hyperthermia in vitro by directly suppressing Cirbp expression. More importantly, our results displayed the significantly boosted sensitization of tumor xenografts to hyperthermia by Cirbp silencing in vivo, but ectopic expression of Cirbp almost completely counteracted hyperthermia-mediated tumor cell-killing effect against tumor xenografts in vivo. Mechanistically, Cirbp silencing-induced inhibition of DNA damage repair by inactivating ATM-Chk2 and ATR-Chk1 pathways, decrease in stemness and increase in cell death contributed to hyperthermic sensitization; conversely, Cirbp overexpression-induced promotion of DNA damage repair, increase in stemness and decrease in cell apoptosis contributed to hyperthermia resistance. CONCLUSION Taken together, these findings reveal a previously unrecognized role for Cirbp in positively regulating hyperthermia resistance and suggest that thermomiR-377-3p and its target gene Cirbp represent promising targets for therapeutic hyperthermia.
Collapse
Affiliation(s)
- Tao-Yan Lin
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun-Shuang Jia
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Wei-Ren Luo
- Cancer Research Institute, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Xiao-Lin Lin
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Sheng-Jun Xiao
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Jie Yang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Imaging, Central Hospital of Shaoyang, Shaoyang, 422000, China
| | - Jia-Wei Xia
- The Third People's Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming, 650041, China
| | - Chen Zhou
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Zhi-Hao Zhou
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Jun Lin
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qi-Wen Li
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhi-Zhi Yang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ye Lei
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Qing Yang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Hong-Fen Shen
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shi-Hao Huang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sheng-Chun Wang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, China
| | - Lin-Bei Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Lin Yang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Wen Xue
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Long Li
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guan-Qi Dai
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying Zhou
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying-Chun Li
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fang Wei
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Xiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guang‑zhou, 510515, China
| | - Xiao-Jun Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Bing-Xia Zhao
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Wen-Hua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510000, China.
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524001, China.
| | - Dong Xiao
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Guangzhou Southern Medical Laboratory Animal Sci.&Tech. Co.,Ltd, Guangzhou, 510515, China.
- National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Department of Stomatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Yan Sun
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Chia BSH, Ho SZ, Tan HQ, Chua MLK, Tuan JKL. A Review of the Current Clinical Evidence for Loco-Regional Moderate Hyperthermia in the Adjunct Management of Cancers. Cancers (Basel) 2023; 15:cancers15020346. [PMID: 36672300 PMCID: PMC9856725 DOI: 10.3390/cancers15020346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Regional hyperthermia therapy (RHT) is a treatment that applies moderate heat to tumours in an attempt to potentiate the effects of oncological treatments and improve responses. Although it has been used for many years, the mechanisms of action are not fully understood. Heterogenous practices, poor quality assurance, conflicting clinical evidence and lack of familiarity have hindered its use. Despite this, several centres recognise its potential and have adopted it in their standard treatment protocols. In recent times, significant technical improvements have been made and there is an increasing pool of evidence that could revolutionise its use. Our narrative review aims to summarise the recently published prospective trial evidence and present the clinical effects of RHT when added to standard cancer treatments. In total, 31 studies with higher-quality evidence across various subsites are discussed herein. Although not all of these studies are level 1 evidence, benefits of moderate RHT in improving local tumour control, survival outcomes and quality of life scores were observed across the different cancer subsites with minimal increase in toxicities. This paper may serve as a reference when considering this technique for specific indications.
Collapse
Affiliation(s)
- Brendan Seng Hup Chia
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
- Correspondence:
| | - Shaun Zhirui Ho
- Department of Radiation Oncology, 585 North Bridge Rd, Level 10 Raffles Specialist Centre, Singapore 188770, Singapore
| | - Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| | - Melvin Lee Kiang Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| | - Jeffrey Kit Loong Tuan
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| |
Collapse
|
4
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
5
|
Arrojo E, Fiorentini G, Ghadjar P, Minnaar C, Szasz AM, Szasz A. Commentary on "Systematic review about complementary medical hyperthermia in oncology" by Liebl et al. Clin Exp Med 2022; 22:667-672. [PMID: 36239869 PMCID: PMC9588469 DOI: 10.1007/s10238-022-00902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/30/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Elisabeth Arrojo
- University Hospital Marques de Valdecilla, Santender, Cantabria, Spain
- Medical Institute of Advanced Oncology (INMOA), Madrid, Spain
| | - Giammaria Fiorentini
- Former Director Medical Oncology Unit and Hyperthermia Service, Onco-Hematology Department, Azienda Ospedaliera Marche Nord, Pesaro, Italy
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Carrie Minnaar
- Department of Radiation Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Wits Donald Gordon Academic Hospital, Johannesburg, South Africa.
| | - A Marcell Szasz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Andras Szasz
- Biotechnics Department, Hungarian University of Agriculture and Life Sciences, Godollo, Hungary
| |
Collapse
|
6
|
Hübner J, Dörfler J, Liebl C, Käsmann L. Answer to Commentary on "Systematic review about complementary medical hyperthermia in oncology" by Liebl et al. Clin Exp Med 2022; 22:673-678. [PMID: 36239870 PMCID: PMC9588464 DOI: 10.1007/s10238-022-00901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 11/27/2022]
Affiliation(s)
- J Hübner
- Klinik für Innere Medizin II; Universitätsklinikum Jena, Jena, Germany.
| | - J Dörfler
- Klinik für Innere Medizin II; Universitätsklinikum Jena, Jena, Germany
| | - C Liebl
- Klinik für Innere Medizin II; Universitätsklinikum Jena, Jena, Germany
| | - L Käsmann
- LMU Klinikum Munich, Munich, Germany
| |
Collapse
|
7
|
Minnaar CA, Maposa I, Kotzen JA, Baeyens A. Effects of Modulated Electro-Hyperthermia (mEHT) on Two and Three Year Survival of Locally Advanced Cervical Cancer Patients. Cancers (Basel) 2022; 14:cancers14030656. [PMID: 35158924 PMCID: PMC8833695 DOI: 10.3390/cancers14030656] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Modulated electro-hyperthermia (mEHT) is a mild to moderate, capacitive-coupled heating technology that uses amplitude modulation to enhance the cell-killing effects of the treatment. We present three year survival results and a cost effectiveness analysis from an ongoing randomised controlled Phase III trial involving 210 participants evaluating chemoradiotherapy (CRT) with/without mEHT, for the management of locally advanced cervical cancer (LACC) in a resource constrained setting (Ethics Approval: M120477/M704133; ClinicalTrials.gov ID: NCT033320690). (2) Methods: We report hazard ratios (HR); odds ratio (OR), and 95% confidence intervals (CI) for overall survival and disease free survival (DFS) at two and three years in the ongoing study. Late toxicity, quality of life (QoL), and a cost effectiveness analysis (CEA) using a Markov model are also reported. (3) Results: Disease recurrence at two and three years was significantly reduced by mEHT (HR: 0.67, 95%CI: 0.48-0.93, p = 0.017; and HR: 0.70, 95%CI: 0.51-0.98, p = 0.035; respectively). There were no significant differences in late toxicity between the groups, and QoL was significantly improved in the mEHT group. In the CEA, mEHT + CRT dominated the model over CRT alone. (4) Conclusions: CRT combined with mEHT improves QoL and DFS rates, and lowers treatment costs, without increasing toxicity in LACC patients, even in resource-constrained settings.
Collapse
Affiliation(s)
- Carrie Anne Minnaar
- Department of Radiation Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (C.A.M.); (J.A.K.)
- Department of Radiation Oncology, Wits Donald Gordon Academic Hospital, Johannesburg 2193, South Africa
| | - Innocent Maposa
- Department of Epidemiology & Biostatistics, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Jeffrey Allan Kotzen
- Department of Radiation Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (C.A.M.); (J.A.K.)
- Department of Radiation Oncology, Wits Donald Gordon Academic Hospital, Johannesburg 2193, South Africa
| | - Ans Baeyens
- Department of Radiation Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (C.A.M.); (J.A.K.)
- Radiobiology, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
8
|
Clinical Evidence for Thermometric Parameters to Guide Hyperthermia Treatment. Cancers (Basel) 2022; 14:cancers14030625. [PMID: 35158893 PMCID: PMC8833668 DOI: 10.3390/cancers14030625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/01/2023] Open
Abstract
Hyperthermia (HT) is a cancer treatment modality which targets malignant tissues by heating to 40-43 °C. In addition to its direct antitumor effects, HT potently sensitizes the tumor to radiotherapy (RT) and chemotherapy (CT), thereby enabling complete eradication of some tumor entities as shown in randomized clinical trials. Despite the proven efficacy of HT in combination with classic cancer treatments, there are limited international standards for the delivery of HT in the clinical setting. Consequently, there is a large variability in reported data on thermometric parameters, including the temperature obtained from multiple reference points, heating duration, thermal dose, time interval, and sequence between HT and other treatment modalities. Evidence from some clinical trials indicates that thermal dose, which correlates with heating time and temperature achieved, could be used as a predictive marker for treatment efficacy in future studies. Similarly, other thermometric parameters when chosen optimally are associated with increased antitumor efficacy. This review summarizes the existing clinical evidence for the prognostic and predictive role of the most important thermometric parameters to guide the combined treatment of RT and CT with HT. In conclusion, we call for the standardization of thermometric parameters and stress the importance for their validation in future prospective clinical studies.
Collapse
|
9
|
Peiravi M, Eslami H, Ansari M, Zare-Zardini H. Magnetic hyperthermia: Potentials and limitations. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Bai L, Pfeifer T, Gross W, De La Torre C, Zhao S, Liu L, Schaefer M, Herr I. Establishment of Tumor Treating Fields Combined With Mild Hyperthermia as Novel Supporting Therapy for Pancreatic Cancer. Front Oncol 2021; 11:738801. [PMID: 34804927 PMCID: PMC8597267 DOI: 10.3389/fonc.2021.738801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with poor prognosis and limited therapeutic options. Alternating electrical fields with low intensity called "Tumor Treating Fields" (TTFields) are a new, non-invasive approach with almost no side effects and phase 3 trials are ongoing in advanced PDAC. We evaluated TTFields in combination with mild hyperthermia. Three established human PDAC cell lines and an immortalized pancreatic duct cell line were treated with TTFields and hyperthermia at 38.5°C, followed by microscopy, assays for MTT, migration, colony and sphere formation, RT-qPCR, FACS, Western blot, microarray and bioinformatics, and in silico analysis using the online databases GSEA, KEGG, Cytoscape-String, and Kaplan-Meier Plotter. Whereas TTFields and hyperthermia alone had weak effects, their combination strongly inhibited the viability of malignant, but not those of nonmalignant cells. Progression features and the cell cycle were impaired, and autophagy was induced. The identified target genes were key players in autophagy, the cell cycle and DNA repair. The expression profiles of part of these target genes were significantly involved in the survival of PDAC patients. In conclusion, the combination of TTFields with mild hyperthermia results in greater efficacy without increased toxicity and could be easily clinically approved as supporting therapy.
Collapse
Affiliation(s)
- Liping Bai
- Molecular OncoSurgery, Section Surgical Research, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Tobias Pfeifer
- Molecular OncoSurgery, Section Surgical Research, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Gross
- Molecular OncoSurgery, Section Surgical Research, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Carolina De La Torre
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Shuyang Zhao
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
| | - Li Liu
- Molecular OncoSurgery, Section Surgical Research, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Michael Schaefer
- Molecular OncoSurgery, Section Surgical Research, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ingrid Herr
- Molecular OncoSurgery, Section Surgical Research, Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
11
|
Vos LMC, Aronson SL, van Driel WJ, Huitema ADR, Schagen van Leeuwen JH, Lok CAR, Sonke GS. Translational and pharmacological principles of hyperthermic intraperitoneal chemotherapy for ovarian cancer. Best Pract Res Clin Obstet Gynaecol 2021; 78:86-102. [PMID: 34565676 DOI: 10.1016/j.bpobgyn.2021.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
The long-term survival of advanced-stage ovarian cancer patients remains poor, despite extensive cytoreductive surgery, chemotherapy, and the recent addition of poly (ADP-ribose) polymerase inhibitors (PARPi). Hyperthermic intraperitoneal chemotherapy (HIPEC) has shown survival benefit by specifically targeting peritoneal metastases, the primary site of disease recurrence. Different aspects of how HIPEC exerts its effect remain poorly understood. Improved understanding of the effects of hyperthermia on ovarian cancer cells, the synergy of hyperthermia with intraperitoneal chemotherapy, and the pharmacological and pharmacokinetic properties of intraperitoneally administered cisplatin may help identify ways to optimize the efficacy of HIPEC. This review provides an overview of these translational and pharmacological principles of HIPEC and aims to expose knowledge gaps that may direct further research to optimize the HIPEC procedure and ultimately improve survival for women with advanced ovarian cancer.
Collapse
Affiliation(s)
- Laura M C Vos
- Dept. of Gynecologic Oncology, Center for Gynecologic Oncology, Amsterdam, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - S Lot Aronson
- Dept. of Gynecologic Oncology, Center for Gynecologic Oncology, Amsterdam, Netherlands Cancer Institute, Amsterdam, the Netherlands; Dept. of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Willemien J van Driel
- Dept. of Gynecologic Oncology, Center for Gynecologic Oncology, Amsterdam, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Alwin D R Huitema
- Dept. of Pharmacology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Dept. of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Dept. of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Christine A R Lok
- Dept. of Gynecologic Oncology, Center for Gynecologic Oncology, Amsterdam, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Gabe S Sonke
- Dept. of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Wust P, Stein U, Ghadjar P. Non-thermal membrane effects of electromagnetic fields and therapeutic applications in oncology. Int J Hyperthermia 2021; 38:715-731. [PMID: 33910472 DOI: 10.1080/02656736.2021.1914354] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The temperature-independent effects of electromagnetic fields (EMF) have been controversial for decades. Here, we critically analyze the available literature on non-thermal effects of radiofrequency (RF) and microwave EMF. We present a literature review of preclinical and clinical data on non-thermal antiproliferative effects of various EMF applications, including conventional RF hyperthermia (HT, cRF-HT). Further, we suggest and evaluate plausible biophysical and electrophysiological models to decipher non-thermal antiproliferative membrane effects. Available preclinical and clinical data provide sufficient evidence for the existence of non-thermal antiproliferative effects of exposure to cRF-HT, and in particular, amplitude modulated (AM)-RF-HT. In our model, transmembrane ion channels function like RF rectifiers and low-pass filters. cRF-HT induces ion fluxes and AM-RF-HT additionally promotes membrane vibrations at specific resonance frequencies, which explains the non-thermal antiproliferative membrane effects via ion disequilibrium (especially of Ca2+) and/or resonances causing membrane depolarization, the opening of certain (especially Ca2+) channels, or even hole formation. AM-RF-HT may be tumor-specific owing to cancer-specific ion channels and because, with increasing malignancy, membrane elasticity parameters may differ from that in normal tissues. Published literature suggests that non-thermal antiproliferative effects of cRF-HT are likely to exist and could present a high potential to improve future treatments in oncology.
Collapse
Affiliation(s)
- Peter Wust
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Centrum (MDC), Berlin, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
13
|
Zhu L, Huang Y, Lam D, Gach HM, Zoberi I, Hallahan DE, Grigsby PW, Chen H, Altman MB. Targetability of cervical cancer by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated hyperthermia (HT) for patients receiving radiation therapy. Int J Hyperthermia 2021; 38:498-510. [PMID: 33757406 DOI: 10.1080/02656736.2021.1895330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To evaluate the targetability of late-stage cervical cancer by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-induced hyperthermia (HT) as an adjuvant to radiation therapy (RT). METHODS Seventy-nine cervical cancer patients (stage IIIB-IVA) who received RT with lesions visible on positron emission tomography-computed tomography (PET-CT) were retrospectively analyzed for targetability using a commercially-available HT-capable MRgHIFU system. Targetability was assessed for both primary targets and/or any metastatic lymph nodes using both posterior (supine) and anterior (prone) patient setups relative to the transducer. Thirty-four different angles of rotation along subjects' longitudinal axis were analyzed. Targetability was categorized as: (1) Targetable with/without minimal intervention; (2) Not targetable. To determine if any factors could be used for prospective screening of patients, potential associations between demographic/anatomical factors and targetability were analyzed. RESULTS 72.15% primary tumors and 33.96% metastatic lymph nodes were targetable from at least one angle. 49.37% and 39.24% of primary tumors could be targeted with patient laying in supine and prone positions, respectively. 25°-30° rotation and 0° rotation had the highest rate of the posterior and anterior targetability, respectively. The ventral depth of the tumor and its distance to the coccyx were statistically correlated with the anterior and posterior targetability, respectively. CONCLUSION Most late-stage cervical cancer primaries were targetable by MRgHIFU HT requiring either no/minimal intervention. A rotation of 0° or 25°-30° relative to the transducer might benefit anterior and posterior targetability, respectively. Certain demographic/anatomic parameters might be useful in screening patients for treatability.
Collapse
Affiliation(s)
- Lifei Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yi Huang
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA
| | - Dao Lam
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA
| | - H Michael Gach
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.,Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Imran Zoberi
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA.,Siteman Comprehensive Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Dennis E Hallahan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.,Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA.,Siteman Comprehensive Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.,Institute of Clinical and Translational Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Perry W Grigsby
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA.,Siteman Comprehensive Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.,Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA.,Siteman Comprehensive Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael B Altman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.,Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA.,Siteman Comprehensive Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
14
|
Kok HP, Cressman ENK, Ceelen W, Brace CL, Ivkov R, Grüll H, Ter Haar G, Wust P, Crezee J. Heating technology for malignant tumors: a review. Int J Hyperthermia 2021; 37:711-741. [PMID: 32579419 DOI: 10.1080/02656736.2020.1779357] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 °C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 °C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors.
Collapse
Affiliation(s)
- H Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik N K Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
| | - Christopher L Brace
- Department of Radiology and Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Holger Grüll
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Gail Ter Haar
- Department of Physics, The Institute of Cancer Research, London, UK
| | - Peter Wust
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
In Regard to Datta et al. Int J Radiat Oncol Biol Phys 2021; 109:641-642. [PMID: 33422279 DOI: 10.1016/j.ijrobp.2020.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/08/2020] [Indexed: 11/24/2022]
|
16
|
Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sci 2021; 269:119020. [PMID: 33450258 DOI: 10.1016/j.lfs.2021.119020] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/05/2020] [Accepted: 01/02/2021] [Indexed: 12/15/2022]
Abstract
The conventional cancer treatment modalities such as radiotherapy and chemotherapy suffer from several limitations; hence, their efficiency needs to be improved with other complementary modalities. Hyperthermia, as an adjuvant therapeutic modality for cancer, can result in a synergistic effect on radiotherapy (radiosensitizer) and chemotherapy (chemosensitizer). Conventional hyperthermia methods affect both tumoral and healthy tissues and have low specificity. In addition, a temperature gradient generates in the tissues situated along the path of the heat source, which is a more serious for deep-seated tumors. Nanoparticles (NPs)-induced hyperthermia can resolve these drawbacks through localization around/within tumoral tissue and generating local hyperthermia. Although there are several review articles dealing with NPs-induced hyperthermia, lack of a paper discussing the combination of NPs-induced hyperthermia with the conventional chemotherapy or radiotherapy is tangible. Accordingly, the main focus of the current paper is to summarize the principles of NPs-induced hyperthermia and more importantly its synergic effects on the conventional chemotherapy or radiotherapy. The heat-producing nanostructures such as gold NPs, iron oxide NPs, and carbon NPs, as well as the non-heat-producing nanostructures, such as lipid-based, polymeric, and silica-based NPs, as the carrier for heat-producing NPs, are discussed and their pros and cons highlighted.
Collapse
|
17
|
Lee SY, Fiorentini G, Szasz AM, Szigeti G, Szasz A, Minnaar CA. Quo Vadis Oncological Hyperthermia (2020)? Front Oncol 2020; 10:1690. [PMID: 33014841 PMCID: PMC7499808 DOI: 10.3389/fonc.2020.01690] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Heating as a medical intervention in cancer treatment is an ancient approach, but effective deep heating techniques are lacking in modern practice. The use of electromagnetic interactions has enabled the development of more reliable local-regional hyperthermia (LRHT) techniques whole-body hyperthermia (WBH) techniques. Contrary to the relatively simple physical-physiological concepts behind hyperthermia, its development was not steady, and it has gone through periods of failures and renewals with mixed views on the benefits of heating seen in the medical community over the decades. In this review we study in detail the various techniques currently available and describe challenges and trends of oncological hyperthermia from a new perspective. Our aim is to describe what we believe to be a new and effective approach to oncologic hyperthermia, and a change in the paradigm of dosing. Physiological limits restrict the application of WBH which has moved toward the mild temperature range, targeting immune support. LRHT does not have a temperature limit in the tumor (which can be burned out in extreme conditions) but a trend has started toward milder temperatures with immune-oriented goals, developing toward immune modulation, and especially toward tumor-specific immune reactions by which LRHT seeks to target the malignancy systemically. The emerging research of bystander and abscopal effects, in both laboratory investigations and clinical applications, has been intensified. Our present review summarizes the methods and results, and discusses the trends of hyperthermia in oncology.
Collapse
Affiliation(s)
- Sun-Young Lee
- Department of Radiation Oncology, Chonbuk National University Hospital, Jeonbuk, South Korea
| | | | - Attila Marcell Szasz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Gyula Szigeti
- Innovation Center, Semmelweis University, Budapest, Hungary
| | - Andras Szasz
- Biotechnics Department, St. Istvan University, Godollo, Hungary
| | - Carrie Anne Minnaar
- Department of Radiation Oncology, Wits Donald Gordon Medical Center, Johannesburg, South Africa
| |
Collapse
|
18
|
Wust P, Kortüm B, Strauss U, Nadobny J, Zschaeck S, Beck M, Stein U, Ghadjar P. Non-thermal effects of radiofrequency electromagnetic fields. Sci Rep 2020; 10:13488. [PMID: 32778682 PMCID: PMC7417565 DOI: 10.1038/s41598-020-69561-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/07/2020] [Indexed: 02/02/2023] Open
Abstract
We explored the non-thermal effects of radiofrequency (RF) electromagnetic fields and established a theoretical framework to elucidate their electrophysiological mechanisms. In experiments, we used a preclinical treatment device to treat the human colon cancer cell lines HT-29 and SW480 with either water bath heating (WB-HT) or 13.56 MHz RF hyperthermia (RF-HT) at 42 °C for 60 min and analyzed the proliferation and clonogenicity. We elaborated an electrical model for cell membranes and ion channels and estimated the resulting ion fluxes. The results showed that, for both cell lines, using RF-HT significantly reduced proliferation and clonogenicity compared to WB-HT. According to our model, the RF electric field component was rectified and smoothed in the direction of the channel, which resulted in a DC voltage of ~ 1 µV. This may induce ion fluxes that can potentially cause relevant disequilibrium of most ions. Therefore, RF-HT creates additional non-thermal effects in association with significant ion fluxes. Increasing the understanding of these effects can help improve cancer therapy.
Collapse
Affiliation(s)
- Peter Wust
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Benedikt Kortüm
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Centrum (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Ulf Strauss
- Institute of Cellbiology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Jacek Nadobny
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch Str. 2, 10178, Berlin, Germany
| | - Marcus Beck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Centrum (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany.,German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
19
|
Ghadjar P, Beck M, Zschaeck S, Wust P. In Regard to Wang et al. Int J Radiat Oncol Biol Phys 2020; 107:855. [PMID: 32589993 DOI: 10.1016/j.ijrobp.2020.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Pirus Ghadjar
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marcus Beck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Peter Wust
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
20
|
Wang Y, Chen H. In Reply to Ghadjar et al. Int J Radiat Oncol Biol Phys 2020; 107:856. [PMID: 32589994 DOI: 10.1016/j.ijrobp.2020.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Ying Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongwei Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
21
|
A moderate thermal dose is sufficient for effective free and TSL based thermochemotherapy. Adv Drug Deliv Rev 2020; 163-164:145-156. [PMID: 32247801 DOI: 10.1016/j.addr.2020.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Hyperthermia, i.e. heating the tumor to a temperature of 40-43 °C is considered by many a valuable treatment to sensitize tumor cells to radiotherapy and chemotherapy. In recent randomized trials the great potential of adding hyperthermia to chemotherapy was demonstrated for treatment of high risk soft tissue sarcoma: +11.4% 5 yrs. overall survival (OS) and for ovarian cancer with peritoneal involvement nearly +12 months OS gain. As a result interest in combining chemotherapy with hyperthermia, i.e. thermochemotherapy, is growing. Extensive biological research has revealed that hyperthermia causes multiple effects, from direct cell kill to improved oxygenation, whereby each effect has a specific temperature range. Thermal sensitization of the tumor cell for chemotherapy occurs for many drugs at temperatures ranging from 40 to 42 °C with little additional increase of sensitization at higher temperatures. Increasing perfusion/oxygenation and increased extravasation are two other important hyperthermia induced mechanisms. The combination of free drug and hyperthermia has not been found to increase tumor drug concentration. Hence, enhanced effectiveness of free drug will depend on the thermal sensitization of the tumor cells for the applied drug. In contrast to free drugs, experimental animal studies combining hyperthermia and thermo-sensitive liposomal (TSL) drugs delivery have demonstrated to result in a substantial increase of the drug concentration in the tumor. For TSL based chemotherapy, hyperthermia is critical to both increase perfusion and extravasation as well as to trigger TSL drug release, whereby the temperature controlled induction of a local high drug concentration in a highly permeable vessel is driving the enhanced drug uptake in the tumor. Increased drug concentrations up to 26 times have been reported in rodents. Good control of the tissue temperature is required to keep temperatures below 43 °C to prevent vascular stasis. Further, careful timing of the drug application relative to the start of heating is required to benefit optimal from the combined treatment. From the available experimental data it follows that irrespective whether chemotherapy is applied as free drug or using a thermal sensitive liposomal carrier, the optimal thermal dose for thermochemotherapy should be 40-42 °C for 30-60 min, i.e. equivalent to a CEM43 of 1-15 min. Timing is critical: most free drug should be applied simultaneous with heating, whereas TSL drugs should be applied 20-30 min after the start of hyperthermia.
Collapse
|
22
|
Roussakow SV. "A randomized clinical trial of radiation therapy versus thermoradiotherapy in stage IIIB cervical carcinoma" of Yoko Harima et al. (2001): multiple biases and no advantage of hyperthermia. Int J Hyperthermia 2020; 34:1400. [PMID: 30209978 DOI: 10.1080/02656736.2018.1447696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Sergey V Roussakow
- a Galenic Research Institute for Non-Specific Pathology , Moscow , Russian Federation
| |
Collapse
|
23
|
Wang Y, Hong W, Che S, Zhang Y, Meng D, Shi F, Su J, Yang Y, Ma H, Liu R, Gao Y, Wang J, Hui B, Wang J, Lu J, Wang T, Liu Z, Chen H. Outcomes for Hyperthermia Combined with Concurrent Radiochemotherapy for Patients with Cervical Cancer. Int J Radiat Oncol Biol Phys 2020; 107:499-511. [PMID: 32179132 DOI: 10.1016/j.ijrobp.2020.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/15/2020] [Accepted: 03/02/2020] [Indexed: 01/11/2023]
Abstract
PURPOSE To evaluate the effect of hyperthermia combined with concurrent radiochemotherapy (RCT) and treatment-related toxicity in patients with cervical cancer (CC) stage IB-IV. METHODS AND MATERIALS This study was conducted between 2009 and 2013 in patients with International Federation of Gynecology and Obstetrics (FIGO) stage IB-IV CC. The patients were randomly assigned into 2 treatment groups: RCT and RCT plus hyperthermia (RCHT). Five-year survival, treatment-related toxicity, and other prognostic factors were evaluated. RESULTS Three hundred seventy-three patients completed treatment and were analyzed by per-protocol (PP) analysis. The 5-year overall survival (OS) in the RCHT group (81.9%) was better than that in RCT group (72.3%), and the log-rank test showed a statistically significant difference between the 2 groups (P = .040). Univariate and multivariate Cox regression analysis for 5-year OS showed a statistically significant difference (P = .043, P = .045, respectively). The 5-year local relapse-free survival in RCHT (86.8%) was also better than that in RCT (82.7%), but the difference was not significant. Acute or late toxicity was not significantly different between the 2 groups. Advanced clinical stage (FIGO) and larger tumor size showed higher risk of death and a relatively poor prognosis in univariate and multivariate analysis. CONCLUSIONS The study confirmed that hyperthermia combined with RCT yielded a better 5-year OS in CC. Acute and late toxicity was similar between the RCT and RCHT groups. Clinical stage (FIGO) and tumor size were independent prognostic factors in CC.
Collapse
Affiliation(s)
- Ying Wang
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Hong
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shaomin Che
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingbing Zhang
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Du Meng
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fan Shi
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin Su
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yunyi Yang
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hailin Ma
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui Liu
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Gao
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiquan Wang
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Beina Hui
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juan Wang
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinli Lu
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Wang
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zi Liu
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongwei Chen
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
24
|
Wust P, Ghadjar P, Nadobny J, Beck M, Kaul D, Winter L, Zschaeck S. Physical analysis of temperature-dependent effects of amplitude-modulated electromagnetic hyperthermia. Int J Hyperthermia 2019; 36:1246-1254. [DOI: 10.1080/02656736.2019.1692376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Peter Wust
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jacek Nadobny
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus Beck
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - David Kaul
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
25
|
Guillemin PC, Gui L, Lorton O, Zilli T, Crowe LA, Desgranges S, Montet X, Terraz S, Miralbell R, Salomir R, Boudabbous S. Mild hyperthermia by MR-guided focused ultrasound in an ex vivo model of osteolytic bone tumour: optimization of the spatio-temporal control of the delivered temperature. J Transl Med 2019; 17:350. [PMID: 31651311 PMCID: PMC6814062 DOI: 10.1186/s12967-019-2094-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Magnetic resonance guided focused ultrasound was suggested for the induction of deep localized hyperthermia adjuvant to radiation- or chemotherapy. In this study we are aiming to validate an experimental model for the induction of uniform temperature elevation in osteolytic bone tumours, using the natural acoustic window provided by the cortical breakthrough. MATERIALS AND METHODS Experiments were conducted on ex vivo lamb shank by mimicking osteolytic bone tumours. The cortical breakthrough was exploited to induce hyperthermia inside the medullar cavity by delivering acoustic energy from a phased array HIFU transducer. MR thermometry data was acquired intra-operatory using the proton resonance frequency shift (PRFS) method. Active temperature control was achieved via a closed-loop predictive controller set at 6 °C above the baseline. Several beam geometries with respect to the cortical breakthrough were investigated. Numerical simulations were used to further explain the observed phenomena. Thermal safety of bone heating was assessed by cross-correlating MR thermometry data with the measurements from a fluoroptic temperature sensor inserted in the cortical bone. RESULTS Numerical simulations and MR thermometry confirmed the feasibility of spatio-temporal uniform hyperthermia (± 0.5 °C) inside the medullar cavity using a fixed focal point sonication. This result was obtained by the combination of several factors: an optimal positioning of the focal spot in the plane of the cortical breakthrough, the direct absorption of the HIFU beam at the focal spot, the "acoustic oven effect" yielded by the beam interaction with the bone, and a predictive temperature controller. The fluoroptical sensor data revealed no heating risks for the bone and adjacent tissues and were in good agreement with the PRFS thermometry from measurable voxels adjacent to the periosteum. CONCLUSION To our knowledge, this is the first study demonstrating the feasibility of MR-guided focused ultrasound hyperthermia inside the medullar cavity of bones affected by osteolytic tumours. Our results are considered a promising step for combining adjuvant mild hyperthermia to external beam radiation therapy for sustained pain relief in patients with symptomatic bone metastases.
Collapse
Affiliation(s)
- Pauline C Guillemin
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Laura Gui
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Orane Lorton
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thomas Zilli
- Radiation Oncology Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Lindsey A Crowe
- Radiology Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Stéphane Desgranges
- Equipe Chimie Bioorganique et Systèmes Amphiphiles, Institut des Biomolécules Max Mousseron, UMR 5247, Avignon Université, 84911, Avignon, France
| | - Xavier Montet
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Sylvain Terraz
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Raymond Miralbell
- Radiation Oncology Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Rares Salomir
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Sana Boudabbous
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
Ariyafar T, Mahdavi SR, Geraily G, Fadavi P, Farhood B, Najafi M, Ashouri A, Khalafi L, Shirazi A. Evaluating the effectiveness of combined radiotherapy and hyperthermia for the treatment response of patients with painful bony metastases: A phase 2 clinical trial. J Therm Biol 2019; 84:129-135. [PMID: 31466745 DOI: 10.1016/j.jtherbio.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/27/2019] [Accepted: 06/01/2019] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Since the survival time of patients with bony metastases has noticeably improved in recent years, these patients are at high risk of complications associated with this metastasis. Hence, the appropriate choice of treatment modality or combination of therapeutic approaches can lead to increasing bone pain relief, improving quality of life, etc. This study is aimed to evaluate the effectiveness of combined radiotherapy and hyperthermia for the treatment response of patients with painful bony metastases. PATIENTS AND METHODS In a single-arm clinical trial, 23 eligible patients (14 female and 9 male) with the mean age of 67 years old and suffering from bony metastases were enrolled in the study. Two hours after radiotherapy, the patients underwent hyperthermia for 1 h in the supine position. All the patients completed the brief pain inventory (BPI) assessment tool and quality of life questionnaire (QLQ-C30) from the European Organization for Research and Treatment of Cancer (EORTC) at the baseline, end of the treatment and 1, 2 and 3 months thereafter. The response to the treatment was assessed as the zero score (complete response) or two or more than two-point drop of the worst pain within the preceding 24 h (partial response) during the 3-month posttreatment. RESULTS All the pain intensity and interference scores, except the pain interference with the enjoyment of life score, significantly decreased. A total of 18 out of 23 patients (78%) achieved complete or partial response. The number of patients using pain relief medications decreased from 74% (n=17) at the baseline to 48% (n=11) 3 months later. Moreover, except for nausea and vomiting, appetite loss, diarrhea and financial impact problems, the patients' quality of life improved significantly in all the functional scales and symptoms within 3 months. CONCLUSION This study showed that using hyperthermia in combination with radiotherapy significantly ameliorated bone pain among the patients suffering from cancer with painful bony metastases.
Collapse
Affiliation(s)
- Tayebeh Ariyafar
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Rabie Mahdavi
- Department of Medical Physics, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ghazale Geraily
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Pedram Fadavi
- Radiation Oncology Department, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Masoud Najafi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asieh Ashouri
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Leila Khalafi
- Department of Medical Physics, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Kroesen M, Mulder HT, van Holthe JML, Aangeenbrug AA, Mens JWM, van Doorn HC, Paulides MM, Oomen-de Hoop E, Vernhout RM, Lutgens LC, van Rhoon GC, Franckena M. The Effect of the Time Interval Between Radiation and Hyperthermia on Clinical Outcome in 400 Locally Advanced Cervical Carcinoma Patients. Front Oncol 2019; 9:134. [PMID: 30906734 PMCID: PMC6418024 DOI: 10.3389/fonc.2019.00134] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/14/2019] [Indexed: 01/10/2023] Open
Abstract
Background: Addition of deep hyperthermia to radiotherapy results in improved local control (LC) and overall survival compared to radiotherapy alone in cervical carcinoma patients. Based on preclinical data, the time interval between radiotherapy, and hyperthermia is expected to influence treatment outcome. Clinical studies addressing the effect of time interval are sparse. The repercussions for clinical applications are substantial, as the time between radiotherapy and hyperthermia should be kept as short as possible. In this study, we therefore investigated the effect of the time interval between radiotherapy and hyperthermia on treatment outcome. Methods: We analyzed all primary cervical carcinoma patients treated between 1996 and 2016 with thermoradiotherapy at our institute. Data on patients, tumors and treatments were collected, including the thermal dose parameters TRISE and CEM43T90. Follow-up data on tumor status and survival as well as late toxicity were collected. Data was analyzed using Cox proportional hazards analysis and Kaplan Meier analysis. Results: 400 patients were included. Kaplan Meier and univariate Cox analysis showed no effect of the time interval (range 30-230 min) on any clinical outcome measure. Besides known prognostic factors, thermal dose parameters TRISE and CEM43T90 had a significant effect on LC. In multivariate analysis, the thermal dose parameter TRISE (HR 0.649; 95% CI 0.501-0.840) and the use of image guided brachytherapy (HR 0.432; 95% CI 0.214-0.972), but not the time interval, were significant predictors of LC and disease specific survival. Conclusions: The time interval between radiotherapy and hyperthermia, up to 4 h, has no effect on clinical outcome. These results are re-ensuring for our current practice of delivering hyperthermia within maximal 4 h after radiotherapy.
Collapse
Affiliation(s)
- M Kroesen
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - H T Mulder
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - J M L van Holthe
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - A A Aangeenbrug
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - J W M Mens
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - H C van Doorn
- Department of Obstetrics and Gynaecology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - M M Paulides
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - E Oomen-de Hoop
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - R M Vernhout
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - L C Lutgens
- Department of Radiation oncology, University Medical Centre Maastricht (MAASTRO), Maastricht, Netherlands
| | - G C van Rhoon
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - M Franckena
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
28
|
Harima Y. "A randomised clinical trial of radiation therapy versus thermoradiotherapy in stage IIIB cervical carcinoma" of Yoko Harima et al. (2001): a response letter to the editor of comments from Dr. Roussakow. Int J Hyperthermia 2018; 34:1401. [PMID: 30209979 DOI: 10.1080/02656736.2018.1460768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Yoko Harima
- a Department of Radiology , Kansai Medical University , 10-15 Fumizono-cho , Moriguchi , Japan
| |
Collapse
|
29
|
Chang D, Lim M, Goos JACM, Qiao R, Ng YY, Mansfeld FM, Jackson M, Davis TP, Kavallaris M. Biologically Targeted Magnetic Hyperthermia: Potential and Limitations. Front Pharmacol 2018; 9:831. [PMID: 30116191 PMCID: PMC6083434 DOI: 10.3389/fphar.2018.00831] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022] Open
Abstract
Hyperthermia, the mild elevation of temperature to 40–43°C, can induce cancer cell death and enhance the effects of radiotherapy and chemotherapy. However, achievement of its full potential as a clinically relevant treatment modality has been restricted by its inability to effectively and preferentially heat malignant cells. The limited spatial resolution may be circumvented by the intravenous administration of cancer-targeting magnetic nanoparticles that accumulate in the tumor, followed by the application of an alternating magnetic field to raise the temperature of the nanoparticles located in the tumor tissue. This targeted approach enables preferential heating of malignant cancer cells whilst sparing the surrounding normal tissue, potentially improving the effectiveness and safety of hyperthermia. Despite promising results in preclinical studies, there are numerous challenges that must be addressed before this technique can progress to the clinic. This review discusses these challenges and highlights the current understanding of targeted magnetic hyperthermia.
Collapse
Affiliation(s)
- David Chang
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.,Department of Radiation Oncology, Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Sydney, NSW, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, Australia
| | - May Lim
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Jeroen A C M Goos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Yun Yee Ng
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Friederike M Mansfeld
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Michael Jackson
- Department of Radiation Oncology, Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
30
|
Kok HP, Navarro F, Strigari L, Cavagnaro M, Crezee J. Locoregional hyperthermia of deep-seated tumours applied with capacitive and radiative systems: a simulation study. Int J Hyperthermia 2018; 34:714-730. [PMID: 29509043 DOI: 10.1080/02656736.2018.1448119] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Locoregional hyperthermia is applied to deep-seated tumours in the pelvic region. Two very different heating techniques are often applied: capacitive and radiative heating. In this paper, numerical simulations are applied to compare the performance of both techniques in heating of deep-seated tumours. METHODS Phantom simulations were performed for small (30 × 20 × 50 cm3) and large (45 × 30 × 50 cm3), homogeneous fatless and inhomogeneous fat-muscle, tissue-equivalent phantoms with a central or eccentric target region. Radiative heating was simulated with the 70 MHz AMC-4 system and capacitive heating was simulated at 13.56 MHz. Simulations were performed for small fatless, small (i.e. fat layer typically <2 cm) and large (i.e. fat layer typically >3 cm) patients with cervix, prostate, bladder and rectum cancer. Temperature distributions were simulated using constant hyperthermic-level perfusion values with tissue constraints of 44 °C and compared for both heating techniques. RESULTS For the small homogeneous phantom, similar target heating was predicted with radiative and capacitive heating. For the large homogeneous phantom, most effective target heating was predicted with capacitive heating. For inhomogeneous phantoms, hot spots in the fat layer limit adequate capacitive heating, and simulated target temperatures with radiative heating were 2-4 °C higher. Patient simulations predicted therapeutic target temperatures with capacitive heating for fatless patients, but radiative heating was more robust for all tumour sites and patient sizes, yielding target temperatures 1-3 °C higher than those predicted for capacitive heating. CONCLUSION Generally, radiative locoregional heating yields more favourable simulated temperature distributions for deep-seated pelvic tumours, compared with capacitive heating. Therapeutic temperatures are predicted for capacitive heating in patients with (almost) no fat.
Collapse
Affiliation(s)
- H P Kok
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - F Navarro
- b Department of Medical Physics , Regional University Hospital of Málaga , Malaga , Spain
| | - L Strigari
- c Laboratory of Medical Physics and Expert Systems , Regina Elena National Cancer Institute , Rome , Italy
| | - M Cavagnaro
- d Department of Information Engineering, Electronics and Telecommunications , Sapienza University of Rome , Rome , Italy
| | - J Crezee
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
31
|
Lee SY, Kim JH, Han YH, Cho DH. The effect of modulated electro-hyperthermia on temperature and blood flow in human cervical carcinoma. Int J Hyperthermia 2018; 34:953-960. [PMID: 29297234 DOI: 10.1080/02656736.2018.1423709] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Mild hyperthermia has been known to enhance the response of tumours to radiotherapy or chemotherapy by increasing tumour blood flow, thereby increasing tumour oxygenation or drug delivery. The purpose of this study was to assess the changes in temperature and blood flow in human cervical cancer in response to regional heating with modulated electro-hyperthermia (mEHT). METHODS The pelvic area of 20 patients with cervical carcinoma was heated with mEHT. The peri-tumour temperature was measured using an internal organ temperature probe. The tumour blood flow was measured using 3D colour Doppler ultrasound by determining the peak systolic velocity/end-diastolic velocity ratio (S/D ratio) and the resistance index (RI) within blood vessels. RESULTS The mean peri-tumour temperature was 36.7 ± 0.2 °C before heating and increased to 38.5 ± 0.8 °C at the end of heating for 60 min. The marked declines in RI and S/D values strongly demonstrated that heating significantly increased tumour blood perfusion. CONCLUSIONS Regional heating of the pelvic area with mEHT significantly increased the peri-tumour temperature and improved the blood flow in cervical cancer. This is the first demonstration that the blood flow in cervical cancer is increased by regional hyperthermia. Such increases in temperature and blood flow may account for the clinical observations that hyperthermia improves the response of cervical cancer to radiotherapy or chemotherapy.
Collapse
Affiliation(s)
- Sun-Young Lee
- a Department of Radiation Oncology , Chonbuk National University Hospital-Chonbuk National University Medical School , Jeonju , Republic of Korea.,b Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital , Jeonju , Republic of Korea
| | - Jong-Hun Kim
- b Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital , Jeonju , Republic of Korea.,c Division of Cardiovascular Thoracic Surgery , Chonbuk National University Hospital-Chonbuk National University Medical School , Jeonju , Republic of Korea
| | - Yeon-Hee Han
- b Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital , Jeonju , Republic of Korea.,d Department of Nuclear Medicine , Chonbuk National University Hospital-Chonbuk National University Medical School , Jeonju , Republic of Korea
| | - Dong-Hyu Cho
- e Department of Obstetrics and Gynecology , Chonbuk National University Hospital-Chonbuk National University Medical School , Jeonju , Republic of Korea
| |
Collapse
|
32
|
Chi MS, Yang KL, Chang YC, Ko HL, Lin YH, Huang SC, Huang YY, Liao KW, Kondo M, Chi KH. Comparing the Effectiveness of Combined External Beam Radiation and Hyperthermia Versus External Beam Radiation Alone in Treating Patients With Painful Bony Metastases: A Phase 3 Prospective, Randomized, Controlled Trial. Int J Radiat Oncol Biol Phys 2018; 100:78-87. [DOI: 10.1016/j.ijrobp.2017.09.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 01/04/2023]
|
33
|
Tomura K, Ohguri T, Mulder HT, Murakami M, Nakahara S, Yahara K, Korogi Y. The usefulness of mobile insulator sheets for the optimisation of deep heating area for regional hyperthermia using a capacitively coupled heating method: phantom, simulation and clinical prospective studies. Int J Hyperthermia 2017; 34:1092-1103. [PMID: 29108446 DOI: 10.1080/02656736.2017.1402130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To evaluate the feasibility and efficacy of deep regional hyperthermia with the use of mobile insulator sheets in a capacitively coupled heating device. MATERIALS AND METHODS The heat was applied using an 8-MHz radiofrequency-capacitive device. The insulator sheet was inserted between the regular bolus and cooled overlay bolus in each of upper and lower side of the electrode. Several settings using the insulator sheets were investigated in an experimental study using an agar phantom to evaluate the temperature distributions. The specific absorption rate (SAR) distributions in several organs were also computed for the three-dimensional patient model. In a clinical prospective study, a total of five heating sessions were scheduled for the pelvic tumours, to assess the thermal parameters. The conventional setting was used during the first, third and fifth treatment sessions, and insulator sheets were used during the second and fourth treatment sessions. RESULTS In the phantom study, the higher heating area improved towards the centre when the mobile insulator sheets were used. The subcutaneous fat/target ratios for the averaged SARs in the setting with the mobile insulator (median, 2.5) were significantly improved compared with those in the conventional setting (median, 3.4). In the clinical study, the thermal dose parameters of CEM43°CT90 in the sessions with the mobile insulator sheets (median, 1.9 min) were significantly better than those in the sessions using a conventional setting (median, 1.0 min). CONCLUSIONS Our novel heating method using mobile insulator sheets was thus found to improve the thermal dose parameters. Further investigations are expected.
Collapse
Affiliation(s)
- Kyosuke Tomura
- a Department of Radiology , University of Occupational and Environmental Health , Kitakyushu , Japan
| | - Takayuki Ohguri
- a Department of Radiology , University of Occupational and Environmental Health , Kitakyushu , Japan
| | - Hendrik Thijmen Mulder
- b Department of Radiation Oncology, Hyperthermia unit , Erasmus MC Cancer Institute , Rotterdam , the Netherlands
| | - Motohiro Murakami
- c Department of Medical Electronics , University Hospital of Occupational and Environmental Health , Kitakyushu , Japan
| | - Sota Nakahara
- a Department of Radiology , University of Occupational and Environmental Health , Kitakyushu , Japan
| | - Katsuya Yahara
- a Department of Radiology , University of Occupational and Environmental Health , Kitakyushu , Japan
| | - Yukunori Korogi
- a Department of Radiology , University of Occupational and Environmental Health , Kitakyushu , Japan
| |
Collapse
|
34
|
Kim W, Kim MS, Kim HJ, Lee E, Jeong JH, Park I, Jeong YK, Jang WI. Role of HIF-1α in response of tumors to a combination of hyperthermia and radiation in vivo. Int J Hyperthermia 2017; 34:276-283. [PMID: 28659004 DOI: 10.1080/02656736.2017.1335440] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Mild temperature hyperthermia (MTH) increases blood flow and oxygenation in tumours. On the other hand, high-dose-per-fraction irradiation damages blood vessels, decreases blood flow and increases hypoxia in tumours. The radiation-induced hypoxia in tumours activates hypoxia-inducible factor-1α (HIF-1α) and its target genes, such as vascular endothelial growth factor (VEGF), promoting revascularization and recurrence. In the present study, we examined the hypothesis that MTH inhibits radiation-induced upregulation of HIF-1α and its target genes by increasing tumour oxygenation. MATERIALS AND METHODS FSaII fibrosarcoma tumours grown subcutaneously in the legs of C3H mice were used. Tumours were irradiated with 15 Gy using a 60Co irradiator or heated at 41 °C for 30 min using an Oncothermia heating unit. Blood perfusion and hypoxia in tumours were assessed with Hoechst 33342 and pimonidazole staining, respectively. Expression levels of HIF-1α and VEGF were determined using immunohistochemical techniques. Apoptosis of tumour cells was quantitated via TUNEL staining and the effects of treatments on tumour growth rate were assessed by measuring tumour diameters. RESULTS Irradiation of FSaII tumours with a single dose of 15 Gy led to significantly decreased blood perfusion, increased hypoxia and upregulation of HIF-1α and VEGF. On the other hand, MTH at 41 °C for 30 min increased blood perfusion and tumour oxygenation, thereby suppressing radiation-induced HIF-1α and VEGF in tumours, leading to enhanced apoptosis of tumour cells and tumour growth delay. CONCLUSION MTH enhances the anti-tumour effect of high-dose irradiation, at least partly by inhibiting radiation-induced upregulation of HIF-1α.
Collapse
Affiliation(s)
- Wonwoo Kim
- a Radiation Non-clinic Center, Korea Institute of Radiological & Medical Sciences , Seoul , Korea
| | - Mi-Sook Kim
- a Radiation Non-clinic Center, Korea Institute of Radiological & Medical Sciences , Seoul , Korea.,b Department of Radiation Oncology , Korea Institute of Radiological & Medical Sciences , Seoul , Korea
| | - Hee-Jong Kim
- a Radiation Non-clinic Center, Korea Institute of Radiological & Medical Sciences , Seoul , Korea
| | - Eunjin Lee
- a Radiation Non-clinic Center, Korea Institute of Radiological & Medical Sciences , Seoul , Korea
| | - Jae-Hoon Jeong
- c Department of Radiation Therapeutics Development , Korea Institute of Radiological & Medical Sciences , Seoul , Korea
| | - Inhwan Park
- a Radiation Non-clinic Center, Korea Institute of Radiological & Medical Sciences , Seoul , Korea.,d Department of Radiological & Medico-Oncological Science , Korea University of Science and Technology , Daejeon , Korea
| | - Youn Kyoung Jeong
- a Radiation Non-clinic Center, Korea Institute of Radiological & Medical Sciences , Seoul , Korea
| | - Won Il Jang
- b Department of Radiation Oncology , Korea Institute of Radiological & Medical Sciences , Seoul , Korea
| |
Collapse
|
35
|
Schlesinger D, Lee M, Ter Haar G, Sela B, Eames M, Snell J, Kassell N, Sheehan J, Larner JM, Aubry JF. Equivalence of cell survival data for radiation dose and thermal dose in ablative treatments: analysis applied to essential tremor thalamotomy by focused ultrasound and gamma knife. Int J Hyperthermia 2017; 33:401-410. [PMID: 28044461 PMCID: PMC6203314 DOI: 10.1080/02656736.2016.1278281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Thermal dose and absorbed radiation dose have historically been difficult to compare because different biological mechanisms are at work. Thermal dose denatures proteins and the radiation dose causes DNA damage in order to achieve ablation. The purpose of this paper is to use the proportion of cell survival as a potential common unit by which to measure the biological effect of each procedure. Survival curves for both thermal and radiation doses have been extracted from previously published data for three different cell types. Fits of these curves were used to convert both thermal and radiation dose into the same quantified biological effect: fraction of surviving cells. They have also been used to generate and compare survival profiles from the only indication for which clinical data are available for both focused ultrasound (FUS) thermal ablation and radiation ablation: essential tremor thalamotomy. All cell types could be fitted with coefficients of determination greater than 0.992. As an illustration, survival profiles of clinical thalamotomies performed by radiosurgery and FUS are plotted on a same graph for the same metric: fraction of surviving cells. FUS and Gamma Knife have the potential to be used in combination to deliver a more effective treatment (for example, FUS may be used to debulk the main tumour mass, and radiation to treat the surrounding tumour bed). In this case, a model which compares thermal and radiation treatments is valuable in order to adjust the dose between the two.
Collapse
Affiliation(s)
- D Schlesinger
- a Department of Radiation Oncology , University of Virginia , Charlottesville , VA , USA
- c Department of Neurosurgery , University of Virginia , Charlottesville , VA , USA
| | - M Lee
- b Focused Ultrasound Foundation , Charlottesville , VA , USA
| | - G Ter Haar
- d Division of Radiotherapy and Imaging , The Institute of Cancer Research:Royal Marsden Hospital , London , UK
| | - B Sela
- b Focused Ultrasound Foundation , Charlottesville , VA , USA
| | - M Eames
- b Focused Ultrasound Foundation , Charlottesville , VA , USA
| | - J Snell
- b Focused Ultrasound Foundation , Charlottesville , VA , USA
- c Department of Neurosurgery , University of Virginia , Charlottesville , VA , USA
| | - N Kassell
- b Focused Ultrasound Foundation , Charlottesville , VA , USA
- c Department of Neurosurgery , University of Virginia , Charlottesville , VA , USA
| | - J Sheehan
- a Department of Radiation Oncology , University of Virginia , Charlottesville , VA , USA
- c Department of Neurosurgery , University of Virginia , Charlottesville , VA , USA
| | - J M Larner
- a Department of Radiation Oncology , University of Virginia , Charlottesville , VA , USA
| | - J-F Aubry
- a Department of Radiation Oncology , University of Virginia , Charlottesville , VA , USA
- e ESPCI Paris, PSL Research University, CNRS, INSERM, Institut Langevin , Paris , France
| |
Collapse
|
36
|
Thermal combination therapies for local drug delivery by magnetic resonance-guided high-intensity focused ultrasound. Proc Natl Acad Sci U S A 2017; 114:E4802-E4811. [PMID: 28566498 DOI: 10.1073/pnas.1700790114] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several thermal-therapy strategies such as thermal ablation, hyperthermia-triggered drug delivery from temperature-sensitive liposomes (TSLs), and combinations of the above were investigated in a rhabdomyosarcoma rat tumor model (n = 113). Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) was used as a noninvasive heating device with precise temperature control for image-guided drug delivery. For the latter, TSLs were prepared, coencapsulating doxorubicin (dox) and [Gd(HPDO3A)(H2O)], and injected in tumor-bearing rats before MR-HIFU treatment. Four treatment groups were defined: hyperthermia, ablation, hyperthermia followed by ablation, or no HIFU. The intratumoral TSL and dox distribution were analyzed by single-photon emission computed tomography (SPECT)/computed tomography (CT), autoradiography, and fluorescence microscopy. Dox biodistribution was quantified and compared with that of nonliposomal dox. Finally, the treatment efficacy of all heating strategies plus additional control groups (saline, free dox, and Caelyx) was assessed by tumor growth measurements. All HIFU heating strategies combined with TSLs resulted in cellular uptake of dox deep into the interstitial space and a significant increase of tumor drug concentrations compared with a treatment with free dox. Ablation after TSL injection showed [Gd(HPDO3A)(H2O)] and dox release along the tumor rim, mirroring the TSL distribution pattern. Hyperthermia either as standalone treatment or before ablation ensured homogeneous TSL, [Gd(HPDO3A)(H2O)], and dox delivery across the tumor. The combination of hyperthermia-triggered drug delivery followed by ablation showed the best therapeutic outcome compared with all other treatment groups due to direct induction of thermal necrosis in the tumor core and efficient drug delivery to the tumor rim.
Collapse
|
37
|
Lara NC, Haider AA, Ho JC, Wilson LJ, Barron AR, Curley SA, Corr SJ. Water-structuring molecules and nanomaterials enhance radiofrequency heating in biologically relevant solutions. Chem Commun (Camb) 2016; 52:12630-12633. [PMID: 27722511 PMCID: PMC5079531 DOI: 10.1039/c6cc06573b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
For potential applications in nano-mediated radiofrequency cancer hyperthermia, the nanomaterial under investigation must increase the heating of any aqueous solution in which it is suspended when exposed to radiofrequency electric fields. This should also be true for a broad range of solution conductivities, especially those that artificially mimic the ionic environment of biological systems. Herein we demonstrate enhanced heating of biologically relevant aqueous solutions using kosmotropes and a hexamalonoserinolamide fullerene.
Collapse
Affiliation(s)
- Nadia C Lara
- Department of Chemistry and Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
| | - Asad A Haider
- Department of Chemistry and Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
| | - Jason C Ho
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Lon J Wilson
- Department of Chemistry and Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
| | - Andrew R Barron
- Department of Chemistry and Smalley-Curl Institute, Rice University, Houston, TX 77005, USA and Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA and Energy Safety Research Institute (ESRI), Swansea University Bay Campus, Swansea, SA1 8EN, UK and Centre for NanoHealth (CNH), Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Steven A Curley
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA. and Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA
| | - Stuart J Corr
- Department of Chemistry and Smalley-Curl Institute, Rice University, Houston, TX 77005, USA and Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA. and Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
38
|
Datta NR, Rogers S, Klingbiel D, Gómez S, Puric E, Bodis S. Hyperthermia and radiotherapy with or without chemotherapy in locally advanced cervical cancer: a systematic review with conventional and network meta-analyses. Int J Hyperthermia 2016; 32:809-21. [PMID: 27411568 DOI: 10.1080/02656736.2016.1195924] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE A systematic review with conventional and network meta-analyses (NMA) was conducted to examine the outcomes of loco-regional hyperthermia (HT) with radiotherapy (RT) and/or chemotherapy (CT) in locally advanced cervix cancer, IIB-IVA (LACC). METHODS AND MATERIALS A total of 217 abstracts were screened from five databases and reported as per PRISMA guidelines. Only randomised trials with HT and RT ± CT were considered. The outcomes evaluated were complete response (CR), long-term loco-regional control (LRC), patients alive, acute and late grade III/IV toxicities. RESULTS Eight articles were finally retained. Six randomised trials with HTRT (n = 215) vs. RT (n = 212) were subjected to meta-analysis. The risk difference for achieving CR and LRC was greater by 22% (p < .001) and 23% (p < .001), respectively, with HTRT compared to RT. A non-significant survival advantage of 8.4% with HTRT was noted with no differences in acute or late toxicities. The only HTCTRT vs. RT trial documented a CR of 83.3% vs. 46.7% (risk difference: 36.7%, p = .001). No other end points were reported. Bayesian NMA, incorporating 13 studies (n = 1000 patients) for CR and 12 studies for patients alive (n = 807 patients), comparing HTCTRT, HTRT, CTRT and RT alone, was conducted. The pairwise comparison of various groups showed that HTRTCT was the best option for both CR and patient survival. This was also evident on ranking treatment modalities based on the "surface under cumulative ranking" values. CONCLUSIONS In LACC, HTRT demonstrates a therapeutic advantage over RT without significant acute or late morbidities. On NMA, HTCTRT appears promising, but needs further confirmation through prospective randomised trials.
Collapse
Affiliation(s)
- Niloy R Datta
- a Centre for Radiation Oncology , KSA-KSB, Kantonsspital Aarau , Aarau , Switzerland
| | - Susanne Rogers
- a Centre for Radiation Oncology , KSA-KSB, Kantonsspital Aarau , Aarau , Switzerland
| | - Dirk Klingbiel
- b Swiss Group for Clinical Cancer Research (SAKK) , Coordinating Centre , Bern , Switzerland
| | - Silvia Gómez
- a Centre for Radiation Oncology , KSA-KSB, Kantonsspital Aarau , Aarau , Switzerland
| | - Emsad Puric
- a Centre for Radiation Oncology , KSA-KSB, Kantonsspital Aarau , Aarau , Switzerland
| | - Stephan Bodis
- a Centre for Radiation Oncology , KSA-KSB, Kantonsspital Aarau , Aarau , Switzerland ;,c Department of Radiation Oncology , University Hospital Zurich , Zurich , Switzerland
| |
Collapse
|
39
|
Harima Y, Ohguri T, Imada H, Sakurai H, Ohno T, Hiraki Y, Tuji K, Tanaka M, Terashima H. A multicentre randomised clinical trial of chemoradiotherapy plus hyperthermia versus chemoradiotherapy alone in patients with locally advanced cervical cancer. Int J Hyperthermia 2016; 32:801-8. [DOI: 10.1080/02656736.2016.1213430] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Yoko Harima
- Department of Radiology, Kansai Medical University, Moriguchi City, Japan
| | - Takayuki Ohguri
- Department of Radiology, University of Occupational and Environmental Health, Kitakyusyu City, Japan
| | - Hajime Imada
- Cancer Therapy Center, Tobata Kyoritsu Hospital, Kitakyusyu City, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, University of Tsukuba, Tsukuba City, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Heavy Ion Medical Center, Maehashi City, Japan
| | - Yoshiyuki Hiraki
- Department of Radiology, Kagoshima University, Kagoshima City, Japan
| | - Koh Tuji
- Department of Radiology, National Hospital Organization Minami Wakayama Medical Center, Tanabe City, Japan
| | - Masahiro Tanaka
- Department of Radiation Oncology, Osaka City General Hospital, Osaka City, Japan
| | - Hiromi Terashima
- Department of Radiology, Harasanshin Hospital, Fukuoka City, Japan
| |
Collapse
|
40
|
Yunoki T, Tabuchi Y, Hayashi A, Kondo T. Network analysis of genes involved in the enhancement of hyperthermia sensitivity by the knockdown of BAG3 in human oral squamous cell carcinoma cells. Int J Mol Med 2016; 38:236-42. [PMID: 27245201 DOI: 10.3892/ijmm.2016.2621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/16/2016] [Indexed: 11/05/2022] Open
Abstract
BCL2-associated athanogene 3 (BAG3), a co-chaperone of the heat shock 70 kDa protein (HSPA) family of proteins, is a cytoprotective protein that acts against various stresses, including heat stress. The aim of the present study was to identify gene networks involved in the enhancement of hyperthermia (HT) sensitivity by the knockdown (KD) of BAG3 in human oral squamous cell carcinoma (OSCC) cells. Although a marked elevation in the protein expression of BAG3 was detected in human the OSCC HSC-3 cells exposed to HT at 44˚C for 90 min, its expression was almost completely suppressed in the cells transfected with small interfering RNA against BAG3 (siBAG) under normal and HT conditions. The silencing of BAG3 also enhanced the cell death that was increased in the HSC-3 cells by exposure to HT. Global gene expression analysis revealed many genes that were differentially expressed by >2-fold in the cells exposed to HT and transfected with siBAG. Moreover, Ingenuity® pathways analysis demonstrated two unique gene networks, designated as Pro-cell death and Anti-cell death, which were obtained from upregulated genes and were mainly associated with the biological functions of induction and the prevention of cell death, respectively. Of note, the expression levels of genes in the Pro-cell death and Anti-cell death gene networks were significantly elevated and reduced in the HT + BAG3-KD group compared to those in the HT control group, respectively. These results provide further insight into the molecular mechanisms involved in the enhancement of HT sensitivity by the silencing of BAG3 in human OSCC cells.
Collapse
Affiliation(s)
- Tatsuya Yunoki
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Atsushi Hayashi
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
41
|
Effects of hyperthermia as a mitigation strategy in DNA damage-based cancer therapies. Semin Cancer Biol 2016; 37-38:96-105. [PMID: 27025900 DOI: 10.1016/j.semcancer.2016.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 12/25/2022]
Abstract
Utilization of thermal therapy (hyperthermia) is defined as the application of exogenous heat induction and represents a concept that is far from new as it goes back to ancient times when heat was used for treating various diseases, including malignancies. Such therapeutic strategy has gained even more popularity (over the last few decades) since various studies have shed light into understanding hyperthermia's underlying molecular mechanism(s) of action. In general, hyperthermia is applied as complementary (adjuvant) means in therapeutic protocols combining chemotherapy and/or irradiation both of which can induce irreversible cellular DNA damage. Furthermore, according to a number of in vitro, in vivo and clinical studies, hyperthermia has been shown to enhance the beneficial effects of DNA targeting therapeutic strategies by interfering with DNA repair response cascades. Therefore, the continuously growing evidence supporting hyperthermia's beneficial role in cancer treatment can also encourage its application as a DNA repair mitigation strategy. In this review article, we aim to provide detailed information on how hyperthermia acts on DNA damage and repair pathways and thus potentially contributing to various adjuvant therapeutic protocols relevant to more efficient cancer treatment strategies.
Collapse
|
42
|
Crezee J, van Leeuwen CM, Oei AL, van Heerden LE, Bel A, Stalpers LJA, Ghadjar P, Franken NAP, Kok HP. Biological modelling of the radiation dose escalation effect of regional hyperthermia in cervical cancer. Radiat Oncol 2016; 11:14. [PMID: 26831185 PMCID: PMC4735973 DOI: 10.1186/s13014-016-0592-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/20/2016] [Indexed: 12/25/2022] Open
Abstract
Background Locoregional hyperthermia combined with radiotherapy significantly improves locoregional control and overall survival for cervical tumors compared to radiotherapy alone. In this study biological modelling is applied to quantify the effect of radiosensitization for three cervical cancer patients to evaluate the improvement in equivalent dose for the combination treatment with radiotherapy and hyperthermia. Methods The Linear-Quadratic (LQ) model extended with temperature-dependent LQ-parameters α and β was used to model radiosensitization by hyperthermia and to calculate the conventional radiation dose that is equivalent in biological effect to the combined radiotherapy and hyperthermia treatment. External beam radiotherapy planning was performed based on a prescription dose of 46Gy in 23 fractions of 2Gy. Hyperthermia treatment using the AMC-4 system was simulated based on the actual optimized system settings used during treatment. Results The simulated hyperthermia treatments for the 3 patients yielded a T50 of 40.1 °C, 40.5 °C, 41.1 °C and a T90 of 39.2 °C, 39.7 °C, 40.4 °C, respectively. The combined radiotherapy and hyperthermia treatment resulted in a D95 of 52.5Gy, 55.5Gy, 56.9Gy in the GTV, a dose escalation of 7.3–11.9Gy compared to radiotherapy alone (D95 = 45.0–45.5Gy). Conclusions This study applied biological modelling to evaluate radiosensitization by hyperthermia as a radiation-dose escalation for cervical cancer patients. This model is very useful to compare the effectiveness of different treatment schedules for combined radiotherapy and hyperthermia treatments and to guide the design of clinical studies on dose escalation using hyperthermia in a multi-modality setting.
Collapse
Affiliation(s)
- J Crezee
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - C M van Leeuwen
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - A L Oei
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Laboratory for Experimental Oncology and Radiobiology (LEXOR)/Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - L E van Heerden
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - A Bel
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - L J A Stalpers
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - P Ghadjar
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany.
| | - N A P Franken
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Laboratory for Experimental Oncology and Radiobiology (LEXOR)/Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - H P Kok
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Zhou M, Zhao J, Tian M, Song S, Zhang R, Gupta S, Tan D, Shen H, Ferrari M, Li C. Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model. NANOSCALE 2015; 7:19438-47. [PMID: 26376843 PMCID: PMC4993020 DOI: 10.1039/c5nr04587h] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Tumor Initiating Cells (TICs) are resistant to radiotherapy and chemotherapy, and are believed to be responsible for tumor recurrence and metastasis. Combination therapies can overcome the limitation of conventional cancer treatments, and have demonstrated promising application in the clinic. Here, we show that dual modality radiotherapy (RT) and photothermal therapy (PTT) mediated by a single compartment nanosystem copper-64-labeled copper sulfide nanoparticles ([(64)Cu]CuS NPs) could suppress breast tumor metastasis through eradication of TICs. Positron electron tomography (PET) imaging and biodistribution studies showed that more than 90% of [(64)Cu]CuS NPs was retained in subcutaneously grown BT474 breast tumor 24 h after intratumoral (i.t.) injection, indicating the NPs are suitable for the combination therapy. Combined RT/PTT therapy resulted in significant tumor growth delay in the subcutaneous BT474 breast cancer model. Moreover, RT/PTT treatment significantly prolonged the survival of mice bearing orthotopic 4T1 breast tumors compared to no treatment, RT alone, or PTT alone. The RT/PTT combination therapy significantly reduced the number of tumor nodules in the lung and the formation of tumor mammospheres from treated 4T1 tumors. No obvious side effects of the CuS NPs were noted in the treated mice in a pilot toxicity study. Taken together, our data support the feasibility of a therapeutic approach for the suppression of tumor metastasis through localized RT/PTT therapy.
Collapse
Affiliation(s)
- Min Zhou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. and The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Zhao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Mei Tian
- The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Shaoli Song
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Rui Zhang
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Sanjay Gupta
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Dongfeng Tan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Haifa Shen
- Department of Nanomedicine, The Methodist Hospital System Research Institute, Houston, TX 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, The Methodist Hospital System Research Institute, Houston, TX 77030, USA
| | - Chun Li
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
44
|
Maluta S, Kolff MW. Role of Hyperthermia in Breast Cancer Locoregional Recurrence: A Review. Breast Care (Basel) 2015; 10:408-12. [PMID: 26989361 DOI: 10.1159/000440792] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In patients with locoregional recurrences of breast cancer not suitable for resection, subsequent local control is difficult to maintain in previously irradiated areas when reirradiation alone or reirradiation with chemotherapy is used. Due to the limited number of treatment options there is a high risk of subsequent failure and uncontrollable local disease. In this group of patients, local hyperthermia combined with radiotherapy increases the clinical response and local control, adding limited acute and late toxicity, as has been shown in randomized trials. Hyperthermia is an artificial elevation of tissue temperature (range 40-44°C for 30-60 min). If hyperthermia is applied shortly before or after radiation, the effect of radiation is enhanced by influencing intratumoral hypoxia and by inhibiting sublethal damage repair in the tumor. Moreover, hyperthermia combined with radiation reduces the total dose of radiation needed compared to radiation alone, of which a higher dose is needed to obtain the same effect. Few data are available on the combination of radiotherapy and hyperthermia with chemotherapy, although the results of trimodality treatment consisting of reirradiation and hyperthermia together with liposomal doxorubicin are promising. Therefore, this literature review was performed to provide more comprehensive data on the mechanism and use of hyperthermia in locoregional recurrence of breast cancer.
Collapse
Affiliation(s)
- Sergio Maluta
- Department of Hyperthermia, Serena Medical Center, Padova, Italy
| | - Merel Willemijn Kolff
- Department of Radiotherapy and Hyperthermia, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Datta NR, Ordóñez SG, Gaipl US, Paulides MM, Crezee H, Gellermann J, Marder D, Puric E, Bodis S. Local hyperthermia combined with radiotherapy and-/or chemotherapy: recent advances and promises for the future. Cancer Treat Rev 2015; 41:742-53. [PMID: 26051911 DOI: 10.1016/j.ctrv.2015.05.009] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/16/2015] [Accepted: 05/20/2015] [Indexed: 02/08/2023]
Abstract
Hyperthermia, one of the oldest forms of cancer treatment involves selective heating of tumor tissues to temperatures ranging between 39 and 45°C. Recent developments based on the thermoradiobiological rationale of hyperthermia indicate it to be a potent radio- and chemosensitizer. This has been further corroborated through positive clinical outcomes in various tumor sites using thermoradiotherapy or thermoradiochemotherapy approaches. Moreover, being devoid of any additional significant toxicity, hyperthermia has been safely used with low or moderate doses of reirradiation for retreatment of previously treated and recurrent tumors, resulting in significant tumor regression. Recent in vitro and in vivo studies also indicate a unique immunomodulating prospect of hyperthermia, especially when combined with radiotherapy. In addition, the technological advances over the last decade both in hardware and software have led to potent and even safer loco-regional hyperthermia treatment delivery, thermal treatment planning, thermal dose monitoring through noninvasive thermometry and online adaptive temperature modulation. The review summarizes the outcomes from various clinical studies (both randomized and nonrandomized) where hyperthermia is used as a thermal sensitizer of radiotherapy and-/or chemotherapy in various solid tumors and presents an overview of the progresses in loco-regional hyperthermia. These recent developments, supported by positive clinical outcomes should merit hyperthermia to be incorporated in the therapeutic armamentarium as a safe and an effective addendum to the existing oncological treatment modalities.
Collapse
Affiliation(s)
- N R Datta
- Centre of Radiation Oncology, KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland.
| | - S Gómez Ordóñez
- Centre of Radiation Oncology, KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland.
| | - U S Gaipl
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
| | - M M Paulides
- Department of Radiation Oncology, Hyperthermia Unit, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - H Crezee
- Department of Radiation Oncology, Academic Medical Centre, University of Amsterdam, The Netherlands.
| | - J Gellermann
- Praxis/Zentrum für Strahlentherapie und Radioonkologie, Janusz-Korczak-Str. 12, 12627 Berlin, Germany.
| | - D Marder
- Centre of Radiation Oncology, KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland.
| | - E Puric
- Centre of Radiation Oncology, KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland.
| | - S Bodis
- Centre of Radiation Oncology, KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland; Department of Radiation Oncology, University Hospital Zurich, Switzerland.
| |
Collapse
|
46
|
Cihoric N, Tsikkinis A, van Rhoon G, Crezee H, Aebersold DM, Bodis S, Beck M, Nadobny J, Budach V, Wust P, Ghadjar P. Hyperthermia-related clinical trials on cancer treatment within the ClinicalTrials.gov registry. Int J Hyperthermia 2015; 31:609-14. [DOI: 10.3109/02656736.2015.1040471] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Deng ZS, Liu J. Chemothermal therapy for localized heating and ablation of tumor. JOURNAL OF HEALTHCARE ENGINEERING 2013; 4:409-26. [PMID: 23965596 DOI: 10.1260/2040-2295.4.3.409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chemothermal therapy is a new hyperthermia treatment on tumor using heat released from exothermic chemical reaction between the injected reactants and the diseased tissues. With the highly minimally invasive feature and localized heating performance, this method is expected to overcome the ubiquitous shortcomings encountered by many existing hyperthermia approaches in ablating irregular tumor. This review provides a relatively comprehensive review on the latest advancements and state of the art in chemothermal therapy. The basic principles and features of two typical chemothermal ablation strategies (acid-base neutralization-reaction-enabled thermal ablation and alkali-metal-enabled thermal/chemical ablation) are illustrated. The prospects and possible challenges facing chemothermal ablation are analyzed. The chemothermal therapy is expected to open many clinical possibilities for precise tumor treatment in a minimally invasive way.
Collapse
Affiliation(s)
- Zhong-Shan Deng
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
| | | |
Collapse
|
48
|
The combination of silencing BAG3 and inhibition of the JNK pathway enhances hyperthermia sensitivity in human oral squamous cell carcinoma cells. Cancer Lett 2013; 335:52-7. [DOI: 10.1016/j.canlet.2013.01.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 11/17/2022]
|
49
|
Tabuchi Y, Kondo T. Targeting heat shock transcription factor 1 for novel hyperthermia therapy (review). Int J Mol Med 2013; 32:3-8. [PMID: 23636216 DOI: 10.3892/ijmm.2013.1367] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/14/2013] [Indexed: 11/06/2022] Open
Abstract
Hyperthermia (HT) has shown promising antitumor effects against various types of malignant tumors, and its pleiotropic effects support its combined use with radiotherapy and/or chemotherapy. However, HT is rendered less effective by the acquisition of thermoresistance in tumors, which arises through the elevation of heat shock proteins (HSPs) or other tumor responses. In mammals, the induction of HSPs is principally regulated at the transcriptional level by the activation of heat shock transcription factor 1 (HSF1). This transactivator has been shown to be abundantly expressed in a wide variety of tumors in humans. In addition, HSF1 participates in the initiation, proliferation and maintenance of tumors. Of note, HSF1 silencing has been shown to prevent the progression of tumors and to enhance their sensitivity to HT. Here, we review the physiological and pathological roles of HSF1 in cancer cells, and discuss its potential as a therapeutic target for HT therapy.
Collapse
Affiliation(s)
- Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan.
| | | |
Collapse
|
50
|
Wild C. Should hyperthermia be included in the benefit catalogue for oncologic indications? Commercial interests are presumed behind the editorial of R. Sauer et al. Strahlenther Onkol 2013. [PMID: 23203532 DOI: 10.1007/s00066-012-0265-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|