1
|
Han SH, Kim JY, Lee JH, Park CM. Safeguarding genome integrity under heat stress in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab355. [PMID: 34343307 DOI: 10.1093/jxb/erab355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Heat stress adversely affects an array of molecular and cellular events in plant cells, such as denaturation of protein and lipid molecules and malformation of cellular membranes and cytoskeleton networks. Genome organization and DNA integrity are also disturbed under heat stress, and accordingly, plants have evolved sophisticated adaptive mechanisms that either protect their genomes from deleterious heat-induced damages or stimulate genome restoration responses. In particular, it is emerging that DNA damage responses are a critical defense process that underlies the acquirement of thermotolerance in plants, during which molecular players constituting the DNA repair machinery are rapidly activated. In recent years, thermotolerance genes that mediate the maintenance of genome integrity or trigger DNA repair responses have been functionally characterized in various plant species. Furthermore, accumulating evidence supports that genome integrity is safeguarded through multiple layers of thermoinduced protection routes in plant cells, including transcriptome adjustment, orchestration of RNA metabolism, protein homeostasis, and chromatin reorganization. In this review, we summarize topical progresses and research trends in understanding how plants cope with heat stress to secure genome intactness. We focus on molecular regulatory mechanisms by which plant genomes are secured against the DNA-damaging effects of heat stress and DNA damages are effectively repaired. We will also explore the practical interface between heat stress response and securing genome integrity in view of developing biotechnological ways of improving thermotolerance in crop species under global climate changes, a worldwide ecological concern in agriculture.
Collapse
Affiliation(s)
- Shin-Hee Han
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
2
|
Hall JA, Rusten M, Abughazaleh RD, Wuertz B, Souksavong V, Escher P, Ondrey F. Effects of PPAR-γ agonists on oral cancer cell lines: Potential horizons for chemopreventives and adjunctive therapies. Head Neck 2020; 42:2542-2554. [PMID: 32519370 DOI: 10.1002/hed.26286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/17/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor-gamma (PPAR-γ) activators have anti-cancer effects. Our objective was to determine the effect of PPAR-γ ligands 15-deoxy-D12,14 -Prostaglandin J2 (15-PGJ2 ) and ciglitazone on proliferation, apoptosis, and NF-κB in human oral squamous cell carcinoma cell lines. METHODS NA and CA9-22 cells were treated in vitro with 15-PGJ2 and ciglitazone. Proliferation was measured by MTT colorimetric assay and cell cycle analysis performed via flow cytometry, apoptosis by caspase-3 colorimetric assay and poly-(ADP-ribose) polymerase cleavage on Western blot, and NF-κB activation by luciferase assays. RESULTS MTT assays demonstrated dose-dependent decreases after 15-PGJ2 treatment in both cell lines, and S-phase cell cycle arrest was also demonstrated. NF-κB luciferase reporter gene activity decreased seven- and eightfold in NA and CA9-22 cells, respectively. Caspase-3 activity increased two- and eightfold in NA and CA9-22 cells, respectively. CONCLUSIONS Our results suggest these agents, in addition to activating PPAR-γ, can downregulate NF-κB and potentiate apoptosis in oral cancer cells.
Collapse
Affiliation(s)
| | - Mark Rusten
- SoutheastHEALTH, Cape Girardeau, Missouri, USA
| | - Raed D Abughazaleh
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Beverly Wuertz
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Vannesa Souksavong
- University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul Escher
- University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Frank Ondrey
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Fang L, Wang K, Zhang P, Li T, Xiao Z, Yang M, Yu Z. Nucleolin promotes Ang II-induced phenotypic transformation of vascular smooth muscle cells by regulating EGF and PDGF-BB. J Cell Mol Med 2020; 24:1917-1933. [PMID: 31893573 PMCID: PMC6991698 DOI: 10.1111/jcmm.14888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/17/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
RNA-binding properties of nucleolin play a fundamental role in regulating cell growth and proliferation. We have previously shown that nucleolin plays an important regulatory role in the phenotypic transformation of vascular smooth muscle cells (VSMCs) induced by angiotensin II (Ang II). In the present study, we aimed to investigate the molecular mechanism of nucleolin-mediated phenotypic transformation of VSMCs induced by Ang II. Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) inhibitors were used to observe the effect of Ang II on phenotypic transformation of VSMCs. The regulatory role of nucleolin in the phenotypic transformation of VSMCs was identified by nucleolin gene mutation, gene overexpression and RNA interference technology. Moreover, we elucidated the molecular mechanism underlying the regulatory effect of nucleolin on phenotypic transformation of VSMCs. EGF and PDGF-BB played an important role in the phenotypic transformation of VSMCs induced by Ang II. Nucleolin exerted a positive regulatory effect on the expression and secretion of EGF and PDGF-BB. In addition, nucleolin could bind to the 5' untranslated region (UTR) of EGF and PDGF-BB mRNA, and such binding up-regulated the stability and expression of EGF and PDGF-BB mRNA, promoting Ang II-induced phenotypic transformation of VSMCs.
Collapse
Affiliation(s)
- Li Fang
- Department of CardiologyXiangya HospitalCentral South UniversityChangshaChina
- Department of CardiologyThe First Hospital of ChangshaChangshaChina
| | - Kang‐Kai Wang
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
| | - Peng‐Fei Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of HealthXiangya HospitalCentral South UniversityChangshaChina
| | - Tao Li
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
| | - Zhi‐Lin Xiao
- Department of Geriatric CardiologyXiangya HospitalCentral South UniversityChangshaChina
| | - Mei Yang
- Department of Geriatric CardiologyXiangya HospitalCentral South UniversityChangshaChina
| | - Zai‐Xin Yu
- Department of CardiologyXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
4
|
Fang L, Zhang PF, Wang KK, Xiao ZL, Yang M, Yu ZX. Nucleolin promotes Ang II‑induced phenotypic transformation of vascular smooth muscle cells via interaction with tropoelastin mRNA. Int J Mol Med 2019; 43:1597-1610. [PMID: 30720050 PMCID: PMC6414172 DOI: 10.3892/ijmm.2019.4090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/16/2019] [Indexed: 12/31/2022] Open
Abstract
The current study aimed to clarify the role of nucleolin in the phenotypic transformation of vascular smooth muscle cells (VSMCs) and to preliminarily explore its underlying mechanism. The spatial and temporal expression patterns of nucleolin, and the effects of angiotensin II (Ang II) on the expression of VSMC phenotypic transformation markers, α‑smooth muscle‑actin, calponin, smooth muscle protein 22α and osteopontin were investigated. The effects of nucleolin on VSMC phenotypic transformation and the expression of phenotypic transformation‑associated genes, tropoelastin, epiregulin and fibroblast growth factor 2 (b‑FGF), were determined. Protein‑RNA co‑immunoprecipitation was used to investigate the potential target genes regulated by the nucleolin in phenotypic transformation of VSMCs. Finally, the stability of tropoelastin mRNA and the effects of nucleolin on the expression of tropoelastin were assayed. The results revealed that Ang II significantly promoted the phenotypic transformation of VSMCs. The expression of nucleolin was gradually upregulated in VSMCs treated with Ang II at different concentrations for various durations. Ang II induced nucleolin translocation from the nucleus to cytoplasm. Additionally, Ang II significantly promoted the phenotypic transformation of VSMCs. Overexpression and silencing of nucleolin regulated the expressions of tropoelastin, epiregulin and b‑FGF. There was an interaction between tropoelastin mRNA and nucleolin protein, promoting the stability of tropoelastin mRNA and enhancing the expression of tropoelastin at the protein level. Upregulation of nucleolin had an important role in Ang II‑induced VSMC phenotypic transformation, and its underlying mechanism may be through interacting with tropoelastin mRNA, leading to its increased stability and protein expression. The findings provide a new perspective into the regulatory mechanism of VSMC phenotypic transformation.
Collapse
Affiliation(s)
| | - Peng-Fei Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University
| | - Kang-Kai Wang
- Department of Pathophysiology, Xiangya School of Medicine
| | - Zhi-Lin Xiao
- Department of Geriatric Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Mei Yang
- Department of Geriatric Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | | |
Collapse
|
5
|
Gao S, Zheng M, Ren X, Tang Y, Liang X. Local hyperthermia in head and neck cancer: mechanism, application and advance. Oncotarget 2018; 7:57367-57378. [PMID: 27384678 PMCID: PMC5302995 DOI: 10.18632/oncotarget.10350] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 06/16/2016] [Indexed: 02/05/2023] Open
Abstract
Local hyperthermia (HT), particularly in conjunction with surgery, radiotherapy and chemotherapy was useful for the treatment of human malignant tumors including head and neck cancer. However, at present it suffered from many limitations such as thermal dose control, target treatment regions and discrimination between healthy and cancer cells. Recent developments in nanotechnology have introduced novel and smart therapeutic nanomaterials to local HT of head and neck cancer that basically take advantage of various targeting approaches. The aim of this paper is to give a brief review of the mechanism, methods and clinical applications of local HT in head and neck cancer, mainly focusing on photothermal therapy (PTT) and nanoparticle-based hyperthermia.
Collapse
Affiliation(s)
- Shiyu Gao
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Zhoushan, China
| | - Xiaohua Ren
- Department of Stomatology, Sichuan Medical Science Academy and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yaling Tang
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinhua Liang
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Yan J, Zhang Y, Ren C, Shi W, Chen L. Involvement of nuclear protein C23 in activation of EGFR signaling in cervical cancer. Tumour Biol 2016; 37:905-10. [PMID: 26254615 DOI: 10.1007/s13277-015-3889-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/03/2015] [Indexed: 12/12/2022] Open
Abstract
Nuclear protein C23 and epidermal growth factor receptor (EGFR) are reported to be correlated with cervical cancer (CC). However the correlations between C23 and EGFR were rarely reported. Here, this study explored the effects of C23 in activation of EGFR signaling pathway. In our study, immunohistochemistry was used to identify the expression of C23 or EGFR in CC tissues. The level of the phosphorylated EGFR was observed by western blot, and cell invasion capacity was detected by Transwell assay. In this study, we found that C23 and EGFR were highly expressed in cervical cancer tissues, while C23 on the cell surface mainly expressed in CC tissues with lymph node metastasis, and was correlated to EGFR statistically. In vitro, western blot showed that either anti-C23 or anti-EGFR antibodies can inhibit the phosphorlation of EGFR with significant differences (p < 0.01). Besides, based on Transwell assay, the number of membrane-invading cells was reduced significantly in anti-C23 group, and no significant difference was found compared with anti-EGFR treatment (p > 0.05). In conclusion, C23 on the cell surface may be a kind of indispensable component in activation of EGFR signaling, by which C23 can participate in the growth and invasion of tumors. C23 antagonists may provide a new field for cervical cancer therapy.
Collapse
Affiliation(s)
- Junyuan Yan
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Shandong Academy of Medical Sciences, 38# wuyingshan Road, 250031, Jinan, Shandong, China
| | - Yanling Zhang
- Department of Gynaecology and Obstetrics, The Third Peoples Hospital of Jinan City, Jinan, Shandong, China
| | - Cuili Ren
- Department of Gynaecology and Obstetrics, The Third Peoples Hospital of Jinan City, Jinan, Shandong, China
| | - Wenshuang Shi
- Department of Gynaecology and Obstetrics, The Third Peoples Hospital of Jinan City, Jinan, Shandong, China
| | - Lijun Chen
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Shandong Academy of Medical Sciences, 38# wuyingshan Road, 250031, Jinan, Shandong, China.
| |
Collapse
|
7
|
Oei AL, Vriend LEM, Crezee J, Franken NAP, Krawczyk PM. Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all. Radiat Oncol 2015; 10:165. [PMID: 26245485 PMCID: PMC4554295 DOI: 10.1186/s13014-015-0462-0] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/13/2015] [Indexed: 12/03/2022] Open
Abstract
The currently available arsenal of anticancer modalities includes many DNA damaging agents that can kill malignant cells. However, efficient DNA repair mechanisms protect both healthy and cancer cells against the effects of treatment and contribute to the development of drug resistance. Therefore, anti-cancer treatments based on inflicting DNA damage can benefit from inhibition of DNA repair. Hyperthermia – treatment at elevated temperature – considerably affects DNA repair, among other cellular processes, and can thus sensitize (cancer) cells to DNA damaging agents. This effect has been known and clinically applied for many decades, but how heat inhibits DNA repair and which pathways are targeted has not been fully elucidated. In this review we attempt to summarize the known effects of hyperthermia on DNA repair pathways relevant in clinical treatment of cancer. Furthermore, we outline the relationships between the effects of heat on DNA repair and sensitization of cells to various DNA damaging agents.
Collapse
Affiliation(s)
- Arlene L Oei
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands. .,Department of Radiotherapy, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
| | - Lianne E M Vriend
- Van Leeuwenhoek Centre for Advanced Microscopy (LCAM)-AMC, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| | - Johannes Crezee
- Department of Radiotherapy, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
| | - Nicolaas A P Franken
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands. .,Department of Radiotherapy, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
| | - Przemek M Krawczyk
- Van Leeuwenhoek Centre for Advanced Microscopy (LCAM)-AMC, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Xiao S, Caglar E, Maldonado P, Das D, Nadeem Z, Chi A, Trinité B, Li X, Saxena A. Induced expression of nucleolin phosphorylation-deficient mutant confers dominant-negative effect on cell proliferation. PLoS One 2014; 9:e109858. [PMID: 25313645 PMCID: PMC4196967 DOI: 10.1371/journal.pone.0109858] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/08/2014] [Indexed: 11/25/2022] Open
Abstract
Nucleolin (NCL) is a major nucleolar phosphoprotein that has pleiotropic effects on cell proliferation and is elevated in a variety of tumors. NCL is highly phosphorylated at the N-terminus by two major kinases: interphase casein kinase 2 (CK2) and mitotic cyclin-dependent kinase 1 (CDK1). Earlier we demonstrated that a NCL-mutant that is partly defective in undergoing phosphorylation by CK2 inhibits chromosomal replication through its interactions with Replication Protein A, mimicking the cellular response to DNA damage. We further delineated that the N-terminus of NCL associates with Hdm2, the most common E3 ubiquitin ligase of p53. We reported that NCL antagonizes Hdm2 to stabilize p53 and stimulates p53 transcriptional activity. Although NCL-phosphorylation by CK2 and ribosomal DNA transcription are closely coordinated during interphase, the role of NCL phosphorylation in regulating cell proliferation remains unexplored. We have therefore engineered unique human cells that specifically induce expression of NCL-wild type (WT) or a phosphorylation-deficient NCL-mutant, 6/S*A where all the six CK2 consensus serine sites residing in the N-terminus NCL were mutated to alanine. Here we show that this NCL-mutant is defective in undergoing phosphorylation by CK2. We also demonstrate that NCL-phosphorylation by CK2 is required through the S-phase progression in cell cycle and hence proliferation. Induced expression of NCL with mutated CK2 phosphorylation sites stabilizes p53, results in higher expression of Bcl2 (B-cell lymphoma 2) homology 3 (BH3)-only apoptotic markers and causes a dominant-negative effect on cell viability. Our unique cellular system thus provides the first evidential support to delineate phospho-specific functions of NCL on cell proliferation.
Collapse
Affiliation(s)
- Shu Xiao
- Biology Department, Brooklyn College, Brooklyn, New York, United States of America
- City University of New York, Graduate Center, New York, New York, United States of America
| | - Elif Caglar
- Biology Department, Brooklyn College, Brooklyn, New York, United States of America
| | - Priscilla Maldonado
- New York University School of Medicine, New York, New York, United States of America
| | - Dibash Das
- Biology Department, Brooklyn College, Brooklyn, New York, United States of America
- City University of New York, Graduate Center, New York, New York, United States of America
| | - Zaineb Nadeem
- Biology Department, Brooklyn College, Brooklyn, New York, United States of America
| | - Angela Chi
- Great Neck South High School, Great Neck, New York, United States of America
| | - Benjamin Trinité
- New York University College of Dentistry, New York, New York, United States of America
| | - Xin Li
- New York University College of Dentistry, New York, New York, United States of America
| | - Anjana Saxena
- Biology Department, Brooklyn College, Brooklyn, New York, United States of America
- City University of New York, Graduate Center, New York, New York, United States of America
| |
Collapse
|
9
|
Velichko AK, Markova EN, Petrova NV, Razin SV, Kantidze OL. Mechanisms of heat shock response in mammals. Cell Mol Life Sci 2013; 70:4229-41. [PMID: 23633190 PMCID: PMC11113869 DOI: 10.1007/s00018-013-1348-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 12/28/2022]
Abstract
Heat shock (HS) is one of the best-studied exogenous cellular stresses. The cellular response to HS utilizes ancient molecular networks that are based primarily on the action of stress-induced heat shock proteins and HS factors. However, in one way or another, all cellular compartments and metabolic processes are involved in such a response. In this review, we aimed to summarize the experimental data concerning all aspects of the HS response in mammalian cells, such as HS-induced structural and functional alterations of cell membranes, the cytoskeleton and cellular organelles; the associated pathways that result in different modes of cell death and cell cycle arrest; and the effects of HS on transcription, splicing, translation, DNA repair, and replication.
Collapse
Affiliation(s)
- Artem K. Velichko
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elena N. Markova
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nadezhda V. Petrova
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey V. Razin
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Omar L. Kantidze
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
10
|
Qin R, Jiang W, Liu D. Aluminum can induce alterations in the cellular localization and expression of three major nucleolar proteins in root tip cells of Allium cepa var. agrogarum L. CHEMOSPHERE 2013; 90:827-34. [PMID: 23111171 DOI: 10.1016/j.chemosphere.2012.09.093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 09/16/2012] [Accepted: 09/26/2012] [Indexed: 05/08/2023]
Abstract
A 50 μM aluminum (Al) could induce nucleolar materials containing the argyrophilic proteins scattered in the nuclei and extruded from the nuclei into the cytoplasm in the root tip cells of Allium cepa. Unfortunately, what kinds of nucleolar proteins are affected has not been reported till now. In order to go deeper into the understanding of the cytological effects of Al on nucleolus and nucleolar proteins, alterations in the cellular localization and expression of three major nucleolar proteins: nucleophosmin, nucleolin, and fibrillarin were further examined under the treatment with Al in the root tip cells of A. cepa in the present study. Cytological effects of Al on nucleolus were observed by silver-staining method and three major nucleolar proteins: nucleophosmin, nucleolin, and fibrillarin were examined by western blotting. The results indicated that in the presence of 50 μM Al for 48 h the nucleolar proteins were translocated from nucleolus to nucleoplasm and cytoplasm. Western blotting data demonstrated the relatively higher expression of the three major nucleolar proteins when compared with control. Evidence from the present investigation indicated that Al had toxic effects on Ag-NOR proteins, nucleophosmin and nucleolin, and other kinds of nucleolar proteins, fibrillarin.
Collapse
Affiliation(s)
- Rong Qin
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | | | | |
Collapse
|
11
|
Velichko AK, Petrova NV, Kantidze OL, Razin SV. Dual effect of heat shock on DNA replication and genome integrity. Mol Biol Cell 2012; 23:3450-60. [PMID: 22787276 PMCID: PMC3431931 DOI: 10.1091/mbc.e11-12-1009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The data presented here suggest that in an asynchronous cell culture, heat shock might affect DNA integrity both directly and via arrest of replication fork progression and that the phosphorylation of histone H2AX has a protective effect on the arrested replication forks in addition to its known DNA damage signaling function. Heat shock (HS) is one of the better-studied exogenous stress factors. However, little is known about its effects on DNA integrity and the DNA replication process. In this study, we show that in G1 and G2 cells, HS induces a countable number of double-stranded breaks (DSBs) in the DNA that are marked by γH2AX. In contrast, in S-phase cells, HS does not induce DSBs but instead causes an arrest or deceleration of the progression of the replication forks in a temperature-dependent manner. This response also provoked phosphorylation of H2AX, which appeared at the sites of replication. Moreover, the phosphorylation of H2AX at or close to the replication fork rescued the fork from total collapse. Collectively our data suggest that in an asynchronous cell culture, HS might affect DNA integrity both directly and via arrest of replication fork progression and that the phosphorylation of H2AX has a protective effect on the arrested replication forks in addition to its known DNA damage signaling function.
Collapse
Affiliation(s)
- Artem K Velichko
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | | | | | | |
Collapse
|
12
|
Furusawa Y, Iizumi T, Fujiwara Y, Zhao QL, Tabuchi Y, Nomura T, Kondo T. Inhibition of checkpoint kinase 1 abrogates G2/M checkpoint activation and promotes apoptosis under heat stress. Apoptosis 2012; 17:102-12. [PMID: 22080164 DOI: 10.1007/s10495-011-0660-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Hyperthermia induced by heat stress (HS) inhibits the proliferation of cancer cells and induces their apoptosis. However, the mechanism underlying HS-induced apoptosis remains elusive. Here, we demonstrated a novel evidence that checkpoint kinase 1 (Chk1) plays crucial roles in the apoptosis and regulation of cell cycle progression in cells under HS. In human leukemia Jurkat cells, interestingly, the ataxia telangiectasia and Rad-3 related (ATR)-Chk1 pathway was preferentially activated rather than the ataxia telangiectasia mutated (ATM)-checkpoint kinase 2 (Chk2) pathway under HS. The selective inhibitors of ATR or Chk1 abrogated HS-induced apoptosis in human leukemia Jurkat cells whereas the inhibition of ATM or Chk2 caused only marginal effects. Inhibition of ATR and Chk1 also abrogated G2/M checkpoint activation by HS in Jurkat cells. The effects of small interfering RNA targeting Chk1 were similar to those of the selective inhibitor of Chk1. In addition, the efficiencies of Chk1 inhibition on G2/M checkpoint abrogation and apoptosis induction were confirmed in the adherent cancer cell lines HeLa, HSC3, and PC3, suggesting that the targeting of Chk1 can be effective in solid tumors cells. In conclusion, these findings indicate a novel molecular basis of G2/M checkpoint activation and apoptosis in cells exposed to HS.
Collapse
Affiliation(s)
- Yukihiro Furusawa
- Department of Radiological Sciences, Life Science Research Center, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Hovanessian AG, Soundaramourty C, El Khoury D, Nondier I, Svab J, Krust B. Surface expressed nucleolin is constantly induced in tumor cells to mediate calcium-dependent ligand internalization. PLoS One 2010; 5:e15787. [PMID: 21203423 PMCID: PMC3009748 DOI: 10.1371/journal.pone.0015787] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/24/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Nucleolin is one of the major proteins of the nucleolus, but it is also expressed on the cell surface where is serves as a binding protein for variety of ligands implicated in tumorigenesis and angiogenesis. Emerging evidence suggests that the cell-surface expressed nucleolin is a strategic target for an effective and nontoxic cancer therapy. METHODOLOGY/PRINCIPAL FINDINGS By monitoring the expression of nucleolin mRNA, and by measuring the level of nucleolin protein recovered from the surface and nucleus of cells, here we show that the presence of nucleolin at the cell surface is dependent on the constant induction of nucleolin mRNA. Indeed, inhibitors of RNA transcription or translation block expression of surface nucleolin while no apparent effect is observed on the level of nucleolin in the nucleus. The estimated half-life of surface nucleolin is less than one hour, whereas that of nuclear nucleolin is more than 8 hours. Nucleolin mRNA induction is reduced markedly in normal fibroblasts that reach confluence, while it occurs continuously even in post-confluent epithelial tumor cells consistent with their capacity to proliferate without contact inhibition. Interestingly, cold and heat shock induce nucleolin mRNA concomitantly to enhanced mRNA expression of the heat shock protein 70, thus suggesting that surface nucleolin induction also occurs in response to an environmental insult. At the cell surface, one of the main functions of nucleolin is to shuttle specific extracellular ligands by an active transport mechanism, which we show here to be calcium dependent. CONCLUSION/SIGNIFICANCE Our results demonstrate that the expression of surface nucleolin is an early metabolic event coupled with tumor cell proliferation and stress response. The fact that surface nucleolin is constantly and abundantly expressed on the surface of tumor cells, makes them a preferential target for the inhibitory action of anticancer agents that target surface nucleolin.
Collapse
Affiliation(s)
- Ara G Hovanessian
- CNRS-Université Paris Descartes, Unité Régulation de la Transcription de Maladies Génétique, Paris, France.
| | | | | | | | | | | |
Collapse
|
14
|
Vanderwaal RP, Maggi LB, Weber JD, Hunt CR, Roti Roti JL. Nucleophosmin redistribution following heat shock: a role in heat-induced radiosensitization. Cancer Res 2009; 69:6454-62. [PMID: 19638589 DOI: 10.1158/0008-5472.can-08-4896] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellular survival from radiation-induced DNA damage requires access to sites of damage for the assembly of repair complexes and the subsequent repair, particularly the repair of DNA double strand breaks (DSB). Hyperthermia causes changes in protein-protein/DNA interactions in the nucleus that block access to sites of DNA damage. Studies presented here indicate that the nucleolar protein, nucleophosmin (NPM), redistributes from the nucleolus following hyperthermia, increases its association with DNA, and blocks access to DNA DSBs. Reduction of NPM significantly reduces heat-induced radiosensitization, but reduced NPM level does not alter radiation sensitivity per se. NPM knockdown reduces heat-induced inhibition of DNA DSB repair. Also, these results suggest that NPM associates with nuclear matrix attachment region DNA in heat-shocked cells.
Collapse
Affiliation(s)
- Robert P Vanderwaal
- Department of Radiation Oncology, Washington University, St. Louis, Missouri 63108, USA
| | | | | | | | | |
Collapse
|
15
|
Xu M, Myerson RJ, Xia Y, Whitehead T, Moros EG, Straube WL, Roti JLR. The effects of 41°C hyperthermia on the DNA repair protein, MRE11, correlate with radiosensitization in four human tumor cell lines. Int J Hyperthermia 2009; 23:343-51. [PMID: 17558733 DOI: 10.1080/02656730701383007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE The goal of this study was to determine if reduced availability of the DNA repair protein, MRE11, for the repair of damaged DNA is a basis for thermal radiosensitization induced by moderate hyperthermia. To test this hypothesis, we measured the total amount of MRE11 DNA repair protein and its heat-induced alterations in four human tumor cell lines requiring different heating times at 41 degrees C to induce measurable radiosensitization. MATERIALS AND METHODS Human colon adenocarcinoma cell lines (NSY42129, HT29 and HCT15) and HeLa cells were used as the test system. Cells were irradiated immediately after completion of hyperthermia. MRE11 levels in whole cell extract, nuclear extract and cytoplasmic extracts were measured by Western blotting. The nuclear and cytoplasmic extracts were separated by TX100 solubility. The subcellular localization of MRE11 was determined by immunofluorescence staining. RESULTS The results show that for the human tumor cell lines studied, the larger the endogenous amount of MRE11 protein per cell, the longer the heating time at 41 degrees C required for inducing measurable radiosensitization in that cell line. Further, the residual nuclear MRE11 protein level, measured in the nuclear extract and in the cytoplasmic extract as a function of heating time, both correlated with the thermal enhancement ratio (TER). CONCLUSIONS These observations are consistent with the possibility that delocalization of MRE11 from the nucleus is a critical step in the radiosensitization by moderate hyperthermia.
Collapse
Affiliation(s)
- M Xu
- Radiation Sciences, Radiology Department, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Moyer HR, Delman KA. The role of hyperthermia in optimizing tumor response to regional therapy. Int J Hyperthermia 2009; 24:251-61. [DOI: 10.1080/02656730701772480] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
17
|
Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol 2009; 86:151-64. [PMID: 19454272 PMCID: PMC2716701 DOI: 10.1016/j.yexmp.2009.01.004] [Citation(s) in RCA: 608] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Indexed: 02/07/2023]
Abstract
Certain guanine-rich (G-rich) DNA and RNA molecules can associate intermolecularly or intramolecularly to form four stranded or "quadruplex" structures, which have unusual biophysical and biological properties. Several synthetic G-rich quadruplex-forming oligodeoxynucleotides have recently been investigated as therapeutic agents for various human diseases. We refer to these biologically active G-rich oligonucleotides as aptamers because their activities arise from binding to protein targets via shape-specific recognition (analogous to antibody-antigen binding). As therapeutic agents, the G-rich aptamers may have some advantages over monoclonal antibodies and other oligonucleotide-based approaches. For example, quadruplex oligonucleotides are non-immunogenic, heat stable and they have increased resistance to serum nucleases and enhanced cellular uptake compared to unstructured sequences. In this review, we describe the characteristics and activities of G-rich oligonucleotides. We also give a personal perspective on the discovery and development of AS1411, an antiproliferative G-rich phosphodiester oligonucleotide that is currently being tested as an anticancer agent in Phase II clinical trials. This molecule functions as an aptamer to nucleolin, a multifunctional protein that is highly expressed by cancer cells, both intracellularly and on the cell surface. Thus, the serendipitous discovery of the G-rich oligonucleotides also led to the identification of nucleolin as a new molecular target for cancer therapy.
Collapse
Affiliation(s)
- Paula J Bates
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA.
| | | | | | | | | |
Collapse
|
18
|
LaRosa C, Downs SM. Meiotic induction by heat stress in mouse oocytes: involvement of AMP-activated protein kinase and MAPK family members. Biol Reprod 2006; 76:476-86. [PMID: 17108331 DOI: 10.1095/biolreprod.106.057422] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this study, we examined the effect of heat pulsing on oocyte maturation and assessed the possible role of stress-activated enzymes during heat stress-induced meiotic maturation. Denuded oocytes from immature eCG-primed mice were pulsed for 30 min at increasing temperatures from 40 degrees C to 43 degrees C in dibutyryl cAMP-containing medium and were subsequently cultured at 37 degrees C for a total incubation time of 17-18 h. Oocytes exposed to 42 degrees C showed the greatest stimulation of maturation, with no effect at 43 degrees C. A heat pulse did not compromise progression to metaphase II as observed by polar body (PB) formation. The AMP-activated protein kinase (PRKA) inhibitors compound C and Ara-A each blocked the meiosis-stimulating effects of heat. Western blots showed that acetyl-CoA carboxylase, an important substrate of PRKA, was phosphorylated in heat-treated germinal vesicle-stage oocytes, indicating activation of PRKA before maturation. The mitogen-activated protein 2 kinase (MAP2K1) inhibitor PD98059 also prevented heat-induced maturation, but this effect was unrelated to MAPK1/3 activation, which was not observed until after germinal vesicle breakdown (GVB). Phosphorylated MAPK14 was not detected in the oocyte under any experimental condition, and only high concentrations of the MAPK14 inhibitor SB203580 blocked heat-stimulated maturation, suggesting that MAPK14 is not involved in meiotic induction. MAPK8/9 was activated by heat, and the MAPK8/9 inhibitor SP600125, but not JUN N-terminal kinase I, blocked heat-induced maturation. Heat treatment transiently suppressed GVB and PB formation in spontaneously maturing oocytes by a mechanism that is apparently different from its meiosis-inducing action. Collectively, these data show that an acute heat pulse stimulates GVB in meiotically arrested oocytes and suggest that this effect is mediated through the activation of PRKA.
Collapse
Affiliation(s)
- Cean LaRosa
- Biology Department, Marquette University, Milwaukee, Wisconsin 53233, USA
| | | |
Collapse
|
19
|
Zhou C, Li Z, Diao H, Yu Y, Zhu W, Dai Y, Chen FF, Yang J. DNA damage evaluated by gammaH2AX foci formation by a selective group of chemical/physical stressors. Mutat Res 2006; 604:8-18. [PMID: 16423555 PMCID: PMC2756993 DOI: 10.1016/j.mrgentox.2005.12.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2005] [Revised: 11/11/2005] [Accepted: 12/01/2005] [Indexed: 05/06/2023]
Abstract
It has been reported that the phosphorylated form of histone variant H2AX (gammaH2AX) plays an important role in the recruitment of DNA repair and checkpoint proteins to sites of DNA damage, particularly at double strand breaks (DSBs). Using gammaH2AX foci formation as an indicator for DNA damage, several chemicals/stress factors were chosen to assess their ability to induce gammaH2AX foci in a 24h time frame in a human amnion FL cell line. Two direct-acting genotoxins, methyl methanesulfonate (MMS) and N-ethyl-N-nitrosourea (ENU), can induce gammaH2AX foci formation in a time- and dose-dependent manner. Similarly, an indirect-acting genotoxin, benzo[a]pyrene (BP), also induced the formation of gammaH2AX foci in a time- and dose-dependent manner. Another indirect genotoxin, 2-acetyl-aminofluorene (AAF), did not induce gammaH2AX foci formation in FL cells; however, AAF can induce gammaH2AX foci formation in Chinese hamster CHL cells. Neutral comet assays also revealed the induction of DNA strand breaks by these agents. In contrast, epigenetic carcinogens azathioprine and cyclosporine A, as well as non-carcinogen dimethyl sulfoxide, did not induce gammaH2AX foci formation in FL cells. In addition, heat shock and hypertonic saline did not induce gammaH2AX foci. Cell survival analyses indicated that the induction of gammaH2AX is not correlated with the cytotoxic effects of these agents/factors. Taken together, these results suggest that gammaH2AX foci formation could be used for evaluating DNA damage; however, the different cell types used may play an important role in determining gammaH2AX foci formation induced by a specific agent.
Collapse
Affiliation(s)
- Chunxian Zhou
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Zhongxiang Li
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Huiling Diao
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Yanke Yu
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Wen Zhu
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Yayun Dai
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
| | - Fanqing F. Chen
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94210, USA
| | - Jun Yang
- Department of Public Health, Institute for Toxicology, Zhejiang University School of Medicine, 353 Yan An Road, Hangzhou, Zhejiang 310031, China
- Corresponding author. Tel.: +86 571 8721 7199; fax: +86 571 8721 7199. E-mail address: (J. Yang)
| |
Collapse
|
20
|
Tanno Y, Kobayashi K, Tatsuka M, Gotoh E, Takakura K. Mitotic arrest caused by an X-ray microbeam in a single cell expressing EGFP-aurora kinase B. RADIATION PROTECTION DOSIMETRY 2006; 122:301-6. [PMID: 17166874 DOI: 10.1093/rpd/ncl512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Although the highest radiosensitivity of cells in the M phase among the other cell phases, such as the G(1), S and G(2) phases, has been known, the exact mechanism of radiosensitivity in mitotic cells remains unclear. Recently, mitotic arrest caused by DNA-damaging reagents has been shown, and the molecular mechanism in the arrest has been discussed in detail. In this study, abnormal cell-cycle progression in the M phase was investigated when a single mitotic cell in each mitotic stage was irradiated with a 5.35 keV X-ray microbeam focused on the cell nucleus. An X-ray microbeam irradiation system installed at BL-27 in Photon Factory, High Energy Accelerator Research Organization (HEARO, Tsukuba) was used. HeLa cells, genetically modified and expressing enhanced green fluorescent protein-tagged aurora kinase B, were used as irradiated samples in order to recognise the stage of each cell in the M phase. Thus, 10 Gy irradiation concentrated at the nucleus of a single cell elongated the cell-cycle progression in the M phase by delaying the metaphase/anaphase transition. The dose dependence of the elongation of the M phase was also examined. An irregular distribution of DNA in anaphase cells was observed after irradiation.
Collapse
Affiliation(s)
- Y Tanno
- Department of Physics, Graduate School of Natural Sciences, International Christian University, Mitaka, Tokyo 181-8585, Japan
| | | | | | | | | |
Collapse
|
21
|
Choi K, Mollapour E, Shears SB. Signal transduction during environmental stress: InsP8 operates within highly restricted contexts. Cell Signal 2005; 17:1533-41. [PMID: 15936174 DOI: 10.1016/j.cellsig.2005.03.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/04/2005] [Accepted: 03/07/2005] [Indexed: 11/23/2022]
Abstract
Genetic manipulation of diphosphoinositol polyphosphate synthesis impacts many biological processes (reviewed in S.B. Shears, Biochem. J. 377, 2004, 265-280). These observations lacked a cell-signalling context, until the recent discovery that bis-diphosphoinositol tetrakisphosphate ([PP]2-InsP4 or "InsP8") accumulates rapidly in mammalian cells in response to hyperosmotic stress (X. Pesesse, K. Choi, T. Zhang, and S. B. Shears J. Biol. Chem. 279, 2004, 43378-43381). We now investigate how widely applicable is this new stress-response. [PP]2-InsP4 did not respond to mechanical strain or oxidative stress in mammalian cells. Furthermore, despite tight conservation of many molecular stress responses across the phylogenetic spectrum, we show that cellular [PP]2-InsP4 levels do not respond significantly to osmotic imbalance, heat stress and salt toxicity in Saccharomyces cerevisiae. In contrast, we show that [PP]2-InsP4 is a novel sensor of mild thermal stress in mammalian cells: [PP]2-InsP4 levels increased 3-4 fold when cells were cooled from 37 to 33 degrees C, or heated to 42 degrees C. Increases in [PP]2-InsP4 levels following heat-shock were evident <5 min, and reversible (t(1/2)=7 min) once cells were returned to 37 degrees C. These responses were blocked by pharmacological inhibition of the ERK/MEK pathway. Additional control processes may lie upstream of [PP]2-InsP4 synthesis, which was synergistically activated when heat stress and osmotic stress were combined. Our data add to the repertoire of signaling responses following thermal challenges, a topic of current interest for its possible therapeutic value.
Collapse
Affiliation(s)
- Kuicheon Choi
- Inositide Signaling Group, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, PO Box 12233, NC 27709, USA
| | | | | |
Collapse
|
22
|
Kalousek I, Otevřelová P, Röselová P. Expression and translocation of major nucleolar proteins in relation to the transcriptional activity of the nucleolus. J Appl Biomed 2005. [DOI: 10.32725/jab.2005.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
23
|
Kaneko H, Igarashi K, Kataoka K, Miura M. Heat shock induces phosphorylation of histone H2AX in mammalian cells. Biochem Biophys Res Commun 2005; 328:1101-6. [PMID: 15707990 DOI: 10.1016/j.bbrc.2005.01.073] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Indexed: 11/28/2022]
Abstract
Heat shock induces a variety of biological events including gene activation, cell cycle arrest, and apoptosis. Heat shock has recently been shown to be potentially useful when combined with radiation in cancer therapy, probably because, in mammalian cells, heat inhibits the repair of double-strand breaks (DSBs) induced by ionizing radiation. It remains unclear, however, whether heat shock by itself induces DSBs. In this communication, we present the first evidence that heat shock induces the phosphorylated form of histone H2AX, which is thought to be generated at the chromatin proximal to DSB sites. These results suggest that heat shock induces DSBs in mammalian cells and may provide direct evidence to explain previous reports on DSB-related events occurring after heat shock treatment.
Collapse
Affiliation(s)
- Haruna Kaneko
- Molecular Diagnosis and Therapeutics, Department of Oral Restitution, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | |
Collapse
|